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Abstract
The integration of Large Language Models (LLMs) with Convolutional Neural Networks (CNNs) is significantly advanc-
ing the development of large models. However, the computational cost of large models is high, necessitating optimization 
for greater efficiency. One effective way to optimize the CNN is the use of depthwise separable convolution (DSC), which 
decouples spatial and channel convolutions to reduce the number of parameters and enhance efficiency. In this study, we focus 
on porting and optimizing DSC kernel functions from the GPU to the Deep Computing Unit (DCU), a computing accelera-
tor developed in China. For depthwise convolution, we implement a row data reuse algorithm to minimize redundant data 
loading and memory access overhead. For pointwise convolution, we extend our dynamic tiling strategy to improve hardware 
utilization by balancing resource allocation among blocks and threads, and we enhance arithmetic intensity through a channel 
distribution algorithm. We implement depthwise and pointwise convolution kernel functions and integrate them into PyTorch 
as extension modules. Experiments demonstrate that our optimized kernel functions outperform the MIOpen library on the 
DCU, achieving up to a 3.59× speedup in depthwise convolution and up to a 3.54× speedup in pointwise convolution. These 
results highlight the effectiveness of our approach in leveraging the DCU’s architecture to accelerate deep learning operations.

Keywords Depthwise separable convolution · Deep computing unit · Dynamic tiling · Channel distribution

1 Introduction

Since AlexNet (Krizhevsky et al. 2012) achieved a tre-
mendous breakthrough in the ILSVRC (Russakovsky et al. 
2015) in 2012, convolutional neural networks (CNNs) have 

demonstrated exceptional performance in a variety of tasks, 
such as image recognition, video processing and object 
detection (Szegedy et al. 2015; He et al. 2016; Redmon 
et al. 2016; Real et al. 2019; Bochkovskiy et al. 2020; GAO 
et al. 2022; LU and ZHENG 2023). In recent years, the great 
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success of transformer-based large language models (LLMs) 
(Vaswani et al. 2017; Devlin et al. 2018; Brown et al. 2020; 
Sun et al. 2021; JI et al. 2023; Achiam et al. 2023; Zhao 
et al. 2023) with hundreds of billions of parameters has sig-
nificantly pushed the boundaries of natural language pro-
cessing techniques, driving the growing scale of models. 
To combine the advantages of both powerful architectures, 
some studies (Dai et al. 2021; Yuan et al. 2021; Srinivas 
et al. 2021) integrate CNNs for local feature extraction 
with transformer-based models for establishing long-range 
dependencies, resulting in better generalization capability. 
These new applications indicate that CNNs remain highly 
relevant and useful in modern AI research.

Despite their success, large models require massive com-
puting power and are computationally expensive (Thompson 
et al. 2020; Shoeybi et al. 2019) during the training and 
inference processes. As the size and complexity of models 
increase, the need for reducing computational cost becomes 
critical. Many researchers have focused on this field and 
proposed various methods targeting large models (Li et al. 
2020; Yao et al. 2022; Zhu et al. 2023). One effective solu-
tion to reduce the computational cost for CNNs is the use 
of depthwise separable convolution (DSC) (Chollet 2017). 
This technique decomposes the standard convolution opera-
tion into two simpler operations: a depthwise convolution 
followed by a pointwise convolution. By doing so, it signifi-
cantly reduces the number of computations and parameters 
required, leading to more efficient models. DSCs have been 
successfully implemented in various architectures, such as 
MobileNet (Howard et al. 2017; Sandler et al. 2018) and 
EfficientNet (Tan and Le 2019), demonstrating substantial 
improvements in computational efficiency without compro-
mising performance.

Many works have focused on optimizing DSCs to further 
improve their efficiency and performance. Lu et al. (2021) 
designed a data reuse algorithm to reduce memory access 
latency and a dynamic tiling algorithm to improve hard-
ware utilization. Wu and Huang (2019) presented methods 
to improve data reusability by managing the execution order 
of matrix multiplication and to reduce data transfer overhead 
by fusing layers. Qin et al. (2018) introduced a diagonalwise 
refactorization method to address low GPU utilization and 
accelerate depthwise convolution. Wei et al. (2022) pro-
posed an optimized separable convolution, which features 
an optimal design for the number of groups and filter sizes 
compared to standard DSC. Beyond studies on NVIDIA 
GPUs, Bai et al. (2018) implemented optimization methods 
on FPGAs. Indeed, the landscape of hardware development 
has diversified, with numerous companies now developing 
their own computing accelerators, e.g. the Google Tensor 
Processing Unit (TPU) (Jouppi et al. 2017). In response to 
the escalating demands for developing domestic comput-
ing accelerators, the Deep Computing Unit (DCU) was 

developed by Hygon (Hygon 2023) for the Chinese super-
computer and AI market.

A DCU works as a hardware extension to the CPU host 
system via a PCI-E connection. The most critical compo-
nent of a DCU is its computing units, as shown in Fig. 1. A 
significant hardware design difference from the GPU is that 
DCU groups 64 threads into a wavefront, which serves as 
the basic scheduling unit, whereas GPU organizes 32 threads 
into a warp. This can affect the hardware resource alloca-
tion and parallelism. On the software side, GPUs utilize 
the CUDA (Compute Unified Device Architecture) (Guide 
2020) platform developed by NVIDIA, while DCUs are built 
upon AMD’s open-source ROCm software stack and use 
the HIP (Heterogeneous-Compute Interface for Portability) 
programming model (AMD 2024). These differences present 
challenges when porting code from GPUs to DCUs, as we 
need to re-implement code in the new programming model 
and consider the hardware resources of the new device to 
optimize performance.

Our study aims to identify optimization opportunities and 
port our previous optimization methods (Lu et al. 2021) to 
the DCU, an area that has been under-explored in previous 
research, thereby contributing to the development of a robust 
ecosystem for this new device. For depthwise convolutions, 
we employ a row data reuse algorithm to minimize unneces-
sary memory access overhead. For pointwise convolutions, 
we extend and modify the existing dynamic tiling strategy 
and implement an automatic optimization pipeline.

We evaluate our methods by implementing HIP kernel 
functions for depthwise and pointwise convolutions and 

Fig. 1  Main architecture of a computing unit in DCU. Best viewed in 
color
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comparing them to the MIOpen library (Khan et al. 2019), 
which provides high-performance machine learning primi-
tives in the AMD ROCm stack. Based on these kernel func-
tions, we implement extension modules for PyTorch (Paszke 
et al. 2019), a widely-used deep learning library in both 
industry and academia and use native PyTorch convolution 
modules as the benchmark. Experiments demonstrate that 
our depthwise convolution kernel functions achieve up to a 
3.59× speedup, and pointwise convolution kernel functions 
achieve up to a 3.54× speed up compared to those in MIO-
pen. For the extension modules, the new depthwise convo-
lution extensions achieve a speedup of up to 4.54× , while 
the new pointwise convolution extensions achieve a speedup 
of up to 1.78× . All experiments were conducted on a DCU 
provided by Sugon’s cloud computing platform.

In this study, we make the following key contributions:

• We explore the optimization of DSC on DCU and imple-
ment additional HIP kernel functions to demonstrate the 
generality and applicability of our methods across differ-
ent configurations.

• We develop PyTorch extension modules based on opti-
mized kernel functions, facilitating their use in both aca-
demic research and industrial applications.

• We conduct experiments on a DCU, validating our 
approach and quantifying the performance gains.

In Sect. 2, we briefly discuss the DCU hardware architecture 
and depthwise separable convolution. In Sect. 3, we present 
an overview of our study. In Sects. 4 and 5, we elaborate on 
optimization strategies for depthwise and pointwise convolu-
tions, respectively. We show experimental results in Sect. 6 
and discuss future work in Sect. 7. Finally, in Sect. 8, we 
conclude the paper.

Online Material. The source code of this work is publicly 
available at https:// github. com/ HIT- HPC- Group/ DSCOp 
timiz ation.

2  Background

In this section, we briefly introduce the Deep Computing 
Unit and the Depthwise Separable Convolution.

2.1  Deep computing unit

The Deep Computing Unit (DCU) is a computing accelera-
tor developed and launched domestically in China by Hygon 
(Hygon 2023). Designed with a GPU-like architecture, it 
features low latency and high throughput and is suitable for 
highly parallel tasks, typically operating as a coprocessor 
to the CPU. In this setup, the host-side program runs on 
the CPU while the device-side kernel functions run on the 

DCU. Although the DCU is scheduled as a device by the 
host CPU system, it independently manages its computing 
units, memory system, and thread scheduling, maintaining 
relative autonomy during execution.

Computing units are the most crucial components in a 
DCU. The DCU in our experiment comprises 64 independ-
ent computing units. As illustrated in Fig. 1, each comput-
ing unit contains 4 SIMD units, and each SIMD unit has 16 
ALUs. When the DCU is executing, threads are assigned to 
these ALUs, with 64 threads grouped into a wavefront as 
the basic execution unit. This structure enables all threads 
within a wavefront to execute the same instruction simulta-
neously, thereby enhancing computational efficiency.

Figure 1 also shows the memory hierarchy of the DCU, 
which is similar to that of the GPU (Mei and Chu 2016). The 
global memory is independent of the host system’s memory 
and is used to store data for the computing units. To meet the 
demands for high throughput, the DCU supports advanced 
HBM2 memory (Jun et al. 2017), providing over 16 GB of 
space with bandwidth up to 1 TB/s. Although global mem-
ory offers the largest capacity on the DCU, it also has the 
highest access overhead, often becoming the main perfor-
mance bottleneck in many programs. The next level of mem-
ory hierarchy is the shared memory within each computing 
unit. Each computing unit has 64 KB of shared memory 
accessible by the thread blocks living on it. Shared memory 
can be utilized as a fast cache controlled by the developer. 
By loading necessary data into shared memory, threads can 
avoid multiple accesses to the slower global memory (Xu 
et al. 2009). On the contrary, L1 and L2 caches cannot be 
programmed directly, but by carefully managing data access 
patterns to improve data locality, programmers can leverage 
the caching system to enhance program performance. Next, 
each SIMD unit provides registers for threads, which have 
the shortest access latency. Each thread can use up to 256 
registers. For compute-intensive tasks, frequently used data 
can be stored in registers to further reduce memory access 
overhead (Iandola et al. 2013). Data in registers can also 
be transferred between threads using specific APIs. Both 
registers and shared memory are crucial hardware resources 
for threads, as these resources are limited, which in turn 
limits the number of active threads and thus the degree of 
parallelism. Our study leverages the feature of the memory 
hierarchy to optimize performance.

The DCU utilizes the AMD ROCm software stack, which 
includes the HIP (Heterogeneous Interface for Portability) 
C/C++ based programming model and runtime library 
(AMD 2024). A typical HIP program involves transferring 
data from the host to the device, launching kernel functions 
on the device, and copying the results back to the host for 
further processing. To launch a kernel function, develop-
ers need to configure the grid size and the block size. The 
device then determines the index for each thread based on 

https://github.com/HIT-HPC-Group/DSCOptimization
https://github.com/HIT-HPC-Group/DSCOptimization
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these parameters. Because hardware resources are limited 
and arbitrary configuration can reduce hardware utilization, 
finding a balanced configuration is crucial for maximizing 
performance. This is especially important when optimizing 
pointwise convolution.

Recently, a growing number of studies have focused 
on developing optimization techniques for various appli-
cations running on the new DCU platform. For instance, 
Liu et al. (2024) introduced D-TADOC, a compressed data 
direct computing method for Chinese datasets on the DCU. 
Their approach accelerates the processing of Chinese text 
data by designing a parallel processing module specifically 
for the DCU architecture. Ma et al. (2022) optimized the 
Quantum Fourier Transform (QFT) algorithm by reducing 
communication overhead between the host and device while 
enhancing thread activity on the DCU. Our work aligns with 
these efforts, as we aim to reduce data movement overhead 
across the memory hierarchy and refine thread assignment 
strategies for improved efficiency. Furthermore, Zhou et al. 
(2023) present algorithmic improvements at the compiler 
level, incorporating DCU hardware characteristics to adjust 
thread allocation. Our tiling method also takes hardware 
resources into account to achieve better workload balance. 
In addition, Guo et al. (2024) focus on optimizing Sparse 
General Matrix-Matrix Multiplication (SpGEMM). Their 
solution improves load balancing, maximizes the utiliza-
tion of registers and shared memory, and enhances global 
load distribution through fine-grained grouping and kernel 
configurations.

2.2  Depthwise separable convolution

Depthwise separable convolution can improve computa-
tional efficiency while maintaining inference accuracy. This 
technique was popularized by the MobileNet architecture, 
which demonstrated its effectiveness in reducing the number 
of parameters and computational cost (Howard et al. 2017).

In a conventional convolution operation, each filter is 
applied to all input channels, and the results are summed 
to produce the output feature map, as illustrated in Fig. 2. 
If there are M input channels and N filters, and assuming a 
stride of 1 to maintain the same spatial dimensions for the 
output as the input, the computational complexity of the 

operation is O(M × N × K × K × H ×W) , where K is the 
filter size, and H and W are the height and width of both the 
input and output feature maps, respectively. This process 
involves a substantial number of multiply-add operations, 
which makes it computationally expensive.

On the other hand, depthwise separable convolution 
decomposes the traditional convolution operation into two 
steps: depthwise convolution and pointwise convolution. 
This is presented in Fig. 3. In depthwise convolution, a 
single-channel filter is applied to each input channel sepa-
rately. This means that if there are M input channels, there 
will be M separate spatial convolutions. The computational 
cost of depthwise convolution is O(M × K × K × H ×W) . 
After depthwise convolution, a 1 × 1 pointwise convolu-
tion is applied. This operation squeezes and combines 
the depthwise convolution’s output along channel dimen-
sion. If there are N filters, the computational complexity 
is O(M × N × H ×W) . In total, depthwise separable con-
volution significantly reduces the computational cost to 
O(M × K × K × H ×W +M × N × H ×W) . This reduction 
leads to fewer parameters and operations, making depthwise 
separable convolution an efficient alternative to traditional 
convolution.

Depthwise separable convolutions have been successfully 
utilized in various networks, including MobileNet and Effi-
cientNet, which are lightweight and suitable for deployment 
on resource-constrained devices, such as embedded systems 
and mobile phones. Our work further optimizes the perfor-
mance of this efficient operation.

3  Overview

We optimize depthwise and pointwise convolution sepa-
rately. The optimization framework is shown in Fig. 4.

For depthwise convolution, we adopt the row data reuse 
algorithm (Lu et al. 2021). The motivation is to maximize 

Fig. 2  Illustration of standard convolution. Best viewed in color
Fig. 3  Illustration of depthwise separable convolution. Best viewed in 
color
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the reuse of loaded data, thereby minimizing redundant 
memory access overhead. Such a strategy enhances data 
locality within a row and significantly improves the perfor-
mance, as demonstrated in experiments.

For pointwise convolution, the objective is to increase 
hardware utilization and improve data arithmetic intensity. 
We adapt and extend our previous dynamic tiling strategy 
(Lu et al. 2021) to achieve balanced hardware allocation 
among threads and blocks and the channel distribution 
algorithm to enhance the reuse of loaded data in multiple 
operations. Moreover, we implement a three-stage optimi-
zation pipeline, integrating the model-and-profile approach 
to select the optimal configuration. The pipeline consists of 
three main components: 

1 Tiling Parameter Generator: This component defines 
all relevant tiling parameters, with candidate values 
depending on both hardware limitations and problem 
size. Given the hardware resources, constraints are 
applied to discard invalid tiling configurations.

2 Code Generator: The code generator processes each 
viable configuration to produce the corresponding ker-
nel function code. A key part of this stage is the channel 
distribution algorithm, which increases data arithmetic 
intensity by reusing loaded data, and the double buffer-
ing mechanism, which reduces data loading latency.

3 Profiler: The profiler measures the execution time of ker-
nel functions generated from each tiling configuration 
and selects the fastest one.

4  Depthwise convolution optimization

In this section, we elaborate on the row data reuse algo-
rithm adopted from our previous work for optimizing 
depthwise convolution. We begin with a simple example 
to illustrate the data reloading problem and its impact on 

memory efficiency. For simplicity, we assume that the input 
and output data are single-channel and only one thread 
block is used. We then explain how the data reuse algorithm 
mitigates memory access overhead and provide a detailed 
description of the algorithm.

4.1  Data reloading problem

Assume that an input data with size 5 × 5 (including the pad-
ding size of 1) is convolved with a 3 × 3 filter. If the stride is 
1, then the output data will be 3 × 3 . We use a 3-thread block 
to compute one output row at each step. Then one thread is 
assigned to one output element in the row, and they load 
required input and filter data to compute the output. This 
simple row by row computation process is shown in Fig. 5.

I, F and O denotes the input, filter and output data, 
respectively. Ri represents i-th row of the data. Initially, IR0

 , 
IR1

 , and IR2
 are loaded and perform convolution with FR0

 , FR1
 , 

and FR2
 to compute OR0

 . Then OR1
 and OR2

 are calculated in 
a similar manner by loading different input and filter rows. 
Mathematically, this process is expressed as:

Clearly, the central input rows are loaded multiple times. 
As the number of filter rows increases, the repetition also 
increases. These repeated loads lead to unnecessary memory 
access overhead, which negatively impacts performance. 
An intuitive mitigation strategy is to leverage the relatively 
faster shared memory to hold prefetched input data, allowing 
threads to load data from shared memory. However, the data 
reloading pattern still exists.

OR0
= IR0

∗ FR0
+ IR1

∗ FR1
+ IR2

∗ FR2

OR1
= IR1

∗ FR0
+ IR2

∗ FR1
+ IR3

∗ FR2

OR2
= IR2

∗ FR0
+ IR3

∗ FR1
+ IR4

∗ FR2

Fig. 4  Optimization Framework. Best viewed in color

Fig. 5  Illustration of naive depthwise convolution. Best viewed in 
color
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4.2  Row data reuse

To eliminate the reloading pattern and enhance efficiency, 
we shift from the output-centric approach to an input-centric 
method by reordering the computation process. This allows 
each loaded input row to be reused as many times as possible 
in multiple operations. Specifically, after loading an input 
row, it performs convolutions with multiple filter rows to 
generate intermediate results for multiple output rows that 
depend on this input row. Intermediate results are temporar-
ily stored in registers to mitigate potential latency caused 
by frequent writing access to the output matrix in global 
memory. As this process continues, corresponding partial 
results for each output row are accumulated in the registers, 
and some rows complete their accumulation, then they can 
write the final result to global memory and release the reg-
isters. Then these registers can be used to store intermediate 
results for future output rows, ensuring a cyclic and limited 
register usage.

This process is illustrated in Fig. 6. Initially, upon loading 
IR0

 , it only performs an convolution with FR0
 because only 

OR0
 requires this partial result. However, after loading IR2

 , 
it is used to produce partial results for OR0

 , OR1
 , and OR2

 by 
performing convolutions with FR2

 , FR1
 , and FR0

 , respectively. 
At this point, OR0

 finishes accumulating, so the result can 
be written to the output matrix in global memory, and the 
registers are used to hold new partial results for OR3

 in future 
steps. The process continues, with each step efficiently using 

loaded data to compute necessary partial results until all 
are accumulated for each output row. The new computation 
process can be expressed as:

Previously, in the simple implementation, input rows are 
loaded 9 times in total. In contrast, this optimized implemen-
tation requires only 5 loads. By decomposing the computa-
tion for each output row into multiple steps as input rows 
are loaded, this strategy significantly reduces the number of 
data loads, thereby minimizing memory access overhead and 
enhancing overall computation efficiency.
Algorithm 1  RowDataReuse

As described in Algorithm 1, it is important to note that 
for the input rows located at the edges, they are not con-
volved with all filter rows, unlike those positioned centrally. 
These edge cases require meticulous handling to prevent 
invalid memory accesses. In practice, when a data batch 

Load IR0
∶ OR0

= IR0
∗ FR0

Load IR1
∶ OR0

= OR0
+ IR1

∗ FR1

OR1
= IR1

∗ FR0

Load IR2
∶ OR0

= OR0
+ IR2

∗ FR2
→ Write OR0

OR1
= OR1

+ IR2
∗ FR1

OR2
= IR2

∗ FR0

Load IR3
∶ OR1

= OR1
+ IR3

∗ FR2
→ Write OR1

OR2
= OR2

+ IR3
∗ FR1

Load IR4
∶ OR2

= OR2
+ IR4

∗ FR2
→ Write OR2

Fig. 6  Illustration of row reuse algorithm. Best viewed in color
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contains multiple samples and each sample has multiple 
channels, the DCU can launch a large number of thread 
blocks to process them in parallel. Within each block, a 
group of threads processes one output channel, as described 
in the algorithm. And each block can contain multiple 
groups to handle multiple output channels in parallel. Data 
is prefetched from global memory to shared memory by each 
thread block, ensuring efficient data loading and reuse by 
threads. Experimental results suggest that the row data reuse 
algorithm can substantially accelerate depthwise convolu-
tion, and we present the results in Sect. 6.

5  Pointwise convolution optimization

In this section, we introduce our optimization methods for 
pointwise convolution and implementation of model-and-
profile three-stage optimization pipeline.

5.1  Tiling parameter generator

When launching a kernel function, developers need to 
configure the grid size and block size, which influence the 
amount of shared memory allocated to each block. Addi-
tionally, the way a thread block processes a data tile can 
also affect the hardware usage per thread. Given that shared 
memory and registers are crucial yet limited resources pro-
vided by a computing unit, arbitrary allocation and tiling can 
lead to low hardware utilization and poor performance. To 
address this, we employ the dynamic tiling strategy that 
defines some parameters to describe the workload for each 
block and wavefront. To find viable parameter combina-
tions, we define resource constraints based on the available 
resources and problem size to eliminate unachievable ones.

5.1.1  Identify tiling parameters

Our dynamic tiling strategy is model-based. We describe the 
data tiling for thread blocks and wavefronts using a two-level 
tiling strategy. The first level tiling represents the part of the 
output data to be processed by each thread block. Within 
a block, the data is further partitioned to be processed by 
wavefronts, as the second level tiling. This approach extends 
our previous work by introducing more tiling parameters, 
which in turn affect the constraints of resource usage. We 
introduce the parameters in a bottom-up way.

To describe a wavefront’s workload, we use WaveW and 
WaveC to represent the width and channel of the output 
data tile handled by a wavefront (i.e. second-level tiling), 
respectively. Therefore, the total number of elements in the 
output data tile for a wavefront is WaveW ×WaveC . Note 
that, in order to calculate the output tile, the wavefront is 
responsible for the corresponding input tile with the same 

WaveW  width. To minimize control divergence problem 
(Xiang et al. 2014), which makes those allocated hardware 
resources wasted, we require candidate values for these 
parameters to be integer factors of the output data sizes. 
For example, if the output width is 16, then WaveW can be 
1, 2, 4, 8, 16. This ensures that the data is always parti-
tioned exactly and wavefronts receive balanced workloads.

Next, we use WaveN to denote the number of wavefronts 
contained in each thread block. Given that the wavefront 
size is fixed at 64 on current DCUs, the block size is 
WaveN × 64 . These wavefronts can be arranged in vari-
ous ways to process different data tiles. To describe this 
layout, we use the (RepeatW ,RepeatC) pair to represent the 
number of wavefronts arranged along the width and chan-
nel directions of the output data. This represents a signifi-
cant modification to our previous work. Now, WaveN can 
have multiple candidate values, rather than being fixed at 
4, and wavefronts can be arranged in various configura-
tions, rather than just (2, 2). Since the maximum block 
size is 1024 in the current DCU design, the maximum 
candidate value for WaveN  is 1024

64
= 16 . Moreover, we 

require WaveN = RepeatW × RepeatC . For a given WaveN , 
there can be multiple layout strategies, described by the 
(RepeatW ,RepeatC) pairs. Additionally, we ensure that the 
candidate values do not lead to control divergence. Fig-
ure 7 illustrates this with an example where WaveN = 4 , 
(RepeatW = 2,RepeatC = 2) , WaveW = 4, and WaveC = 2.

As the second-level tiling of each wavefront is 
described, the first level tiling is simply aggregate the 
workload of the wavefronts. The size of the data tile pro-
cessed by a thread block (i.e. first-level tiling) is calculated 
as WaveW ×WaveC × RepeatW × RepeatC . All thread blocks 
are arranged along the height, width, and channel direc-
tions in the output data. Consequently, the grid size of the 
kernel function is calculated as Total Output Elements

WaveW×WaveC×RepeatW×RepeatC
.

Fig. 7  Example of wavefronts logical layout on output. Best viewed 
in color
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5.1.2  Identify resource parameters

In addition to the tiling parameters, we define two resource 
parameters that determine the resource allocation constraints 
of a computing unit and the resource usage of blocks and 
threads. These parameters, used together with the tiling 
parameters, help eliminate unachievable tiling cases. We 
discuss these constraints in Sect. 5.1.3.

The first resource parameter is BlockN , which describes 
the number of thread blocks scheduled onto one computing 
unit. Since the DCU explicitly limits the maximum number 
of wavefronts per computing unit to 40, the candidate values 
for BlockN depend on WaveN.

The second resource parameter is GroupC , which is used 
in the channel distribution algorithm (Lu et al. 2021) to 
describe the number of input channels grouped together. It 
affects the number of filter elements processed by a thread, 
denoted as ThreadC , which in turn affects the register usage. 
We use a concrete example to explain the channel distribu-
tion algorithm and how GroupC changes register usage.

Similar to the row data reuse algorithm discussed in 
Sect. 4.2, the main motivation behind channel distribution 
is to improve ar ithmetic intensity, defined as 
number of multiplications

number of loaded elements
 . Higher arithmetic intensity helps to 

hide memory access overhead by overlapping computation 
with data loading. Specifically, we achieve this by distribut-
ing input and filter elements to the threads in a wavefront.

Assume that a wavefront handles 8 × 64 output data, so 
WaveW = 8 and WaveC = 64 , and the input data has 56 chan-
nels, resulting in a filter of size 56 × 64 , where there are 64 
output channels and each output channel has 56 elements.

In a simple pointwise convolution process, each thread 
can be assigned to calculate an output channel with 8 output 
elements in a row. Accordingly, each thread is responsible 
for one filter channel with 56 elements. Each time, a thread 
loads 8 input data elements in a row and 1 filter element 
from its filter channel. By multiplying each input element 
with the filter element, a total of 8 partial output results are 
calculated. This process is repeated 56 times to accumu-
late the final result, as illustrated in Fig. 8. With this simple 
method, at each step, each thread loads 8 input elements and 
1 filter element, resulting in a total of 9 elements. These 9 
elements are used in 8 multiplication operations to produce 
8 partial results. Thus, the arithmetic intensity is 8

9
 , and the 

register usage is low.
The channel distribution method, as shown in Fig. 9, 

can improve arithmetic intensity. Assume that GroupC = 8 , 
so every 8 input channels ( WaveW × GroupC = 8 × 8 = 64 
input elements in total) are grouped to be processed by the 
wavefront at each time. The goal is to convolve them with 

cor responding f i l ter elements in each channel 
( WaveC × GroupC = 64 × 8 = 512 elements in total) to pro-
duce partial results. With many threads available, these 
filter elements are distributed among threads. If we regard 
every 8 consecutive elements in the filter channel as a 
group, then threads 0 to 7 take a group from filter channel 
0, threads 8 to 15 take a group from filter channel 1, and 
so on. Each thead takes 1 element. If each thread only 
loads 1 filter element, then a wavefront can load 
Fnum =

Wavefront Size

GroupC
=

64

8
= 8 groups, meaning the wavefront 

can produce partial results for 8 output channels with these 
elements. However, to calculate partial results for all 64 
output channels simultaneously, each thread must load 
more elements into more registers.

In our example,  each thread needs to load 
ThreadC =

WaveC

Fnum

=
64

8
= 8 filter elements. Specifically, 

threads 0 to 7 take groups from filter channels 0, 8, 16, 24, 
32, 40, 48, 56, while threads 8 to 15 load from filter chan-
nels 1, 9, 17, 25, 33, 41, 49, 57, and so on. Each thread 
takes one filter element from each group. Grouped input 
channels ( GroupC = 8 ) are also distributed to threads row 
by row, according to the filter elements, so each thread also 
loads WaveW = 8 input elements. Each input element is 
multiplied with each filter element to produce a partial 
output result ( WaveW × ThreadC = 64 in total).

By distributing the workload, the arithmetic intensity is 
WaveW×ThreadC

WaveW+ThreadC
=

8×8

8+8
= 4 . This approach improves arithmetic 

intensity by more than 4 times. This process repeats 
Input Channels

GroupC
= 7 times to process all 56 input channels. In 

the end, threads use segmented parallel reduction to accu-
mulate the partial results. The challenging part of this 
algorithm is mapping threads onto data correctly.

This example illustrates how GroupC and ThreadC affect 
register usage, which is useful when applying resource 

Fig. 8  Illustration of simple pointwise convolution method. Best 
viewed in color
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constraints in Sect.  5.1.3. Table  1 lists all the tiling 
and resource parameters and their purposes as a short 
summary.

5.1.3  Apply resource constraints

To eliminate invalid tiling cases, we define two constraints 
based on the size of shared memory and the number of reg-
isters of a computing unit. We then calculate the resource 
usage of each tiling case, which must satisfy both constraints 
to be considered valid.

Fig. 9  Illustration of channel distribution algorithm. Top part 
shows how input and filter are distributed to threads, assuming that 
GroupC = 8 . Bottom part shows how parallel reduction is performed 

to aggregate partial values, and how threads are assigned to write out-
put data. Best viewed in color

Table 1  Summary of tiling and resource parameters

Parameter Description

WaveW Output width handled by a wavefront
WaveC Output channel handled by a wavefront
WaveN No. of wavefronts in a block
RepeatW No. of wavefronts along width direction
RepeatC No. of wavefronts along channel direction
BlockN No. of thread blocks per CU
GroupC No. of grouped channels
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Firstly, we calculate the shared memory that can be allo-
cated to each block, represented as LimitS, and the number 
of registers that can be allocated to each thread, denoted as 
LimitR, as follows:

where SMEMCU = 64 KB is the size of shared memory and 
RegCU = 65536 is the number of registers on a computing 
unit. The value 64 in Eq. 2 is the wavefront size. Because 
wavefronts and blocks are work balanced, we also require 
the resources are partitioned equally.

Secondly, we calculate the size of shared memory allo-
cated to a thread block, defined as:

where 4 represents the number of bytes in a floating-point 
number, and 2 accounts for the double buffering used. 
RepeatW ×WaveW × GroupC denotes the size of the loaded 
input data, and RepeatC ×WaveC × GroupC represents the 
size of the loaded filter data. Thus, the shared memory con-
straint is defined as:

Thirdly, we calculate the register usage. Each thread needs 
to compute partial results for resultR = WaveW × ThreadC 
output elements,  with the operands stored in 
operandR = WaveW + ThreadC registers. Moreover, because 
double buffering is used, a thread block uses registers as 
temporary fast cache by loading data into registers before 
moving them to shared memory. The number of these tem-
porary registers used is calculated as follows:

(1)LimitS =

SMEMCU

BlockN

(2)LimitR =

RegCU

BlockN ×WaveN × 64

(3)
UsedS = 4 × (RepeatW ×WaveW × GroupC

+ RepeatC ×WaveC × GroupC) × 2

(4)UsedS ≤ LimitS

(5)
tempR = ⌈

RepeatW ×WaveW × GroupC

WaveN × 64
⌉

+ ⌈
RepeatC ×WaveC × GroupC

WaveN × 64
⌉

Equation 5 is similar to Eq. 3, because data is collaborately 
loaded by threads in a block, and each thread contributes few 
registers for the block. Additionally, we leave 30 registers 
for the HIP compiler. The total number of registers used by 
a thread is defined as:

To ensure that a tiling case satisfies the register usage, the 
second resource constraint is defined as:

By applying constraints defined in Eqs. 4 and 7, our tiling 
parameter generator efficiently produces potential tiling con-
figurations that improve hardware utilization while adhering 
to the resource limitations of the DCU. To measure the per-
formance of each configuration and identify the fastest one, 
we implement a code generator and a profiler.

5.2  Code generator and profiler

The code generator takes a potential tiling configuration 
as input and automatically generates kernel function code 
to be executed on the DCU. It calculates the grid size and 
block size for kernel function launch parameters based on 
the given configuration, as discussed in Sect. 5.1.1. Within 
the generator, it utilizes the channel distribution algorithm 
introduced in Sect. 5.1.2 to map the wavefronts to the cor-
rect output data tiles and allocate the necessary registers 
to hold operands, partial results, and temporary values. 
Additionally, it incorporates the double buffering mecha-
nism to further exploit optimization opportunities. Data 
is transferred between global memory, shared memory, 
and registers to fully utilize the DCU’s memory hierarchy, 
with the computation process proceeding as outlined in 
Algorithm 2.

(6)UsedR = resultR + operandR + tempR + 30

(7)UsedR ≤ LimitR
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Algorithm 2  Code Generator Workflow

In the end, we implement a profiler to evaluate the 
performance of each kernel function, and select the fast-
est tiling configuration for a given problem as the final 
solution. With the automatic optimization pipeline, we 
significantly broaden the search space and speed up the 
whole development workflow.

6  Experiments

This section introduces the DCU experiment platform and 
experiments for evaluating our methods and results.

6.1  Platform

We conducted our experiments on Sugon cloud comput-
ing platform. The configuration of the computing node for 
experiments in this work is shown in Table 2. It has a Hygon 
C86 7285 32-core CPU. And we choose DTK−23.04 as our 
software development toolkit. The computing node supports 
a DCU Z100SM as the accelerator, which provides 16 GB of 
global memory and integrates 64 computing units.

6.2  Testing new kernel functions

6.2.1  Setup

In this experiment, we evaluate the performance of our 
approach against the MIOpen library (Khan et al. 2019) and 
calculate the speedup relative to the MIOpen kernel func-
tions. MIOpen provides various convolution algorithms, 
including General Matrix Multiplication (GEMM) (Vasude-
van et al. 2017; Li et al. 2019), Direct Convolution (Ferrari 
et al. 2023; Zhang et al. 2018), Fast Fourier Transform (FFT) 
indirect convolution (Li et al. 2019), Winograd indirect con-
volution (Yan et al. 2020), and Implicit GEMM (Wang et al. 
2019), each with different performance depending on the 
problem size. To identify the fastest algorithm as a bench-
mark, we use the miopenFindConvolutionForwardAlgo-
rithm() API function provided by MIOpen. We use the layer 
configurations from four popular depthwise separable net-
works, MobileNet V2, EfficientNet B0, MnasNet (Tan et al. 
2019) and ShuffleNet V2 (Ma et al. 2018), which together 
include 30 different depthwise layers and 45 different point-
wise layers. The batch sizes are set to 1, 8, 16, 32, and 64.

Tables 3 and 4 list the layer configurations used in this 
experiment. In the tables, IC , IH and IW represent input chan-
nel, input height and input width, respectively. FH and FW 
denote the height and width of filter. In the end, OC is the 
output channel.

6.2.2  Results

The performance comparison between kernel functions and 
the MIOpen library is shown in Figs. 10 and 11 for depth-
wise convolutions and pointwise convolutions, respectively.

For depthwise convolution kernel functions, we observe 
that as the batch size increases, the average time for our 
kernel functions remains significantly lower than that of the 
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MIOpen library. This demonstrates the effectiveness of our 
row data reuse algorithm in maintaining low memory access 
overhead, leading to substantial performance gains across 
all tested batch sizes. Table 5 shows the average speedup of 
the depthwise convolution kernel functions over MIOpen 
for each batch size. The average speedup is largest when the 
batch size is 16, indicating optimal utilization of the row 
data reuse strategy at this configuration.

For pointwise convolution kernel functions, MIOpen uti-
lizes different algorithms for different batch sizes, resulting 
in a performance boost when the batch size is 16. How-
ever, the runtime of our kernel functions increases as the 

Table 2  Experiment platform

Host System

CPU Hygon C86 7285 32-core
Memory 128 GB
Storage 480 GB
Operating System CentOS release 7.6.1810
Development Toolkit DTK−23.04
Device
Type DCU Z100SM
Computing Units 64
Shared Memory / CU 64 KB
Registers / CU 65,536
Global Memory 16 GB

Table 3  Configurations of depthwise convolution layers

I
C

I
H
× I

W
F
H
× F

W
Stride

D1 32 112 × 112 3 × 3 1
D2 144 56 × 56 3 × 3 1
D3 240 28 × 28 5 × 5 1
D4 384 14 × 14 3 × 3 1
D5 960 7 × 7 3 × 3 1
D6 96 112 × 112 3 × 3 2
D7 240 28 × 28 3 × 3 2
D8, D9 480 14 × 14 3 × 3 , 5 × 5 1
D10, D11 1152 7 × 7 3 × 3 , 5 × 5 1
D12, D13 144 56 × 56 3 × 3 , 5 × 5 2
D14, D15 192 28 × 28 3 × 3 1, 2
D16, D17 576 14 × 14 3 × 3 1, 2
D18, D19 672 14 × 14 5 × 5 1, 2
D20 72 56 × 56 3 × 3 1
D21 120 28 × 28 5 × 5 1
D22 24 28 × 28 3 × 3 1
D23 48 14 × 14 3 × 3 1
D24 96 7 × 7 3 × 3 1
D25 48 112 × 112 3 × 3 2
D26 72 56 × 56 5 × 5 2
D27 576 14 × 14 5 × 5 2
D28 24 56 × 56 3 × 3 2
D29 48 28 × 28 3 × 3 2
D30 96 14 × 14 3 × 3 2

Table 4  Configurations of 
pointwise convolution layers

I
C

I
H
× I

W
O

C

P1 32 112 × 112 16
P2 16 112 × 112 96
P3 96 56 × 56 24
P4 24 56 × 56 144
P5 144 56 × 56 24
P6 144 28 × 28 32
P7 32 28 × 28 192
P8 192 28 × 28 32
P9 144 28 × 28 40
P10 40 28 × 28 240
P11 240 28 × 28 40
P12 192 14 × 14 64
P13 64 14 × 14 384
P14 384 14 × 14 64
P15 384 14 × 14 96
P16 96 14 × 14 576
P17 576 14 × 14 96
P18 240 14 × 14 80
P19 80 14 × 14 240
P20 480 14 × 14 80
P21 480 14 × 14 112
P22 112 14 × 14 672
P23 672 14 × 14 112
P24 576 7 × 7 160
P25 160 7 × 7 960
P26 960 7 × 7 160
P27 960 7 × 7 320
P28 320 7 × 7 1280
P29 672 7 × 7 192
P30 192 7 × 7 1152
P31 1152 7 × 7 192
P32 1152 7 × 7 320
P33 16 112 × 112 48
P34 48 56 × 56 24
P35 24 56 × 56 72
P36 72 56 × 56 24
P37 72 28 × 28 40
P38 40 28 × 28 120
P39 120 28 × 28 40
P40 480 14 × 14 96
P41 576 7 × 7 192
P42 24 28 × 28 24
P43 48 14 × 14 48
P44 96 7 × 7 96
P45 192 7 × 7 1024
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batch size grows. By improving hardware utilization, our 
optimized pointwise kernel functions run faster when the 
batch size is small, though the speedup decreases with 
larger batch sizes. Table 6 illustrates the average speedup 

of the pointwise convolution kernel functions compared to 
MIOpen for each batch size. The optimal performance is 
observed when the batch size is 1, with an average speedup 
of 3.54×.

In real-world inference scenarios, models typically pro-
cess user requests as they arrive, forming small batches 
rather than the large, pre-processed batches used during 
training. This is especially important in real-time or inter-
active applications, where minimizing latency is critical. By 
optimizing for smaller batch sizes, we aim to ensure faster 
response times and enhance user experience by reducing 
delays.

6.3  Testing extension modules

6.3.1  Setup

We implement PyTorch extension modules based on the 
new kernel functions and evaluate the performance of them. 
PyTorch provides a C++ extension mechanism (Golds-
borough 2024) that allows developers to create custom 
PyTorch operations separate from the PyTorch backend. 
Utilizing this mechanism, we implement backend C++ 
operations by wrapping our kernel functions as the forward 
pass functions. These backend operations are then bound 
to Python frontend using pybind11 (Jakob 2017). In the 
Python frontend, we further wrap the backend operations 
with torch.autograd.Function and torch.nn.Module to imple-
ment extension modules, making them callable as PyTorch 
modules. Our extension modules work in the same way as 
native PyTorch modules and take width, height and channel 
of input and output data as parameters.

To evaluate the performance, we feed random data with 
correct dimensions to the modules and set the batch sizes 
to 1, 8, 16, 32, and 64. Then we measure the forward pass 
execution time of our modules and compare them to those 
of PyTorch.

6.3.2  Results

Figures 12 and 13 show the performance comparison results 
between depthwise and pointwise convolution extension 

Fig. 10  Performance comparison between depthwise convolution ker-
nel functions and MIOpen

Fig. 11  Performance comparison between pointwise convolution ker-
nel functions and MIOpen

Table 5  Average speed up of depthwise convolution kernel functions 
over MIOpen for different batch sizes

Batch Size Ours MIOpen Speed Up

1 52.88 ( �s) 173.59 ( �s) 3.32
8 81.83 ( �s) 283.82 ( �s) 3.47
16 113.82 ( �s) 387.94 ( �s) 3.59
32 183.84 ( �s) 606.12 ( �s) 3.44
64 279.16 ( �s) 782.29 ( �s) 3.35

Table 6  Average speed up of pointwise convolution kernel functions 
over MIOpen for different batch sizes

Batch Size Ours MIOpen Speed Up

1 94.55 ( �s) 332.32 ( �s) 3.54
8 160.96 ( �s) 366.22 ( �s) 2.48
16 232.26 ( �s) 300.86 ( �s) 1.49
32 349.77 ( �s) 371.69 ( �s) 1.31
64 626.09 ( �s) 449.29 ( �s) 0.9
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modules, respectively. Compared to the evaluation results 
for kernel functions, while our modules maintain similar 
performance, PyTorch runs much faster than MIOpen.

The depthwise convolution extension modules exhibit 
a consistent performance improvement over the PyTorch 
native modules. Table 7 highlights the speedup achieved, 
with the maximum observed at a batch size of 32, where our 
modules achieve a 4.54× average speedup.

For pointwise convolution extension modules, the per-
formance varies with batch size. As shown in Fig. 13, our 
modules outperform PyTorch’s native modules for smaller 
batch sizes, achieving an average speedup of 1.78× at a batch 
size of 1, as shown in Table 8. However, the performance 
improvement diminishes as the batch size increases, indicat-
ing that our methods can work well on small batch cases.

6.4  Ablation study

6.4.1  Setup

The primary goal of our ablation study is to assess how our 
depthwise and pointwise convolution optimization methods 
individually and jointly impact the performance of various 
networks. We select four representative networks for this 
study: EfficientNet B0, MnasNet, MobileNet V2 and Shuf-
fleNet V2. Our setup is designed to minimize interference 
from non-convolution layers (such as batch normalization, 
pooling, and linear transformations) and reduce potential 
data transfer overhead, by isolating the depthwise and point-
wise convolution layers and profiling their running time. To 
showcase the optimizing effect for the inference process with 
small batch size, we simply assume the batch is 1 here.

For each model, we run the following four cases:

• Baseline: We measure the performance of the original 
PyTorch depthwise and pointwise layers as a baseline.

• Only Depthwise: We replace the depthwise convolu-
tion layers with our optimized extension modules while 
retaining PyTorch’s native pointwise layers.

• Only Pointwise: We replace the pointwise convolution 
layers with our optimized extension modules while 
retaining PyTorch’s native depthwise layers.

• Both Optimized: We replace both depthwise and point-
wise layers with our optimized extension modules.

This approach enables us to determine the impact of each 
optimization direction individually and in combination.

Fig. 12  Performance comparison between depthwise convolution 
extension modules and PyTorch

Fig. 13  Performance comparison between pointwise convolution 
extension modules and PyTorch

Table 7  Average speed up of depthwise convolution extension mod-
ules over PyTorch for different batch sizes

Batch Size Module PyTorch Speed Up

1 68.52 ( �s) 118.87 ( �s) 1.73
8 76.66 ( �s) 230.21 ( �s) 2.92
16 90.88 ( �s) 353.04 ( �s) 3.7
32 126.09 ( �s) 598.39 ( �s) 4.54
64 202.65 ( �s) 786.51 ( �s) 4.49

Table 8  Average speed up of pointwise convolution extension mod-
ules over PyTorch for different batch sizes

Batch Size Module PyTorch Speed Up

1 78.45 ( �s) 140.21 ( �s) 1.78
8 115.74 ( �s) 145.06 ( �s) 1.33
16 165.80 ( �s) 166.84 ( �s) 1.11
32 260.97 ( �s) 202.99 ( �s) 0.9
64 461.68 ( �s) 300.53 ( �s) 0.76
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6.4.2  Results

Table 9 summarizes the results of our ablation study. For 
each model, we report the execution time of the baseline, 
the speedup obtained by optimizing only depthwise convolu-
tions, the speedup from optimizing only pointwise convolu-
tions, and the combined speedup from optimizing both.

From the results, we observe that optimizing depthwise 
layers alone yields a consistent performance improvement 
across all models, with a speedup around 1.20x, depending 
on the model. Similarly, optimizing only the pointwise layers 
also results in performance gains, with a speedup ranging 
from 1.47x to 1.51x. This can be attributed to the dynamic 
tiling and channel distribution strategies that improve hard-
ware utilization for pointwise convolutions. When both 
depthwise and pointwise layers are optimized together, we 
observe the highest overall speedups, ranging from 1.71x to 
1.98x. This demonstrates the cumulative benefits of reducing 
memory access and improving hardware efficiency across 
both types of convolutions. These results provide strong 
evidence that our proposed optimizations are effective in 
reducing the computational cost of depthwise separable con-
volutions in real-world deep learning models.

7  Discussion and future work

In this section, we discuss potential directions for future 
research.

Firstly, our optimization pipeline for pointwise convolu-
tion is model-and-profile-based. Utilizing a reinforcement 

learning-based method (Arulkumaran et al. 2017) can be a 
compelling alternative. One advantage of this solution is 
its flexibility to accommodate various layer configurations 
and hardware resource constraints. However, collecting 
the training data can be challenging and requires careful 
handling.

Secondly, we observe that the backpropagation steps 
cost longer time than the forward pass phase (Narayanan 
et al. 2019). This indicates that optimizing the backpropa-
gation operations is also important for accelerating the 
overall training process, and this can be a focus of future 
work.

Thirdly, implementing and calling depthwise and point-
wise convolutions separately in the model training and 
inference process can introduce additional context switch 
overhead. Using kernel fusion techniques (Wang et al. 
2010) to combine depthwise and pointwise convolutions 
into a single kernel function can mitigate this overhead. 
This would reduce the number of kernel function calls, but 
it may couple the convolutions more tightly, sacrificing the 
modularity of the components.

Lastly, TensorRT (Jeong et  al. 2021), specifically 
designed for NVIDIA GPUs, is a highly optimized deep 
learning library built on CUDA to accelerate inference. It 
employs various optimization techniques, including preci-
sion calibration, dynamic memory reuse, layer and tensor 
fusion, and kernel auto-tuning. While our work incorpo-
rates similar concepts, there are opportunities to enhance it 
further with additional strategies. More importantly, devel-
oping a high-performance inference library tailored for the 
DCU platform presents a promising research direction that 
could drive significant advancements.

Table 9  Ablation study result

Model Baseline Only Depthwise Speed Up

EfficientNet 5.43 (ms) 4.54 (ms) 1.20
MNasNet 5.59 (ms) 4.71 (ms) 1.19
MobileNet 5.74 (ms) 4.87 (ms) 1.18
ShuffleNet 5.89 (ms) 4.99 (ms) 1.18

 Model Baseline Only Pointwise Speed Up

EfficientNet 5.43 (ms) 3.70 (ms) 1.47
MNasNet 5.59 (ms) 3.79 (ms) 1.48
MobileNet 5.74 (ms) 3.86 (ms) 1.49
ShuffleNet 5.89 (ms) 3.91 (ms) 1.51

 Model Baseline Both Optimized Speed Up

EfficientNet 5.43 (ms) 3.17 (ms) 1.71
MNasNet 5.59 (ms) 2.89 (ms) 1.94
MobileNet 5.74 (ms) 2.97 (ms) 1.93
ShuffleNet 5.89 (ms) 2.98 (ms) 1.98
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8  Conclusion

We port our optimization methods for depthwise separable 
convolution from the GPU onto DCU, a computing accel-
erator developed in China. For depthwise convolution, we 
use the row data reuse algorithm to eliminate repeated data 
loading, thereby reducing memory latency and improving 
performance. For pointwise convolution, we modify the 
dynamic tiling strategy to enhance hardware utilization 
and utilized the channel distribution algorithm to increase 
arithmetic intensity for threads. Experimental results show 
that our optimization methods are effective for both depth-
wise and pointwise convolutions on DCU, especially when 
the batch size is small.

Acknowledgements This work is supported by the National Key 
Research and Development Plan (Grand No. 2023YFB4503205) and 
National Natural Science Foundation of China (Grant No. 62202123).

Data availability The data and code that support the findings of this 
study are openly available in repository DSCOptimization at https:// 
github. com/ HIT- HPC- Group/ DSCOp timiz ation.

Declarations 

Conflict of interest On behalf of all authors, the corresponding author 
states that there is no Conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, 
F.L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., 
et al.: Gpt-4 technical report. arXiv: 2303. 08774 (2023)

AMD: AMD ROCmTM Documentation. https:// rocm. docs. amd. com/ 
en/ latest Accessed 15 May 2024

Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: 
Deep reinforcement learning: A brief survey. IEEE Signal Pro-
cess. Magaz. 34(6), 26–38 (2017)

Bai, L., Zhao, Y., Huang, X.: A cnn accelerator on fpga using 
depthwise separable convolution. IEEE Trans. Circuits Syst. 
II: Express Briefs 65(10), 1415–1419 (2018). https:// doi. org/ 
10. 1109/ TCSII. 2018. 28658 96

Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: Optimal speed 
and accuracy of object detection. arXiv: 2004. 10934 (2020)

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dha-
riwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A.: 

Language models are few-shot learners. Adv. Neural Inf. Pro-
cess. Syst. 33, 1877–1901 (2020)

Chollet, F.: Xception: Deep learning with depthwise separable con-
volutions. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 1251–1258 (2017)

Dai, Z., Liu, H., Le, Q.V., Tan, M.: Coatnet: Marrying convolution 
and attention for all data sizes. Adv. Neural Inf. Process. Syst. 
34, 3965–3977 (2021)

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training 
of deep bidirectional transformers for language understanding. 
arXiv: 1810. 04805 (2018)

Ferrari, V., Sousa, R., Pereira, M., L. De Carvalho, J.a.P., Amaral, 
J.N., Moreira, J., Araujo, G.: Advancing direct convolution 
using convolution slicing optimization and isa extensions. ACM 
Trans. Architect. Code Opt. 20(4), (2023) https:// doi. org/ 10. 
1145/ 36250 04

Gao, N., Yu, Y., Hua, X., Feng, F., Jiang, T.: A content-aware bitrate 
selection method using multi-step prediction for 360-degree video 
streaming. ZTE Commun. 20(4), 96 (2022)

Goldsborough, P.: Custom C and cuda extensions. https:// pytor ch. org/ 
tutor ials/ advan ced/ cpp_ exten sion. html# custom- c- and- cuda- exten 
sions Accessed 16 May 2024

Guide, D.: Cuda c++ programming guide. NVIDIA, July (2020)
Guo, H., Wang, H., Chen, W., Zhang, C., Han, Y., Zhu, S., Zhang, 

D., Guo, Y., Shang, J., Wan, T., et al.: Optimizing sparse gen-
eral matrix–matrix multiplication for dcus. J. Supercomput. 1–25 
(2024)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image 
recognition. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 770–778 (2016)

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Wey-
and, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv: 
1704. 04861 (2017)

Hygon: Deep Computing Unit. https:// www. hygon. cn/ produ ct/ accel 
erator Accessed 16 May 2024

Iandola, F.N., Sheffield, D., Anderson, M.J., Phothilimthana, P.M., 
Keutzer, K.: Communication-minimizing 2d convolution in gpu 
registers. In: 2013 IEEE International Conference on Image Pro-
cessing, pp. 2116–2120 (2013). IEEE

Jakob, W.: Pybind11 Documentation. https:// pybin d11. readt hedocs. io/ 
en/ stable/ index. html Accessed 16 May 2024

Jeong, E., Kim, J., Tan, S., Lee, J., Ha, S.: Deep learning inference 
parallelization on heterogeneous processors with tensorrt. IEEE 
Embedded Syst. Lett. 14(1), 15–18 (2021)

Ji, Y., Han, J., Zhao, Y., Zhang, S., Gong, Z.: Log anomaly detection 
through gpt-2 for large scale systems. ZTE Commun. 21(3), 70 
(2023)

Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, 
R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Can-
tin, P.-l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., 
Dean, J., Gelb, B., Ghaemmaghami, T.V., Gottipati, R., Gulland, 
W., Hagmann, R., Ho, C.R., Hogberg, D., Hu, J., Hundt, R., Hurt, 
D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., 
Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, 
C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., 
Mahony, M., Miller, K., Nagarajan, R., Narayanaswami, R., Ni, 
R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A., 
Ross, J.: In-datacenter performance analysis of a tensor processing 
unit. (2017). arXiv:  https:// arxiv. org/ pdf/ 1704. 04760 pdf

Jun, H., Cho, J., Lee, K., Son, H.-Y., Kim, K., Jin, H., Kim, K.: Hbm 
(high bandwidth memory) dram technology and architecture. In: 
2017 IEEE International Memory Workshop (IMW), pp. 1–4 
(2017). IEEE

Khan, J., Fultz, P., Tamazov, A., Lowell, D., Liu, C., Melesse, M., 
Nandhimandalam, M., Nasyrov, K., Perminov, I., Shah, T., et al.: 

https://github.com/HIT-HPC-Group/DSCOptimization
https://github.com/HIT-HPC-Group/DSCOptimization
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2303.08774
https://rocm.docs.amd.com/en/latest
https://rocm.docs.amd.com/en/latest
https://doi.org/10.1109/TCSII.2018.2865896
https://doi.org/10.1109/TCSII.2018.2865896
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3625004
https://doi.org/10.1145/3625004
https://pytorch.org/tutorials/advanced/cpp_extension.html#custom-c-and-cuda-extensions
https://pytorch.org/tutorials/advanced/cpp_extension.html#custom-c-and-cuda-extensions
https://pytorch.org/tutorials/advanced/cpp_extension.html#custom-c-and-cuda-extensions
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://www.hygon.cn/product/accelerator
https://www.hygon.cn/product/accelerator
https://pybind11.readthedocs.io/en/stable/index.html
https://pybind11.readthedocs.io/en/stable/index.html
http://arxiv.org/abs/https://arxiv.org/pdf/1704.04760pdf


662 Z. Liu et al.

Miopen: An open source library for deep learning primitives. 
arXiv: 1910. 00078 (2019)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification 
with deep convolutional neural networks. Adv. Neural Inf. Pro-
cess. Syst. 25, (2012)

Li, Z., Jia, H., Zhang, Y., Chen, T., Yuan, L., Cao, L., Wang, X.: Aut-
offt: a template-based fft codes auto-generation framework for arm 
and x86 cpus. In: Proceedings of the International Conference for 
High Performance Computing, Networking, Storage and Analysis, 
pp. 1–15 (2019)

Li, X., Liang, Y., Yan, S., Jia, L., Li, Y.: A coordinated tiling and batch-
ing framework for efficient gemm on gpus. In: Proceedings of the 
24th Symposium on Principles and Practice of Parallel Program-
ming, pp. 229–241 (2019)

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., Gonzalez, 
J.: Train big, then compress: Rethinking model size for efficient 
training and inference of transformers. In: International Confer-
ence on Machine Learning, pp. 5958–5968 (2020). PMLR

Liu, Y., Zhang, F., Pan, Z., Guo, X., Hu, Y., Zhang, X., Du, X.: Com-
pressed data direct computing for chinese dataset on dcu. CCF 
Trans. High Perform. Comput. 6(2), 206–220 (2024)

Lu, J., Zheng, Q.: Ultra-lightweight face animation method for ultra-
low bitrate video conferencing. ZTE Commun. 21(1), 64 (2023)

Lu, G., Zhang, W., Wang, Z.: Optimizing depthwise separable convo-
lution operations on gpus. IEEE Trans. Parallel Distribut. Syst. 
33(1), 70–87 (2021)

Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: Shufflenet v2: Practical guide-
lines for efficient cnn architecture design. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pp. 116–131 (2018)

Ma, K., Han, L., Shang, J.-D., Xie, J.-M., Zhang, H.: Optimized reali-
zation of quantum fourier transform for domestic dcu accelerator. 
J Phys Conf Ser 2258, 012065 (2022)

Mei, X., Chu, X.: Dissecting gpu memory hierarchy through micro-
benchmarking. IEEE Trans. Parallel Distribut. Syst. 28(1), 72–86 
(2016)

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur, 
N.R., Ganger, G.R., Gibbons, P.B., Zaharia, M.: Pipedream: Gen-
eralized pipeline parallelism for dnn training. In: Proceedings of 
the 27th ACM Symposium on Operating Systems Principles, pp. 
1–15 (2019)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., 
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: 
An imperative style, high-performance deep learning library. Adv. 
Neural Inf. Process. Syst. 32, (2019)

Qin, Z., Zhang, Z., Li, D., Zhang, Y., Peng, Y.: Diagonalwise refac-
torization: An efficient training method for depthwise convolu-
tions. In: 2018 International Joint Conference on Neural Networks 
(IJCNN), pp. 1–8 (2018). IEEE

Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for 
image classifier architecture search. In: Proceedings of the Aaai 
Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: 
Unified, real-time object detection. In: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pp. 
779–788 (2016)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., 
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.: Imagenet 
large scale visual recognition challenge. Int. J. Comput. Vision 
115, 211–252 (2015)

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: 
Mobilenetv2: Inverted residuals and linear bottlenecks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 4510–4520 (2018)

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., Catan-
zaro, B.: Megatron-lm: Training multi-billion parameter language 
models using model parallelism. arXiv: 1909. 08053 (2019)

Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: 
Bottleneck transformers for visual recognition. In: Proceedings 
of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 16519–16529 (2021)

Sun, Y., Wang, S., Feng, S., Ding, S., Pang, C., Shang, J., Liu, J., 
Chen, X., Zhao, Y., Lu, Y., et al.: Ernie 3.0: Large-scale knowl-
edge enhanced pre-training for language understanding and gen-
eration. arXiv: 2107. 02137 (2021)

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., 
Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with con-
volutions. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 1–9 (2015)

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., 
Le, Q.V.: Mnasnet: Platform-aware neural architecture search for 
mobile. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 2820–2828 (2019)

Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In: International Conference on Machine 
Learning, pp. 6105–6114 (2019). PMLR

Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The com-
putational limits of deep learning. arXiv: 2007. 0555810 (2020)

Vasudevan, A., Anderson, A., Gregg, D.: Parallel multi channel con-
volution using general matrix multiplication. In: 2017 IEEE 28th 
International Conference on Application-specific Systems, Archi-
tectures and Processors (ASAP), pp. 19–24 (2017). IEEE

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, 
A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. 
Neural Inf. Process. Syst. 30, (2017)

Wang, G., Lin, Y., Yi, W.: Kernel fusion: An effective method for bet-
ter power efficiency on multithreaded gpu. In: 2010 IEEE/ACM 
Int’l Conference on Green Computing and Communications & 
Int’l Conference on Cyber, Physical and Social Computing, pp. 
344–350 (2010). IEEE

Wang, Q., Mei, S., Liu, J., Gong, C.: Parallel convolution algorithm 
using implicit matrix multiplication on multi-core cpus. In: 2019 
International Joint Conference on Neural Networks (ijcnn), pp. 
1–7 (2019). IEEE

Wei, T., Tian, Y., Wang, Y., Liang, Y., Chen, C.W.: Optimized sepa-
rable convolution: Yet another efficient convolution operator. AI 
Open 3, 162–171 (2022)

Wu, H.-N., Huang, C.-T.: Data locality optimization of depthwise sepa-
rable convolutions for cnn inference accelerators. In: 2019 Design, 
Automation & Test in Europe Conference & Exhibition (DATE), 
pp. 120–125 (2019). IEEE

Xiang, P., Yang, Y., Zhou, H.: Warp-level divergence in gpus: Char-
acterization, impact, and mitigation. In: 2014 IEEE 20th Interna-
tional Symposium on High Performance Computer Architecture 
(HPCA), pp. 284–295 (2014). IEEE

Xu, C., Kirk, S.R., Jenkins, S.: Tiling for performance tuning on differ-
ent models of gpus. In: 2009 Second International Symposium on 
Information Science and Engineering, pp. 500–504 (2009). IEEE

Yan, D., Wang, W., Chu, X.: Optimizing batched winograd convolution on 
gpus. In: Proceedings of the 25th ACM SIGPLAN Symposium on 
Principles and Practice of Parallel Programming, pp. 32–44 (2020)

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li, C., He, Y.: 
Zeroquant: Efficient and affordable post-training quantization 
for large-scale transformers. Adv. Neural Inf. Process. Syst. 35, 
27168–27183 (2022)

Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.: Incorporating 
convolution designs into visual transformers. In: Proceedings of 
the IEEE/CVF International Conference on Computer Vision, pp. 
579–588 (2021)

Zhang, J., Franchetti, F., Low, T.M.: High performance zero-memory 
overhead direct convolutions. In: International Conference on 
Machine Learning, pp. 5776–5785 (2018). PMLR

http://arxiv.org/abs/1910.00078
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/2107.02137
http://arxiv.org/abs/2007.05558


663Optimizing depthwise separable convolution on DCU  

Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., 
Zhang, B., Zhang, J., Dong, Z., et al.: A survey of large language 
models. arXiv: 2303. 18223 (2023)

Zhou, Q.-W., Li, J.-N., Zhao, R.-C., Han, L., Wang, X.: Compilation 
optimization of dcu-oriented openmp thread scheduling. J Phys 
Conf Ser 2558, 012003 (2023)

Zhu, X., Li, J., Liu, Y., Ma, C., Wang, W.: A survey on model compres-
sion for large language models. arXiv: 2308. 07633 (2023)

Zheng Liu earned his B.S. and 
M.Eng degree in Computer 
Engineering from the University 
of Illinois at Urbana-Champaign, 
USA, in 2020. He is currently 
pursuing his Ph.D. at the School 
of Computer Science and Tech-
nology at Harbin Institute of 
Technology, China. His research 
focuses on artificial intelligence, 
particularly on optimizing the 
training efficiency of distributed 
deep learning networks.

Meng Hao received the BS and 
Ph.D. degrees in computer sci-
ence and engineering from Har-
bin Institute of Technology, 
China, in 2014 and 2021 respec-
tively. He is currently an assis-
tant professor in the School of 
Cyberspace Science, Harbin 
Institute of Technology. His 
research interests include high-
performance computing, perfor-
mance modeling, and parallel 
optimization.

Weizhe Zhang (Senior Member, 
IEEE) received B.Eng, M.Eng 
and Ph.D. degree of Engineering 
in computer science and technol-
ogy in 1999, 2001 and 2006 
respectively from Harbin Insti-
tute of Technology. He is cur-
rently a professor in the School 
of Cyberspace Science at Harbin 
Institute of Technology, China. 
His research interests are primar-
ily in parallel computing, distrib-
uted computing, cloud and grid 
computing, and computer 
network.

Gangzhao Lu received the B.S. 
and Ph.D. degrees in computer 
science and engineering from 
Harbin Institute of Technology, 
China, in 2014 and 2022 respec-
tively. His research interests 
include performance modeling, 
parallel  optimization and 
auto-tuning.

Xueyang Tian received the bach-
elor degree in software engineer-
ing from Harbin Institute of 
Technology, China, in 2023. He 
is currently working toward a 
master degree in Harbin Institute 
of Technology. His research 
interests include high perfor-
mance computing, and parallel 
optimization.

Siyu Yang received the bachelor 
degree in computer science and 
technology from Harbin Institute 
of Technology, China, in 2024. 
He is currently working toward a 
master degree in Harbin Institute 
of Technology. His research 
interests include high perfor-
mance computing, and energy 
efficiency optimization.

Mingdong Xie earned his B.S. 
degree in Computational Math-
ematics from Harbin Institute of 
Technology, China. In 2024, he 
began pursuing his Ph.D. in 
Computer Science and Technol-
ogy at Harbin Institute of Tech-
nology. His research focuses on 
the intersection of security and 
high-performance computing 
(HPC), particularly on accelerat-
ing security-related operators on 
heterogeneous systems.

http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2308.07633


664 Z. Liu et al.

Jie Dai obtained his Bachelor's 
degree in Information Security 
from Harbin Institute of Tech-
nology, China, in 2024. He is 
currently pursuing his Master's 
degree at the School of Com-
puter Science and Technology at 
Harbin Institute of Technology. 
His research interest lies in 
machine learning systems.

Chenyu Yuan is a senior under-
graduate student at the School of 
Computer Science and Technol-
ogy, Harbin Institute of Technol-
ogy, China. His research inter-
ests include high-performance 
computing, with a particular 
focus on optimizing GPU power 
consumption during deep learn-
ing inference tasks.

Desheng Wang received the 
Ph.D. degree in Cyberspace 
Security from Harbin Institute of 
Technology, Harbin, China, in 
2022. He is currently an assistant 
professor in the School of Com-
puter Science and Technology at 
Harbin Institute of Technology, 
Shenzhen, China. His research 
interests include cloud comput-
ing, edge computing, and cyber-
space security.

Hongwei Yang is a research asso-
ciate of the Network Security 
Center in the School of Cyber-
space Science, Harbin Institute 
of Technology, China. He 
received the DEng degree in 
cyberspace science from the 
Harbin Institute of Technology. 
His research interests include 
deep learning optimization, 
graph mining.


	Optimizing depthwise separable convolution on DCU
	Abstract
	1 Introduction
	2 Background
	2.1 Deep computing unit
	2.2 Depthwise separable convolution

	3 Overview
	4 Depthwise convolution optimization
	4.1 Data reloading problem
	4.2 Row data reuse

	5 Pointwise convolution optimization
	5.1 Tiling parameter generator
	5.1.1 Identify tiling parameters
	5.1.2 Identify resource parameters
	5.1.3 Apply resource constraints

	5.2 Code generator and profiler

	6 Experiments
	6.1 Platform
	6.2 Testing new kernel functions
	6.2.1 Setup
	6.2.2 Results

	6.3 Testing extension modules
	6.3.1 Setup
	6.3.2 Results

	6.4 Ablation study
	6.4.1 Setup
	6.4.2 Results


	7 Discussion and future work
	8 Conclusion
	Acknowledgements 
	References




