
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2024) 6:646–664
https://doi.org/10.1007/s42514-024-00200-3

REGULAR PAPER

Optimizing depthwise separable convolution on DCU

Zheng Liu1 · Meng Hao1 · Weizhe Zhang1,3 · Gangzhao Lu2 · Xueyang Tian1 · Siyu Yang1 · Mingdong Xie1 · Jie Dai1 ·
Chenyu Yuan1 · Desheng Wang3 · Hongwei Yang1

Received: 24 July 2024 / Accepted: 19 October 2024 / Published online: 13 December 2024
© The Author(s) 2024

Abstract
The integration of Large Language Models (LLMs) with Convolutional Neural Networks (CNNs) is significantly advanc-
ing the development of large models. However, the computational cost of large models is high, necessitating optimization
for greater efficiency. One effective way to optimize the CNN is the use of depthwise separable convolution (DSC), which
decouples spatial and channel convolutions to reduce the number of parameters and enhance efficiency. In this study, we focus
on porting and optimizing DSC kernel functions from the GPU to the Deep Computing Unit (DCU), a computing accelera-
tor developed in China. For depthwise convolution, we implement a row data reuse algorithm to minimize redundant data
loading and memory access overhead. For pointwise convolution, we extend our dynamic tiling strategy to improve hardware
utilization by balancing resource allocation among blocks and threads, and we enhance arithmetic intensity through a channel
distribution algorithm. We implement depthwise and pointwise convolution kernel functions and integrate them into PyTorch
as extension modules. Experiments demonstrate that our optimized kernel functions outperform the MIOpen library on the
DCU, achieving up to a 3.59× speedup in depthwise convolution and up to a 3.54× speedup in pointwise convolution. These
results highlight the effectiveness of our approach in leveraging the DCU’s architecture to accelerate deep learning operations.

Keywords Depthwise separable convolution · Deep computing unit · Dynamic tiling · Channel distribution

1 Introduction

Since AlexNet (Krizhevsky et al. 2012) achieved a tre-
mendous breakthrough in the ILSVRC (Russakovsky et al.
2015) in 2012, convolutional neural networks (CNNs) have

demonstrated exceptional performance in a variety of tasks,
such as image recognition, video processing and object
detection (Szegedy et al. 2015; He et al. 2016; Redmon
et al. 2016; Real et al. 2019; Bochkovskiy et al. 2020; GAO
et al. 2022; LU and ZHENG 2023). In recent years, the great

 * Weizhe Zhang
 wzzhang@hit.edu.cn

 Zheng Liu
 zhengliu@stu.hit.edu.cn

 Meng Hao
 haomeng@hit.edu.cn

 Gangzhao Lu
 lugangzhao@cnaeit.com

 Xueyang Tian
 23s003122@stu.hit.edu.cn

 Siyu Yang
 yangsiyu1102@gmail.com

 Mingdong Xie
 goldenpotato137@hit.edu.cn

 Jie Dai
 daijiehit@foxmail.com

 Chenyu Yuan
 chenyuy001@gmail.com

 Desheng Wang
 wangdesheng@hit.edu.cn

 Hongwei Yang
 yanghongwei@hit.edu.cn

1 Faculty of Computing, Harbin Institute of Technology,
Harbin 150001, China

2 China Nanhu Academy of Electronics and Information
Technology, Jiaxing 314001, China

3 School of Computer Science and Technology, Harbin
Institute of Technology, Shenzhen 518055, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-024-00200-3&domain=pdf
http://orcid.org/0000-0003-4783-876X

647Optimizing depthwise separable convolution on DCU

success of transformer-based large language models (LLMs)
(Vaswani et al. 2017; Devlin et al. 2018; Brown et al. 2020;
Sun et al. 2021; JI et al. 2023; Achiam et al. 2023; Zhao
et al. 2023) with hundreds of billions of parameters has sig-
nificantly pushed the boundaries of natural language pro-
cessing techniques, driving the growing scale of models.
To combine the advantages of both powerful architectures,
some studies (Dai et al. 2021; Yuan et al. 2021; Srinivas
et al. 2021) integrate CNNs for local feature extraction
with transformer-based models for establishing long-range
dependencies, resulting in better generalization capability.
These new applications indicate that CNNs remain highly
relevant and useful in modern AI research.

Despite their success, large models require massive com-
puting power and are computationally expensive (Thompson
et al. 2020; Shoeybi et al. 2019) during the training and
inference processes. As the size and complexity of models
increase, the need for reducing computational cost becomes
critical. Many researchers have focused on this field and
proposed various methods targeting large models (Li et al.
2020; Yao et al. 2022; Zhu et al. 2023). One effective solu-
tion to reduce the computational cost for CNNs is the use
of depthwise separable convolution (DSC) (Chollet 2017).
This technique decomposes the standard convolution opera-
tion into two simpler operations: a depthwise convolution
followed by a pointwise convolution. By doing so, it signifi-
cantly reduces the number of computations and parameters
required, leading to more efficient models. DSCs have been
successfully implemented in various architectures, such as
MobileNet (Howard et al. 2017; Sandler et al. 2018) and
EfficientNet (Tan and Le 2019), demonstrating substantial
improvements in computational efficiency without compro-
mising performance.

Many works have focused on optimizing DSCs to further
improve their efficiency and performance. Lu et al. (2021)
designed a data reuse algorithm to reduce memory access
latency and a dynamic tiling algorithm to improve hard-
ware utilization. Wu and Huang (2019) presented methods
to improve data reusability by managing the execution order
of matrix multiplication and to reduce data transfer overhead
by fusing layers. Qin et al. (2018) introduced a diagonalwise
refactorization method to address low GPU utilization and
accelerate depthwise convolution. Wei et al. (2022) pro-
posed an optimized separable convolution, which features
an optimal design for the number of groups and filter sizes
compared to standard DSC. Beyond studies on NVIDIA
GPUs, Bai et al. (2018) implemented optimization methods
on FPGAs. Indeed, the landscape of hardware development
has diversified, with numerous companies now developing
their own computing accelerators, e.g. the Google Tensor
Processing Unit (TPU) (Jouppi et al. 2017). In response to
the escalating demands for developing domestic comput-
ing accelerators, the Deep Computing Unit (DCU) was

developed by Hygon (Hygon 2023) for the Chinese super-
computer and AI market.

A DCU works as a hardware extension to the CPU host
system via a PCI-E connection. The most critical compo-
nent of a DCU is its computing units, as shown in Fig. 1. A
significant hardware design difference from the GPU is that
DCU groups 64 threads into a wavefront, which serves as
the basic scheduling unit, whereas GPU organizes 32 threads
into a warp. This can affect the hardware resource alloca-
tion and parallelism. On the software side, GPUs utilize
the CUDA (Compute Unified Device Architecture) (Guide
2020) platform developed by NVIDIA, while DCUs are built
upon AMD’s open-source ROCm software stack and use
the HIP (Heterogeneous-Compute Interface for Portability)
programming model (AMD 2024). These differences present
challenges when porting code from GPUs to DCUs, as we
need to re-implement code in the new programming model
and consider the hardware resources of the new device to
optimize performance.

Our study aims to identify optimization opportunities and
port our previous optimization methods (Lu et al. 2021) to
the DCU, an area that has been under-explored in previous
research, thereby contributing to the development of a robust
ecosystem for this new device. For depthwise convolutions,
we employ a row data reuse algorithm to minimize unneces-
sary memory access overhead. For pointwise convolutions,
we extend and modify the existing dynamic tiling strategy
and implement an automatic optimization pipeline.

We evaluate our methods by implementing HIP kernel
functions for depthwise and pointwise convolutions and

Fig. 1 Main architecture of a computing unit in DCU. Best viewed in
color

648 Z. Liu et al.

comparing them to the MIOpen library (Khan et al. 2019),
which provides high-performance machine learning primi-
tives in the AMD ROCm stack. Based on these kernel func-
tions, we implement extension modules for PyTorch (Paszke
et al. 2019), a widely-used deep learning library in both
industry and academia and use native PyTorch convolution
modules as the benchmark. Experiments demonstrate that
our depthwise convolution kernel functions achieve up to a
3.59× speedup, and pointwise convolution kernel functions
achieve up to a 3.54× speed up compared to those in MIO-
pen. For the extension modules, the new depthwise convo-
lution extensions achieve a speedup of up to 4.54× , while
the new pointwise convolution extensions achieve a speedup
of up to 1.78× . All experiments were conducted on a DCU
provided by Sugon’s cloud computing platform.

In this study, we make the following key contributions:

• We explore the optimization of DSC on DCU and imple-
ment additional HIP kernel functions to demonstrate the
generality and applicability of our methods across differ-
ent configurations.

• We develop PyTorch extension modules based on opti-
mized kernel functions, facilitating their use in both aca-
demic research and industrial applications.

• We conduct experiments on a DCU, validating our
approach and quantifying the performance gains.

In Sect. 2, we briefly discuss the DCU hardware architecture
and depthwise separable convolution. In Sect. 3, we present
an overview of our study. In Sects. 4 and 5, we elaborate on
optimization strategies for depthwise and pointwise convolu-
tions, respectively. We show experimental results in Sect. 6
and discuss future work in Sect. 7. Finally, in Sect. 8, we
conclude the paper.

Online Material. The source code of this work is publicly
available at https:// github. com/ HIT- HPC- Group/ DSCOp
timiz ation.

2 Background

In this section, we briefly introduce the Deep Computing
Unit and the Depthwise Separable Convolution.

2.1 Deep computing unit

The Deep Computing Unit (DCU) is a computing accelera-
tor developed and launched domestically in China by Hygon
(Hygon 2023). Designed with a GPU-like architecture, it
features low latency and high throughput and is suitable for
highly parallel tasks, typically operating as a coprocessor
to the CPU. In this setup, the host-side program runs on
the CPU while the device-side kernel functions run on the

DCU. Although the DCU is scheduled as a device by the
host CPU system, it independently manages its computing
units, memory system, and thread scheduling, maintaining
relative autonomy during execution.

Computing units are the most crucial components in a
DCU. The DCU in our experiment comprises 64 independ-
ent computing units. As illustrated in Fig. 1, each comput-
ing unit contains 4 SIMD units, and each SIMD unit has 16
ALUs. When the DCU is executing, threads are assigned to
these ALUs, with 64 threads grouped into a wavefront as
the basic execution unit. This structure enables all threads
within a wavefront to execute the same instruction simulta-
neously, thereby enhancing computational efficiency.

Figure 1 also shows the memory hierarchy of the DCU,
which is similar to that of the GPU (Mei and Chu 2016). The
global memory is independent of the host system’s memory
and is used to store data for the computing units. To meet the
demands for high throughput, the DCU supports advanced
HBM2 memory (Jun et al. 2017), providing over 16 GB of
space with bandwidth up to 1 TB/s. Although global mem-
ory offers the largest capacity on the DCU, it also has the
highest access overhead, often becoming the main perfor-
mance bottleneck in many programs. The next level of mem-
ory hierarchy is the shared memory within each computing
unit. Each computing unit has 64 KB of shared memory
accessible by the thread blocks living on it. Shared memory
can be utilized as a fast cache controlled by the developer.
By loading necessary data into shared memory, threads can
avoid multiple accesses to the slower global memory (Xu
et al. 2009). On the contrary, L1 and L2 caches cannot be
programmed directly, but by carefully managing data access
patterns to improve data locality, programmers can leverage
the caching system to enhance program performance. Next,
each SIMD unit provides registers for threads, which have
the shortest access latency. Each thread can use up to 256
registers. For compute-intensive tasks, frequently used data
can be stored in registers to further reduce memory access
overhead (Iandola et al. 2013). Data in registers can also
be transferred between threads using specific APIs. Both
registers and shared memory are crucial hardware resources
for threads, as these resources are limited, which in turn
limits the number of active threads and thus the degree of
parallelism. Our study leverages the feature of the memory
hierarchy to optimize performance.

The DCU utilizes the AMD ROCm software stack, which
includes the HIP (Heterogeneous Interface for Portability)
C/C++ based programming model and runtime library
(AMD 2024). A typical HIP program involves transferring
data from the host to the device, launching kernel functions
on the device, and copying the results back to the host for
further processing. To launch a kernel function, develop-
ers need to configure the grid size and the block size. The
device then determines the index for each thread based on

https://github.com/HIT-HPC-Group/DSCOptimization
https://github.com/HIT-HPC-Group/DSCOptimization

649Optimizing depthwise separable convolution on DCU

these parameters. Because hardware resources are limited
and arbitrary configuration can reduce hardware utilization,
finding a balanced configuration is crucial for maximizing
performance. This is especially important when optimizing
pointwise convolution.

Recently, a growing number of studies have focused
on developing optimization techniques for various appli-
cations running on the new DCU platform. For instance,
Liu et al. (2024) introduced D-TADOC, a compressed data
direct computing method for Chinese datasets on the DCU.
Their approach accelerates the processing of Chinese text
data by designing a parallel processing module specifically
for the DCU architecture. Ma et al. (2022) optimized the
Quantum Fourier Transform (QFT) algorithm by reducing
communication overhead between the host and device while
enhancing thread activity on the DCU. Our work aligns with
these efforts, as we aim to reduce data movement overhead
across the memory hierarchy and refine thread assignment
strategies for improved efficiency. Furthermore, Zhou et al.
(2023) present algorithmic improvements at the compiler
level, incorporating DCU hardware characteristics to adjust
thread allocation. Our tiling method also takes hardware
resources into account to achieve better workload balance.
In addition, Guo et al. (2024) focus on optimizing Sparse
General Matrix-Matrix Multiplication (SpGEMM). Their
solution improves load balancing, maximizes the utiliza-
tion of registers and shared memory, and enhances global
load distribution through fine-grained grouping and kernel
configurations.

2.2 Depthwise separable convolution

Depthwise separable convolution can improve computa-
tional efficiency while maintaining inference accuracy. This
technique was popularized by the MobileNet architecture,
which demonstrated its effectiveness in reducing the number
of parameters and computational cost (Howard et al. 2017).

In a conventional convolution operation, each filter is
applied to all input channels, and the results are summed
to produce the output feature map, as illustrated in Fig. 2.
If there are M input channels and N filters, and assuming a
stride of 1 to maintain the same spatial dimensions for the
output as the input, the computational complexity of the

operation is O(M × N × K × K × H ×W) , where K is the
filter size, and H and W are the height and width of both the
input and output feature maps, respectively. This process
involves a substantial number of multiply-add operations,
which makes it computationally expensive.

On the other hand, depthwise separable convolution
decomposes the traditional convolution operation into two
steps: depthwise convolution and pointwise convolution.
This is presented in Fig. 3. In depthwise convolution, a
single-channel filter is applied to each input channel sepa-
rately. This means that if there are M input channels, there
will be M separate spatial convolutions. The computational
cost of depthwise convolution is O(M × K × K × H ×W) .
After depthwise convolution, a 1 × 1 pointwise convolu-
tion is applied. This operation squeezes and combines
the depthwise convolution’s output along channel dimen-
sion. If there are N filters, the computational complexity
is O(M × N × H ×W) . In total, depthwise separable con-
volution significantly reduces the computational cost to
O(M × K × K × H ×W +M × N × H ×W) . This reduction
leads to fewer parameters and operations, making depthwise
separable convolution an efficient alternative to traditional
convolution.

Depthwise separable convolutions have been successfully
utilized in various networks, including MobileNet and Effi-
cientNet, which are lightweight and suitable for deployment
on resource-constrained devices, such as embedded systems
and mobile phones. Our work further optimizes the perfor-
mance of this efficient operation.

3 Overview

We optimize depthwise and pointwise convolution sepa-
rately. The optimization framework is shown in Fig. 4.

For depthwise convolution, we adopt the row data reuse
algorithm (Lu et al. 2021). The motivation is to maximize

Fig. 2 Illustration of standard convolution. Best viewed in color
Fig. 3 Illustration of depthwise separable convolution. Best viewed in
color

650 Z. Liu et al.

the reuse of loaded data, thereby minimizing redundant
memory access overhead. Such a strategy enhances data
locality within a row and significantly improves the perfor-
mance, as demonstrated in experiments.

For pointwise convolution, the objective is to increase
hardware utilization and improve data arithmetic intensity.
We adapt and extend our previous dynamic tiling strategy
(Lu et al. 2021) to achieve balanced hardware allocation
among threads and blocks and the channel distribution
algorithm to enhance the reuse of loaded data in multiple
operations. Moreover, we implement a three-stage optimi-
zation pipeline, integrating the model-and-profile approach
to select the optimal configuration. The pipeline consists of
three main components:

1 Tiling Parameter Generator: This component defines
all relevant tiling parameters, with candidate values
depending on both hardware limitations and problem
size. Given the hardware resources, constraints are
applied to discard invalid tiling configurations.

2 Code Generator: The code generator processes each
viable configuration to produce the corresponding ker-
nel function code. A key part of this stage is the channel
distribution algorithm, which increases data arithmetic
intensity by reusing loaded data, and the double buffer-
ing mechanism, which reduces data loading latency.

3 Profiler: The profiler measures the execution time of ker-
nel functions generated from each tiling configuration
and selects the fastest one.

4 Depthwise convolution optimization

In this section, we elaborate on the row data reuse algo-
rithm adopted from our previous work for optimizing
depthwise convolution. We begin with a simple example
to illustrate the data reloading problem and its impact on

memory efficiency. For simplicity, we assume that the input
and output data are single-channel and only one thread
block is used. We then explain how the data reuse algorithm
mitigates memory access overhead and provide a detailed
description of the algorithm.

4.1 Data reloading problem

Assume that an input data with size 5 × 5 (including the pad-
ding size of 1) is convolved with a 3 × 3 filter. If the stride is
1, then the output data will be 3 × 3 . We use a 3-thread block
to compute one output row at each step. Then one thread is
assigned to one output element in the row, and they load
required input and filter data to compute the output. This
simple row by row computation process is shown in Fig. 5.

I, F and O denotes the input, filter and output data,
respectively. Ri represents i-th row of the data. Initially, IR0

 ,
IR1

 , and IR2
 are loaded and perform convolution with FR0

 , FR1
 ,

and FR2
 to compute OR0

 . Then OR1
 and OR2

 are calculated in
a similar manner by loading different input and filter rows.
Mathematically, this process is expressed as:

Clearly, the central input rows are loaded multiple times.
As the number of filter rows increases, the repetition also
increases. These repeated loads lead to unnecessary memory
access overhead, which negatively impacts performance.
An intuitive mitigation strategy is to leverage the relatively
faster shared memory to hold prefetched input data, allowing
threads to load data from shared memory. However, the data
reloading pattern still exists.

OR0
= IR0

∗ FR0
+ IR1

∗ FR1
+ IR2

∗ FR2

OR1
= IR1

∗ FR0
+ IR2

∗ FR1
+ IR3

∗ FR2

OR2
= IR2

∗ FR0
+ IR3

∗ FR1
+ IR4

∗ FR2

Fig. 4 Optimization Framework. Best viewed in color

Fig. 5 Illustration of naive depthwise convolution. Best viewed in
color

651Optimizing depthwise separable convolution on DCU

4.2 Row data reuse

To eliminate the reloading pattern and enhance efficiency,
we shift from the output-centric approach to an input-centric
method by reordering the computation process. This allows
each loaded input row to be reused as many times as possible
in multiple operations. Specifically, after loading an input
row, it performs convolutions with multiple filter rows to
generate intermediate results for multiple output rows that
depend on this input row. Intermediate results are temporar-
ily stored in registers to mitigate potential latency caused
by frequent writing access to the output matrix in global
memory. As this process continues, corresponding partial
results for each output row are accumulated in the registers,
and some rows complete their accumulation, then they can
write the final result to global memory and release the reg-
isters. Then these registers can be used to store intermediate
results for future output rows, ensuring a cyclic and limited
register usage.

This process is illustrated in Fig. 6. Initially, upon loading
IR0

 , it only performs an convolution with FR0
 because only

OR0
 requires this partial result. However, after loading IR2

 ,
it is used to produce partial results for OR0

 , OR1
 , and OR2

 by
performing convolutions with FR2

 , FR1
 , and FR0

 , respectively.
At this point, OR0

 finishes accumulating, so the result can
be written to the output matrix in global memory, and the
registers are used to hold new partial results for OR3

 in future
steps. The process continues, with each step efficiently using

loaded data to compute necessary partial results until all
are accumulated for each output row. The new computation
process can be expressed as:

Previously, in the simple implementation, input rows are
loaded 9 times in total. In contrast, this optimized implemen-
tation requires only 5 loads. By decomposing the computa-
tion for each output row into multiple steps as input rows
are loaded, this strategy significantly reduces the number of
data loads, thereby minimizing memory access overhead and
enhancing overall computation efficiency.
Algorithm 1 RowDataReuse

As described in Algorithm 1, it is important to note that
for the input rows located at the edges, they are not con-
volved with all filter rows, unlike those positioned centrally.
These edge cases require meticulous handling to prevent
invalid memory accesses. In practice, when a data batch

Load IR0
∶ OR0

= IR0
∗ FR0

Load IR1
∶ OR0

= OR0
+ IR1

∗ FR1

OR1
= IR1

∗ FR0

Load IR2
∶ OR0

= OR0
+ IR2

∗ FR2
→ Write OR0

OR1
= OR1

+ IR2
∗ FR1

OR2
= IR2

∗ FR0

Load IR3
∶ OR1

= OR1
+ IR3

∗ FR2
→ Write OR1

OR2
= OR2

+ IR3
∗ FR1

Load IR4
∶ OR2

= OR2
+ IR4

∗ FR2
→ Write OR2

Fig. 6 Illustration of row reuse algorithm. Best viewed in color

652 Z. Liu et al.

contains multiple samples and each sample has multiple
channels, the DCU can launch a large number of thread
blocks to process them in parallel. Within each block, a
group of threads processes one output channel, as described
in the algorithm. And each block can contain multiple
groups to handle multiple output channels in parallel. Data
is prefetched from global memory to shared memory by each
thread block, ensuring efficient data loading and reuse by
threads. Experimental results suggest that the row data reuse
algorithm can substantially accelerate depthwise convolu-
tion, and we present the results in Sect. 6.

5 Pointwise convolution optimization

In this section, we introduce our optimization methods for
pointwise convolution and implementation of model-and-
profile three-stage optimization pipeline.

5.1 Tiling parameter generator

When launching a kernel function, developers need to
configure the grid size and block size, which influence the
amount of shared memory allocated to each block. Addi-
tionally, the way a thread block processes a data tile can
also affect the hardware usage per thread. Given that shared
memory and registers are crucial yet limited resources pro-
vided by a computing unit, arbitrary allocation and tiling can
lead to low hardware utilization and poor performance. To
address this, we employ the dynamic tiling strategy that
defines some parameters to describe the workload for each
block and wavefront. To find viable parameter combina-
tions, we define resource constraints based on the available
resources and problem size to eliminate unachievable ones.

5.1.1 Identify tiling parameters

Our dynamic tiling strategy is model-based. We describe the
data tiling for thread blocks and wavefronts using a two-level
tiling strategy. The first level tiling represents the part of the
output data to be processed by each thread block. Within
a block, the data is further partitioned to be processed by
wavefronts, as the second level tiling. This approach extends
our previous work by introducing more tiling parameters,
which in turn affect the constraints of resource usage. We
introduce the parameters in a bottom-up way.

To describe a wavefront’s workload, we use WaveW and
WaveC to represent the width and channel of the output
data tile handled by a wavefront (i.e. second-level tiling),
respectively. Therefore, the total number of elements in the
output data tile for a wavefront is WaveW ×WaveC . Note
that, in order to calculate the output tile, the wavefront is
responsible for the corresponding input tile with the same

WaveW width. To minimize control divergence problem
(Xiang et al. 2014), which makes those allocated hardware
resources wasted, we require candidate values for these
parameters to be integer factors of the output data sizes.
For example, if the output width is 16, then WaveW can be
1, 2, 4, 8, 16. This ensures that the data is always parti-
tioned exactly and wavefronts receive balanced workloads.

Next, we use WaveN to denote the number of wavefronts
contained in each thread block. Given that the wavefront
size is fixed at 64 on current DCUs, the block size is
WaveN × 64 . These wavefronts can be arranged in vari-
ous ways to process different data tiles. To describe this
layout, we use the (RepeatW ,RepeatC) pair to represent the
number of wavefronts arranged along the width and chan-
nel directions of the output data. This represents a signifi-
cant modification to our previous work. Now, WaveN can
have multiple candidate values, rather than being fixed at
4, and wavefronts can be arranged in various configura-
tions, rather than just (2, 2). Since the maximum block
size is 1024 in the current DCU design, the maximum
candidate value for WaveN is 1024

64
= 16 . Moreover, we

require WaveN = RepeatW × RepeatC . For a given WaveN ,
there can be multiple layout strategies, described by the
(RepeatW ,RepeatC) pairs. Additionally, we ensure that the
candidate values do not lead to control divergence. Fig-
ure 7 illustrates this with an example where WaveN = 4 ,
(RepeatW = 2,RepeatC = 2) , WaveW = 4, and WaveC = 2.

As the second-level tiling of each wavefront is
described, the first level tiling is simply aggregate the
workload of the wavefronts. The size of the data tile pro-
cessed by a thread block (i.e. first-level tiling) is calculated
as WaveW ×WaveC × RepeatW × RepeatC . All thread blocks
are arranged along the height, width, and channel direc-
tions in the output data. Consequently, the grid size of the
kernel function is calculated as Total Output Elements

WaveW×WaveC×RepeatW×RepeatC
.

Fig. 7 Example of wavefronts logical layout on output. Best viewed
in color

653Optimizing depthwise separable convolution on DCU

5.1.2 Identify resource parameters

In addition to the tiling parameters, we define two resource
parameters that determine the resource allocation constraints
of a computing unit and the resource usage of blocks and
threads. These parameters, used together with the tiling
parameters, help eliminate unachievable tiling cases. We
discuss these constraints in Sect. 5.1.3.

The first resource parameter is BlockN , which describes
the number of thread blocks scheduled onto one computing
unit. Since the DCU explicitly limits the maximum number
of wavefronts per computing unit to 40, the candidate values
for BlockN depend on WaveN.

The second resource parameter is GroupC , which is used
in the channel distribution algorithm (Lu et al. 2021) to
describe the number of input channels grouped together. It
affects the number of filter elements processed by a thread,
denoted as ThreadC , which in turn affects the register usage.
We use a concrete example to explain the channel distribu-
tion algorithm and how GroupC changes register usage.

Similar to the row data reuse algorithm discussed in
Sect. 4.2, the main motivation behind channel distribution
is to improve ar ithmetic intensity, defined as
number of multiplications

number of loaded elements
 . Higher arithmetic intensity helps to

hide memory access overhead by overlapping computation
with data loading. Specifically, we achieve this by distribut-
ing input and filter elements to the threads in a wavefront.

Assume that a wavefront handles 8 × 64 output data, so
WaveW = 8 and WaveC = 64 , and the input data has 56 chan-
nels, resulting in a filter of size 56 × 64 , where there are 64
output channels and each output channel has 56 elements.

In a simple pointwise convolution process, each thread
can be assigned to calculate an output channel with 8 output
elements in a row. Accordingly, each thread is responsible
for one filter channel with 56 elements. Each time, a thread
loads 8 input data elements in a row and 1 filter element
from its filter channel. By multiplying each input element
with the filter element, a total of 8 partial output results are
calculated. This process is repeated 56 times to accumu-
late the final result, as illustrated in Fig. 8. With this simple
method, at each step, each thread loads 8 input elements and
1 filter element, resulting in a total of 9 elements. These 9
elements are used in 8 multiplication operations to produce
8 partial results. Thus, the arithmetic intensity is 8

9
 , and the

register usage is low.
The channel distribution method, as shown in Fig. 9,

can improve arithmetic intensity. Assume that GroupC = 8 ,
so every 8 input channels (WaveW × GroupC = 8 × 8 = 64
input elements in total) are grouped to be processed by the
wavefront at each time. The goal is to convolve them with

cor responding f i l ter elements in each channel
(WaveC × GroupC = 64 × 8 = 512 elements in total) to pro-
duce partial results. With many threads available, these
filter elements are distributed among threads. If we regard
every 8 consecutive elements in the filter channel as a
group, then threads 0 to 7 take a group from filter channel
0, threads 8 to 15 take a group from filter channel 1, and
so on. Each thead takes 1 element. If each thread only
loads 1 filter element, then a wavefront can load
Fnum =

Wavefront Size

GroupC
=

64

8
= 8 groups, meaning the wavefront

can produce partial results for 8 output channels with these
elements. However, to calculate partial results for all 64
output channels simultaneously, each thread must load
more elements into more registers.

In our example, each thread needs to load
ThreadC =

WaveC

Fnum

=
64

8
= 8 filter elements. Specifically,

threads 0 to 7 take groups from filter channels 0, 8, 16, 24,
32, 40, 48, 56, while threads 8 to 15 load from filter chan-
nels 1, 9, 17, 25, 33, 41, 49, 57, and so on. Each thread
takes one filter element from each group. Grouped input
channels (GroupC = 8) are also distributed to threads row
by row, according to the filter elements, so each thread also
loads WaveW = 8 input elements. Each input element is
multiplied with each filter element to produce a partial
output result (WaveW × ThreadC = 64 in total).

By distributing the workload, the arithmetic intensity is
WaveW×ThreadC

WaveW+ThreadC
=

8×8

8+8
= 4 . This approach improves arithmetic

intensity by more than 4 times. This process repeats
Input Channels

GroupC
= 7 times to process all 56 input channels. In

the end, threads use segmented parallel reduction to accu-
mulate the partial results. The challenging part of this
algorithm is mapping threads onto data correctly.

This example illustrates how GroupC and ThreadC affect
register usage, which is useful when applying resource

Fig. 8 Illustration of simple pointwise convolution method. Best
viewed in color

654 Z. Liu et al.

constraints in Sect. 5.1.3. Table 1 lists all the tiling
and resource parameters and their purposes as a short
summary.

5.1.3 Apply resource constraints

To eliminate invalid tiling cases, we define two constraints
based on the size of shared memory and the number of reg-
isters of a computing unit. We then calculate the resource
usage of each tiling case, which must satisfy both constraints
to be considered valid.

Fig. 9 Illustration of channel distribution algorithm. Top part
shows how input and filter are distributed to threads, assuming that
GroupC = 8 . Bottom part shows how parallel reduction is performed

to aggregate partial values, and how threads are assigned to write out-
put data. Best viewed in color

Table 1 Summary of tiling and resource parameters

Parameter Description

WaveW Output width handled by a wavefront
WaveC Output channel handled by a wavefront
WaveN No. of wavefronts in a block
RepeatW No. of wavefronts along width direction
RepeatC No. of wavefronts along channel direction
BlockN No. of thread blocks per CU
GroupC No. of grouped channels

655Optimizing depthwise separable convolution on DCU

Firstly, we calculate the shared memory that can be allo-
cated to each block, represented as LimitS, and the number
of registers that can be allocated to each thread, denoted as
LimitR, as follows:

where SMEMCU = 64 KB is the size of shared memory and
RegCU = 65536 is the number of registers on a computing
unit. The value 64 in Eq. 2 is the wavefront size. Because
wavefronts and blocks are work balanced, we also require
the resources are partitioned equally.

Secondly, we calculate the size of shared memory allo-
cated to a thread block, defined as:

where 4 represents the number of bytes in a floating-point
number, and 2 accounts for the double buffering used.
RepeatW ×WaveW × GroupC denotes the size of the loaded
input data, and RepeatC ×WaveC × GroupC represents the
size of the loaded filter data. Thus, the shared memory con-
straint is defined as:

Thirdly, we calculate the register usage. Each thread needs
to compute partial results for resultR = WaveW × ThreadC
output elements, with the operands stored in
operandR = WaveW + ThreadC registers. Moreover, because
double buffering is used, a thread block uses registers as
temporary fast cache by loading data into registers before
moving them to shared memory. The number of these tem-
porary registers used is calculated as follows:

(1)LimitS =

SMEMCU

BlockN

(2)LimitR =

RegCU

BlockN ×WaveN × 64

(3)
UsedS = 4 × (RepeatW ×WaveW × GroupC

+ RepeatC ×WaveC × GroupC) × 2

(4)UsedS ≤ LimitS

(5)
tempR = ⌈

RepeatW ×WaveW × GroupC

WaveN × 64
⌉

+ ⌈
RepeatC ×WaveC × GroupC

WaveN × 64
⌉

Equation 5 is similar to Eq. 3, because data is collaborately
loaded by threads in a block, and each thread contributes few
registers for the block. Additionally, we leave 30 registers
for the HIP compiler. The total number of registers used by
a thread is defined as:

To ensure that a tiling case satisfies the register usage, the
second resource constraint is defined as:

By applying constraints defined in Eqs. 4 and 7, our tiling
parameter generator efficiently produces potential tiling con-
figurations that improve hardware utilization while adhering
to the resource limitations of the DCU. To measure the per-
formance of each configuration and identify the fastest one,
we implement a code generator and a profiler.

5.2 Code generator and profiler

The code generator takes a potential tiling configuration
as input and automatically generates kernel function code
to be executed on the DCU. It calculates the grid size and
block size for kernel function launch parameters based on
the given configuration, as discussed in Sect. 5.1.1. Within
the generator, it utilizes the channel distribution algorithm
introduced in Sect. 5.1.2 to map the wavefronts to the cor-
rect output data tiles and allocate the necessary registers
to hold operands, partial results, and temporary values.
Additionally, it incorporates the double buffering mecha-
nism to further exploit optimization opportunities. Data
is transferred between global memory, shared memory,
and registers to fully utilize the DCU’s memory hierarchy,
with the computation process proceeding as outlined in
Algorithm 2.

(6)UsedR = resultR + operandR + tempR + 30

(7)UsedR ≤ LimitR

656 Z. Liu et al.

Algorithm 2 Code Generator Workflow

In the end, we implement a profiler to evaluate the
performance of each kernel function, and select the fast-
est tiling configuration for a given problem as the final
solution. With the automatic optimization pipeline, we
significantly broaden the search space and speed up the
whole development workflow.

6 Experiments

This section introduces the DCU experiment platform and
experiments for evaluating our methods and results.

6.1 Platform

We conducted our experiments on Sugon cloud comput-
ing platform. The configuration of the computing node for
experiments in this work is shown in Table 2. It has a Hygon
C86 7285 32-core CPU. And we choose DTK−23.04 as our
software development toolkit. The computing node supports
a DCU Z100SM as the accelerator, which provides 16 GB of
global memory and integrates 64 computing units.

6.2 Testing new kernel functions

6.2.1 Setup

In this experiment, we evaluate the performance of our
approach against the MIOpen library (Khan et al. 2019) and
calculate the speedup relative to the MIOpen kernel func-
tions. MIOpen provides various convolution algorithms,
including General Matrix Multiplication (GEMM) (Vasude-
van et al. 2017; Li et al. 2019), Direct Convolution (Ferrari
et al. 2023; Zhang et al. 2018), Fast Fourier Transform (FFT)
indirect convolution (Li et al. 2019), Winograd indirect con-
volution (Yan et al. 2020), and Implicit GEMM (Wang et al.
2019), each with different performance depending on the
problem size. To identify the fastest algorithm as a bench-
mark, we use the miopenFindConvolutionForwardAlgo-
rithm() API function provided by MIOpen. We use the layer
configurations from four popular depthwise separable net-
works, MobileNet V2, EfficientNet B0, MnasNet (Tan et al.
2019) and ShuffleNet V2 (Ma et al. 2018), which together
include 30 different depthwise layers and 45 different point-
wise layers. The batch sizes are set to 1, 8, 16, 32, and 64.

Tables 3 and 4 list the layer configurations used in this
experiment. In the tables, IC , IH and IW represent input chan-
nel, input height and input width, respectively. FH and FW
denote the height and width of filter. In the end, OC is the
output channel.

6.2.2 Results

The performance comparison between kernel functions and
the MIOpen library is shown in Figs. 10 and 11 for depth-
wise convolutions and pointwise convolutions, respectively.

For depthwise convolution kernel functions, we observe
that as the batch size increases, the average time for our
kernel functions remains significantly lower than that of the

657Optimizing depthwise separable convolution on DCU

MIOpen library. This demonstrates the effectiveness of our
row data reuse algorithm in maintaining low memory access
overhead, leading to substantial performance gains across
all tested batch sizes. Table 5 shows the average speedup of
the depthwise convolution kernel functions over MIOpen
for each batch size. The average speedup is largest when the
batch size is 16, indicating optimal utilization of the row
data reuse strategy at this configuration.

For pointwise convolution kernel functions, MIOpen uti-
lizes different algorithms for different batch sizes, resulting
in a performance boost when the batch size is 16. How-
ever, the runtime of our kernel functions increases as the

Table 2 Experiment platform

Host System

CPU Hygon C86 7285 32-core
Memory 128 GB
Storage 480 GB
Operating System CentOS release 7.6.1810
Development Toolkit DTK−23.04
Device
Type DCU Z100SM
Computing Units 64
Shared Memory / CU 64 KB
Registers / CU 65,536
Global Memory 16 GB

Table 3 Configurations of depthwise convolution layers

I
C

I
H
× I

W
F
H
× F

W
Stride

D1 32 112 × 112 3 × 3 1
D2 144 56 × 56 3 × 3 1
D3 240 28 × 28 5 × 5 1
D4 384 14 × 14 3 × 3 1
D5 960 7 × 7 3 × 3 1
D6 96 112 × 112 3 × 3 2
D7 240 28 × 28 3 × 3 2
D8, D9 480 14 × 14 3 × 3 , 5 × 5 1
D10, D11 1152 7 × 7 3 × 3 , 5 × 5 1
D12, D13 144 56 × 56 3 × 3 , 5 × 5 2
D14, D15 192 28 × 28 3 × 3 1, 2
D16, D17 576 14 × 14 3 × 3 1, 2
D18, D19 672 14 × 14 5 × 5 1, 2
D20 72 56 × 56 3 × 3 1
D21 120 28 × 28 5 × 5 1
D22 24 28 × 28 3 × 3 1
D23 48 14 × 14 3 × 3 1
D24 96 7 × 7 3 × 3 1
D25 48 112 × 112 3 × 3 2
D26 72 56 × 56 5 × 5 2
D27 576 14 × 14 5 × 5 2
D28 24 56 × 56 3 × 3 2
D29 48 28 × 28 3 × 3 2
D30 96 14 × 14 3 × 3 2

Table 4 Configurations of
pointwise convolution layers

I
C

I
H
× I

W
O

C

P1 32 112 × 112 16
P2 16 112 × 112 96
P3 96 56 × 56 24
P4 24 56 × 56 144
P5 144 56 × 56 24
P6 144 28 × 28 32
P7 32 28 × 28 192
P8 192 28 × 28 32
P9 144 28 × 28 40
P10 40 28 × 28 240
P11 240 28 × 28 40
P12 192 14 × 14 64
P13 64 14 × 14 384
P14 384 14 × 14 64
P15 384 14 × 14 96
P16 96 14 × 14 576
P17 576 14 × 14 96
P18 240 14 × 14 80
P19 80 14 × 14 240
P20 480 14 × 14 80
P21 480 14 × 14 112
P22 112 14 × 14 672
P23 672 14 × 14 112
P24 576 7 × 7 160
P25 160 7 × 7 960
P26 960 7 × 7 160
P27 960 7 × 7 320
P28 320 7 × 7 1280
P29 672 7 × 7 192
P30 192 7 × 7 1152
P31 1152 7 × 7 192
P32 1152 7 × 7 320
P33 16 112 × 112 48
P34 48 56 × 56 24
P35 24 56 × 56 72
P36 72 56 × 56 24
P37 72 28 × 28 40
P38 40 28 × 28 120
P39 120 28 × 28 40
P40 480 14 × 14 96
P41 576 7 × 7 192
P42 24 28 × 28 24
P43 48 14 × 14 48
P44 96 7 × 7 96
P45 192 7 × 7 1024

658 Z. Liu et al.

batch size grows. By improving hardware utilization, our
optimized pointwise kernel functions run faster when the
batch size is small, though the speedup decreases with
larger batch sizes. Table 6 illustrates the average speedup

of the pointwise convolution kernel functions compared to
MIOpen for each batch size. The optimal performance is
observed when the batch size is 1, with an average speedup
of 3.54×.

In real-world inference scenarios, models typically pro-
cess user requests as they arrive, forming small batches
rather than the large, pre-processed batches used during
training. This is especially important in real-time or inter-
active applications, where minimizing latency is critical. By
optimizing for smaller batch sizes, we aim to ensure faster
response times and enhance user experience by reducing
delays.

6.3 Testing extension modules

6.3.1 Setup

We implement PyTorch extension modules based on the
new kernel functions and evaluate the performance of them.
PyTorch provides a C++ extension mechanism (Golds-
borough 2024) that allows developers to create custom
PyTorch operations separate from the PyTorch backend.
Utilizing this mechanism, we implement backend C++
operations by wrapping our kernel functions as the forward
pass functions. These backend operations are then bound
to Python frontend using pybind11 (Jakob 2017). In the
Python frontend, we further wrap the backend operations
with torch.autograd.Function and torch.nn.Module to imple-
ment extension modules, making them callable as PyTorch
modules. Our extension modules work in the same way as
native PyTorch modules and take width, height and channel
of input and output data as parameters.

To evaluate the performance, we feed random data with
correct dimensions to the modules and set the batch sizes
to 1, 8, 16, 32, and 64. Then we measure the forward pass
execution time of our modules and compare them to those
of PyTorch.

6.3.2 Results

Figures 12 and 13 show the performance comparison results
between depthwise and pointwise convolution extension

Fig. 10 Performance comparison between depthwise convolution ker-
nel functions and MIOpen

Fig. 11 Performance comparison between pointwise convolution ker-
nel functions and MIOpen

Table 5 Average speed up of depthwise convolution kernel functions
over MIOpen for different batch sizes

Batch Size Ours MIOpen Speed Up

1 52.88 (�s) 173.59 (�s) 3.32
8 81.83 (�s) 283.82 (�s) 3.47
16 113.82 (�s) 387.94 (�s) 3.59
32 183.84 (�s) 606.12 (�s) 3.44
64 279.16 (�s) 782.29 (�s) 3.35

Table 6 Average speed up of pointwise convolution kernel functions
over MIOpen for different batch sizes

Batch Size Ours MIOpen Speed Up

1 94.55 (�s) 332.32 (�s) 3.54
8 160.96 (�s) 366.22 (�s) 2.48
16 232.26 (�s) 300.86 (�s) 1.49
32 349.77 (�s) 371.69 (�s) 1.31
64 626.09 (�s) 449.29 (�s) 0.9

659Optimizing depthwise separable convolution on DCU

modules, respectively. Compared to the evaluation results
for kernel functions, while our modules maintain similar
performance, PyTorch runs much faster than MIOpen.

The depthwise convolution extension modules exhibit
a consistent performance improvement over the PyTorch
native modules. Table 7 highlights the speedup achieved,
with the maximum observed at a batch size of 32, where our
modules achieve a 4.54× average speedup.

For pointwise convolution extension modules, the per-
formance varies with batch size. As shown in Fig. 13, our
modules outperform PyTorch’s native modules for smaller
batch sizes, achieving an average speedup of 1.78× at a batch
size of 1, as shown in Table 8. However, the performance
improvement diminishes as the batch size increases, indicat-
ing that our methods can work well on small batch cases.

6.4 Ablation study

6.4.1 Setup

The primary goal of our ablation study is to assess how our
depthwise and pointwise convolution optimization methods
individually and jointly impact the performance of various
networks. We select four representative networks for this
study: EfficientNet B0, MnasNet, MobileNet V2 and Shuf-
fleNet V2. Our setup is designed to minimize interference
from non-convolution layers (such as batch normalization,
pooling, and linear transformations) and reduce potential
data transfer overhead, by isolating the depthwise and point-
wise convolution layers and profiling their running time. To
showcase the optimizing effect for the inference process with
small batch size, we simply assume the batch is 1 here.

For each model, we run the following four cases:

• Baseline: We measure the performance of the original
PyTorch depthwise and pointwise layers as a baseline.

• Only Depthwise: We replace the depthwise convolu-
tion layers with our optimized extension modules while
retaining PyTorch’s native pointwise layers.

• Only Pointwise: We replace the pointwise convolution
layers with our optimized extension modules while
retaining PyTorch’s native depthwise layers.

• Both Optimized: We replace both depthwise and point-
wise layers with our optimized extension modules.

This approach enables us to determine the impact of each
optimization direction individually and in combination.

Fig. 12 Performance comparison between depthwise convolution
extension modules and PyTorch

Fig. 13 Performance comparison between pointwise convolution
extension modules and PyTorch

Table 7 Average speed up of depthwise convolution extension mod-
ules over PyTorch for different batch sizes

Batch Size Module PyTorch Speed Up

1 68.52 (�s) 118.87 (�s) 1.73
8 76.66 (�s) 230.21 (�s) 2.92
16 90.88 (�s) 353.04 (�s) 3.7
32 126.09 (�s) 598.39 (�s) 4.54
64 202.65 (�s) 786.51 (�s) 4.49

Table 8 Average speed up of pointwise convolution extension mod-
ules over PyTorch for different batch sizes

Batch Size Module PyTorch Speed Up

1 78.45 (�s) 140.21 (�s) 1.78
8 115.74 (�s) 145.06 (�s) 1.33
16 165.80 (�s) 166.84 (�s) 1.11
32 260.97 (�s) 202.99 (�s) 0.9
64 461.68 (�s) 300.53 (�s) 0.76

660 Z. Liu et al.

6.4.2 Results

Table 9 summarizes the results of our ablation study. For
each model, we report the execution time of the baseline,
the speedup obtained by optimizing only depthwise convolu-
tions, the speedup from optimizing only pointwise convolu-
tions, and the combined speedup from optimizing both.

From the results, we observe that optimizing depthwise
layers alone yields a consistent performance improvement
across all models, with a speedup around 1.20x, depending
on the model. Similarly, optimizing only the pointwise layers
also results in performance gains, with a speedup ranging
from 1.47x to 1.51x. This can be attributed to the dynamic
tiling and channel distribution strategies that improve hard-
ware utilization for pointwise convolutions. When both
depthwise and pointwise layers are optimized together, we
observe the highest overall speedups, ranging from 1.71x to
1.98x. This demonstrates the cumulative benefits of reducing
memory access and improving hardware efficiency across
both types of convolutions. These results provide strong
evidence that our proposed optimizations are effective in
reducing the computational cost of depthwise separable con-
volutions in real-world deep learning models.

7 Discussion and future work

In this section, we discuss potential directions for future
research.

Firstly, our optimization pipeline for pointwise convolu-
tion is model-and-profile-based. Utilizing a reinforcement

learning-based method (Arulkumaran et al. 2017) can be a
compelling alternative. One advantage of this solution is
its flexibility to accommodate various layer configurations
and hardware resource constraints. However, collecting
the training data can be challenging and requires careful
handling.

Secondly, we observe that the backpropagation steps
cost longer time than the forward pass phase (Narayanan
et al. 2019). This indicates that optimizing the backpropa-
gation operations is also important for accelerating the
overall training process, and this can be a focus of future
work.

Thirdly, implementing and calling depthwise and point-
wise convolutions separately in the model training and
inference process can introduce additional context switch
overhead. Using kernel fusion techniques (Wang et al.
2010) to combine depthwise and pointwise convolutions
into a single kernel function can mitigate this overhead.
This would reduce the number of kernel function calls, but
it may couple the convolutions more tightly, sacrificing the
modularity of the components.

Lastly, TensorRT (Jeong et al. 2021), specifically
designed for NVIDIA GPUs, is a highly optimized deep
learning library built on CUDA to accelerate inference. It
employs various optimization techniques, including preci-
sion calibration, dynamic memory reuse, layer and tensor
fusion, and kernel auto-tuning. While our work incorpo-
rates similar concepts, there are opportunities to enhance it
further with additional strategies. More importantly, devel-
oping a high-performance inference library tailored for the
DCU platform presents a promising research direction that
could drive significant advancements.

Table 9 Ablation study result

Model Baseline Only Depthwise Speed Up

EfficientNet 5.43 (ms) 4.54 (ms) 1.20
MNasNet 5.59 (ms) 4.71 (ms) 1.19
MobileNet 5.74 (ms) 4.87 (ms) 1.18
ShuffleNet 5.89 (ms) 4.99 (ms) 1.18

 Model Baseline Only Pointwise Speed Up

EfficientNet 5.43 (ms) 3.70 (ms) 1.47
MNasNet 5.59 (ms) 3.79 (ms) 1.48
MobileNet 5.74 (ms) 3.86 (ms) 1.49
ShuffleNet 5.89 (ms) 3.91 (ms) 1.51

 Model Baseline Both Optimized Speed Up

EfficientNet 5.43 (ms) 3.17 (ms) 1.71
MNasNet 5.59 (ms) 2.89 (ms) 1.94
MobileNet 5.74 (ms) 2.97 (ms) 1.93
ShuffleNet 5.89 (ms) 2.98 (ms) 1.98

661Optimizing depthwise separable convolution on DCU

8 Conclusion

We port our optimization methods for depthwise separable
convolution from the GPU onto DCU, a computing accel-
erator developed in China. For depthwise convolution, we
use the row data reuse algorithm to eliminate repeated data
loading, thereby reducing memory latency and improving
performance. For pointwise convolution, we modify the
dynamic tiling strategy to enhance hardware utilization
and utilized the channel distribution algorithm to increase
arithmetic intensity for threads. Experimental results show
that our optimization methods are effective for both depth-
wise and pointwise convolutions on DCU, especially when
the batch size is small.

Acknowledgements This work is supported by the National Key
Research and Development Plan (Grand No. 2023YFB4503205) and
National Natural Science Foundation of China (Grant No. 62202123).

Data availability The data and code that support the findings of this
study are openly available in repository DSCOptimization at https://
github. com/ HIT- HPC- Group/ DSCOp timiz ation.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no Conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman,
F.L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S.,
et al.: Gpt-4 technical report. arXiv: 2303. 08774 (2023)

AMD: AMD ROCmTM Documentation. https:// rocm. docs. amd. com/
en/ latest Accessed 15 May 2024

Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.:
Deep reinforcement learning: A brief survey. IEEE Signal Pro-
cess. Magaz. 34(6), 26–38 (2017)

Bai, L., Zhao, Y., Huang, X.: A cnn accelerator on fpga using
depthwise separable convolution. IEEE Trans. Circuits Syst.
II: Express Briefs 65(10), 1415–1419 (2018). https:// doi. org/
10. 1109/ TCSII. 2018. 28658 96

Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: Optimal speed
and accuracy of object detection. arXiv: 2004. 10934 (2020)

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dha-
riwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A.:

Language models are few-shot learners. Adv. Neural Inf. Pro-
cess. Syst. 33, 1877–1901 (2020)

Chollet, F.: Xception: Deep learning with depthwise separable con-
volutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1251–1258 (2017)

Dai, Z., Liu, H., Le, Q.V., Tan, M.: Coatnet: Marrying convolution
and attention for all data sizes. Adv. Neural Inf. Process. Syst.
34, 3965–3977 (2021)

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training
of deep bidirectional transformers for language understanding.
arXiv: 1810. 04805 (2018)

Ferrari, V., Sousa, R., Pereira, M., L. De Carvalho, J.a.P., Amaral,
J.N., Moreira, J., Araujo, G.: Advancing direct convolution
using convolution slicing optimization and isa extensions. ACM
Trans. Architect. Code Opt. 20(4), (2023) https:// doi. org/ 10.
1145/ 36250 04

Gao, N., Yu, Y., Hua, X., Feng, F., Jiang, T.: A content-aware bitrate
selection method using multi-step prediction for 360-degree video
streaming. ZTE Commun. 20(4), 96 (2022)

Goldsborough, P.: Custom C and cuda extensions. https:// pytor ch. org/
tutor ials/ advan ced/ cpp_ exten sion. html# custom- c- and- cuda- exten
sions Accessed 16 May 2024

Guide, D.: Cuda c++ programming guide. NVIDIA, July (2020)
Guo, H., Wang, H., Chen, W., Zhang, C., Han, Y., Zhu, S., Zhang,

D., Guo, Y., Shang, J., Wan, T., et al.: Optimizing sparse gen-
eral matrix–matrix multiplication for dcus. J. Supercomput. 1–25
(2024)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778 (2016)

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Wey-
and, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv:
1704. 04861 (2017)

Hygon: Deep Computing Unit. https:// www. hygon. cn/ produ ct/ accel
erator Accessed 16 May 2024

Iandola, F.N., Sheffield, D., Anderson, M.J., Phothilimthana, P.M.,
Keutzer, K.: Communication-minimizing 2d convolution in gpu
registers. In: 2013 IEEE International Conference on Image Pro-
cessing, pp. 2116–2120 (2013). IEEE

Jakob, W.: Pybind11 Documentation. https:// pybin d11. readt hedocs. io/
en/ stable/ index. html Accessed 16 May 2024

Jeong, E., Kim, J., Tan, S., Lee, J., Ha, S.: Deep learning inference
parallelization on heterogeneous processors with tensorrt. IEEE
Embedded Syst. Lett. 14(1), 15–18 (2021)

Ji, Y., Han, J., Zhao, Y., Zhang, S., Gong, Z.: Log anomaly detection
through gpt-2 for large scale systems. ZTE Commun. 21(3), 70
(2023)

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Can-
tin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M.,
Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland,
W., Hagmann, R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt,
D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H.,
Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary,
C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A.,
Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni,
R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A.,
Ross, J.: In-datacenter performance analysis of a tensor processing
unit. (2017). arXiv: https:// arxiv. org/ pdf/ 1704. 04760 pdf

Jun, H., Cho, J., Lee, K., Son, H.-Y., Kim, K., Jin, H., Kim, K.: Hbm
(high bandwidth memory) dram technology and architecture. In:
2017 IEEE International Memory Workshop (IMW), pp. 1–4
(2017). IEEE

Khan, J., Fultz, P., Tamazov, A., Lowell, D., Liu, C., Melesse, M.,
Nandhimandalam, M., Nasyrov, K., Perminov, I., Shah, T., et al.:

https://github.com/HIT-HPC-Group/DSCOptimization
https://github.com/HIT-HPC-Group/DSCOptimization
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2303.08774
https://rocm.docs.amd.com/en/latest
https://rocm.docs.amd.com/en/latest
https://doi.org/10.1109/TCSII.2018.2865896
https://doi.org/10.1109/TCSII.2018.2865896
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3625004
https://doi.org/10.1145/3625004
https://pytorch.org/tutorials/advanced/cpp_extension.html#custom-c-and-cuda-extensions
https://pytorch.org/tutorials/advanced/cpp_extension.html#custom-c-and-cuda-extensions
https://pytorch.org/tutorials/advanced/cpp_extension.html#custom-c-and-cuda-extensions
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://www.hygon.cn/product/accelerator
https://www.hygon.cn/product/accelerator
https://pybind11.readthedocs.io/en/stable/index.html
https://pybind11.readthedocs.io/en/stable/index.html
http://arxiv.org/abs/https://arxiv.org/pdf/1704.04760pdf

662 Z. Liu et al.

Miopen: An open source library for deep learning primitives.
arXiv: 1910. 00078 (2019)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. Adv. Neural Inf. Pro-
cess. Syst. 25, (2012)

Li, Z., Jia, H., Zhang, Y., Chen, T., Yuan, L., Cao, L., Wang, X.: Aut-
offt: a template-based fft codes auto-generation framework for arm
and x86 cpus. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
pp. 1–15 (2019)

Li, X., Liang, Y., Yan, S., Jia, L., Li, Y.: A coordinated tiling and batch-
ing framework for efficient gemm on gpus. In: Proceedings of the
24th Symposium on Principles and Practice of Parallel Program-
ming, pp. 229–241 (2019)

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., Gonzalez,
J.: Train big, then compress: Rethinking model size for efficient
training and inference of transformers. In: International Confer-
ence on Machine Learning, pp. 5958–5968 (2020). PMLR

Liu, Y., Zhang, F., Pan, Z., Guo, X., Hu, Y., Zhang, X., Du, X.: Com-
pressed data direct computing for chinese dataset on dcu. CCF
Trans. High Perform. Comput. 6(2), 206–220 (2024)

Lu, J., Zheng, Q.: Ultra-lightweight face animation method for ultra-
low bitrate video conferencing. ZTE Commun. 21(1), 64 (2023)

Lu, G., Zhang, W., Wang, Z.: Optimizing depthwise separable convo-
lution operations on gpus. IEEE Trans. Parallel Distribut. Syst.
33(1), 70–87 (2021)

Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: Shufflenet v2: Practical guide-
lines for efficient cnn architecture design. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pp. 116–131 (2018)

Ma, K., Han, L., Shang, J.-D., Xie, J.-M., Zhang, H.: Optimized reali-
zation of quantum fourier transform for domestic dcu accelerator.
J Phys Conf Ser 2258, 012065 (2022)

Mei, X., Chu, X.: Dissecting gpu memory hierarchy through micro-
benchmarking. IEEE Trans. Parallel Distribut. Syst. 28(1), 72–86
(2016)

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur,
N.R., Ganger, G.R., Gibbons, P.B., Zaharia, M.: Pipedream: Gen-
eralized pipeline parallelism for dnn training. In: Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pp.
1–15 (2019)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch:
An imperative style, high-performance deep learning library. Adv.
Neural Inf. Process. Syst. 32, (2019)

Qin, Z., Zhang, Z., Li, D., Zhang, Y., Peng, Y.: Diagonalwise refac-
torization: An efficient training method for depthwise convolu-
tions. In: 2018 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8 (2018). IEEE

Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for
image classifier architecture search. In: Proceedings of the Aaai
Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once:
Unified, real-time object detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
779–788 (2016)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.: Imagenet
large scale visual recognition challenge. Int. J. Comput. Vision
115, 211–252 (2015)

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.:
Mobilenetv2: Inverted residuals and linear bottlenecks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520 (2018)

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., Catan-
zaro, B.: Megatron-lm: Training multi-billion parameter language
models using model parallelism. arXiv: 1909. 08053 (2019)

Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.:
Bottleneck transformers for visual recognition. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16519–16529 (2021)

Sun, Y., Wang, S., Feng, S., Ding, S., Pang, C., Shang, J., Liu, J.,
Chen, X., Zhao, Y., Lu, Y., et al.: Ernie 3.0: Large-scale knowl-
edge enhanced pre-training for language understanding and gen-
eration. arXiv: 2107. 02137 (2021)

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with con-
volutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–9 (2015)

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A.,
Le, Q.V.: Mnasnet: Platform-aware neural architecture search for
mobile. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 2820–2828 (2019)

Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In: International Conference on Machine
Learning, pp. 6105–6114 (2019). PMLR

Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The com-
putational limits of deep learning. arXiv: 2007. 0555810 (2020)

Vasudevan, A., Anderson, A., Gregg, D.: Parallel multi channel con-
volution using general matrix multiplication. In: 2017 IEEE 28th
International Conference on Application-specific Systems, Archi-
tectures and Processors (ASAP), pp. 19–24 (2017). IEEE

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv.
Neural Inf. Process. Syst. 30, (2017)

Wang, G., Lin, Y., Yi, W.: Kernel fusion: An effective method for bet-
ter power efficiency on multithreaded gpu. In: 2010 IEEE/ACM
Int’l Conference on Green Computing and Communications &
Int’l Conference on Cyber, Physical and Social Computing, pp.
344–350 (2010). IEEE

Wang, Q., Mei, S., Liu, J., Gong, C.: Parallel convolution algorithm
using implicit matrix multiplication on multi-core cpus. In: 2019
International Joint Conference on Neural Networks (ijcnn), pp.
1–7 (2019). IEEE

Wei, T., Tian, Y., Wang, Y., Liang, Y., Chen, C.W.: Optimized sepa-
rable convolution: Yet another efficient convolution operator. AI
Open 3, 162–171 (2022)

Wu, H.-N., Huang, C.-T.: Data locality optimization of depthwise sepa-
rable convolutions for cnn inference accelerators. In: 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE),
pp. 120–125 (2019). IEEE

Xiang, P., Yang, Y., Zhou, H.: Warp-level divergence in gpus: Char-
acterization, impact, and mitigation. In: 2014 IEEE 20th Interna-
tional Symposium on High Performance Computer Architecture
(HPCA), pp. 284–295 (2014). IEEE

Xu, C., Kirk, S.R., Jenkins, S.: Tiling for performance tuning on differ-
ent models of gpus. In: 2009 Second International Symposium on
Information Science and Engineering, pp. 500–504 (2009). IEEE

Yan, D., Wang, W., Chu, X.: Optimizing batched winograd convolution on
gpus. In: Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 32–44 (2020)

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li, C., He, Y.:
Zeroquant: Efficient and affordable post-training quantization
for large-scale transformers. Adv. Neural Inf. Process. Syst. 35,
27168–27183 (2022)

Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating
convolution designs into visual transformers. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp.
579–588 (2021)

Zhang, J., Franchetti, F., Low, T.M.: High performance zero-memory
overhead direct convolutions. In: International Conference on
Machine Learning, pp. 5776–5785 (2018). PMLR

http://arxiv.org/abs/1910.00078
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/2107.02137
http://arxiv.org/abs/2007.05558

663Optimizing depthwise separable convolution on DCU

Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y.,
Zhang, B., Zhang, J., Dong, Z., et al.: A survey of large language
models. arXiv: 2303. 18223 (2023)

Zhou, Q.-W., Li, J.-N., Zhao, R.-C., Han, L., Wang, X.: Compilation
optimization of dcu-oriented openmp thread scheduling. J Phys
Conf Ser 2558, 012003 (2023)

Zhu, X., Li, J., Liu, Y., Ma, C., Wang, W.: A survey on model compres-
sion for large language models. arXiv: 2308. 07633 (2023)

Zheng Liu earned his B.S. and
M.Eng degree in Computer
Engineering from the University
of Illinois at Urbana-Champaign,
USA, in 2020. He is currently
pursuing his Ph.D. at the School
of Computer Science and Tech-
nology at Harbin Institute of
Technology, China. His research
focuses on artificial intelligence,
particularly on optimizing the
training efficiency of distributed
deep learning networks.

Meng Hao received the BS and
Ph.D. degrees in computer sci-
ence and engineering from Har-
bin Institute of Technology,
China, in 2014 and 2021 respec-
tively. He is currently an assis-
tant professor in the School of
Cyberspace Science, Harbin
Institute of Technology. His
research interests include high-
performance computing, perfor-
mance modeling, and parallel
optimization.

Weizhe Zhang (Senior Member,
IEEE) received B.Eng, M.Eng
and Ph.D. degree of Engineering
in computer science and technol-
ogy in 1999, 2001 and 2006
respectively from Harbin Insti-
tute of Technology. He is cur-
rently a professor in the School
of Cyberspace Science at Harbin
Institute of Technology, China.
His research interests are primar-
ily in parallel computing, distrib-
uted computing, cloud and grid
computing, and computer
network.

Gangzhao Lu received the B.S.
and Ph.D. degrees in computer
science and engineering from
Harbin Institute of Technology,
China, in 2014 and 2022 respec-
tively. His research interests
include performance modeling,
parallel optimization and
auto-tuning.

Xueyang Tian received the bach-
elor degree in software engineer-
ing from Harbin Institute of
Technology, China, in 2023. He
is currently working toward a
master degree in Harbin Institute
of Technology. His research
interests include high perfor-
mance computing, and parallel
optimization.

Siyu Yang received the bachelor
degree in computer science and
technology from Harbin Institute
of Technology, China, in 2024.
He is currently working toward a
master degree in Harbin Institute
of Technology. His research
interests include high perfor-
mance computing, and energy
efficiency optimization.

Mingdong Xie earned his B.S.
degree in Computational Math-
ematics from Harbin Institute of
Technology, China. In 2024, he
began pursuing his Ph.D. in
Computer Science and Technol-
ogy at Harbin Institute of Tech-
nology. His research focuses on
the intersection of security and
high-performance computing
(HPC), particularly on accelerat-
ing security-related operators on
heterogeneous systems.

http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2308.07633

664 Z. Liu et al.

Jie Dai obtained his Bachelor's
degree in Information Security
from Harbin Institute of Tech-
nology, China, in 2024. He is
currently pursuing his Master's
degree at the School of Com-
puter Science and Technology at
Harbin Institute of Technology.
His research interest lies in
machine learning systems.

Chenyu Yuan is a senior under-
graduate student at the School of
Computer Science and Technol-
ogy, Harbin Institute of Technol-
ogy, China. His research inter-
ests include high-performance
computing, with a particular
focus on optimizing GPU power
consumption during deep learn-
ing inference tasks.

Desheng Wang received the
Ph.D. degree in Cyberspace
Security from Harbin Institute of
Technology, Harbin, China, in
2022. He is currently an assistant
professor in the School of Com-
puter Science and Technology at
Harbin Institute of Technology,
Shenzhen, China. His research
interests include cloud comput-
ing, edge computing, and cyber-
space security.

Hongwei Yang is a research asso-
ciate of the Network Security
Center in the School of Cyber-
space Science, Harbin Institute
of Technology, China. He
received the DEng degree in
cyberspace science from the
Harbin Institute of Technology.
His research interests include
deep learning optimization,
graph mining.

	Optimizing depthwise separable convolution on DCU
	Abstract
	1 Introduction
	2 Background
	2.1 Deep computing unit
	2.2 Depthwise separable convolution

	3 Overview
	4 Depthwise convolution optimization
	4.1 Data reloading problem
	4.2 Row data reuse

	5 Pointwise convolution optimization
	5.1 Tiling parameter generator
	5.1.1 Identify tiling parameters
	5.1.2 Identify resource parameters
	5.1.3 Apply resource constraints

	5.2 Code generator and profiler

	6 Experiments
	6.1 Platform
	6.2 Testing new kernel functions
	6.2.1 Setup
	6.2.2 Results

	6.3 Testing extension modules
	6.3.1 Setup
	6.3.2 Results

	6.4 Ablation study
	6.4.1 Setup
	6.4.2 Results

	7 Discussion and future work
	8 Conclusion
	Acknowledgements
	References

