
MLIR: Scaling Compiler Infrastructure for Domain

Specific Computation

Chris Lattner

Google, USA∗

clattner@llvm.org

Mehdi Amini

Google, USA

orcid.org/0000-0002-2066-3106

Uday Bondhugula

Indian Institute of Science, India†

orcid.org/0000-0002-8297-6159

Albert Cohen

Google, France

orcid.org/0000-0002-8866-5343

Andy Davis

Google, USA

Jacques Pienaar

Google, USA

orcid.org/0000-0003-0443-7624

River Riddle

Google, USA

Tatiana Shpeisman

Google, USA

Nicolas Vasilache

Google, USA

Oleksandr Zinenko

Google, France

orcid.org/0000-0003-1978-0222

Abstract—This work presents MLIR, a novel approach to
building reusable and extensible compiler infrastructure. MLIR
addresses software fragmentation, compilation for heterogeneous
hardware, significantly reducing the cost of building domain
specific compilers, and connecting existing compilers together.

MLIR facilitates the design and implementation of code
generators, translators and optimizers at different levels of
abstraction and across application domains, hardware targets
and execution environments. The contribution of this work
includes (1) discussion of MLIR as a research artifact, built
for extension and evolution, while identifying the challenges and
opportunities posed by this novel design, semantics, optimization
specification, system, and engineering. (2) evaluation of MLIR
as a generalized infrastructure that reduces the cost of building
compilers—describing diverse use-cases to show research and
educational opportunities for future programming languages,
compilers, execution environments, and computer architecture.
The paper also presents the rationale for MLIR, its original
design principles, structures and semantics.

I. INTRODUCTION

Compiler design is a mature field with applications to code

generation, static analysis, and more. The field has seen the

development of a number of mature technology platforms

which have enabled massive reuse, including systems like the

LLVM compiler infrastructure [1], the Java Virtual Machine

(JVM) [2], and many others. A common characteristic of

these popular systems is their “one size fits all” approach—

a single abstraction level to interface with the system: the

LLVM Intermediate Representation (IR) is roughly “C with

vectors”, and JVM provides an “object-oriented type system

with a garbage collector” abstraction. This “one size fits all”

approach is incredibly valuable—and in practice, the mapping

to these domains from ubiquitous source languages (C/C++

and Java respectively) is straightforward.

At the same time, many problems are better modeled at a

higher- or lower-level abstraction, e.g. source-level analysis

∗
With SiFive at the time of publication.

†
Visiting researcher at Google at the time of this work.

of C++ code is very difficult on LLVM IR. We observe that

many languages (including e.g. Swift, Rust, Julia, Fortran)

develop their own IR in order to solve domain-specific

problems, like language/library-specific optimizations, flow-

sensitive type checking (e.g. for linear types), and to improve

the implementation of the lowering process. Similarly, machine

learning systems typically use “ML graphs” as a domain-

specific abstraction in the same way.

While the development of domain-specific IRs is a well

studied art, their engineering and implementation cost remains

high. The quality of the infrastructure is not always a first

priority (or easy to justify) for implementers of these systems.

Consequently, this can lead to lower quality compiler systems,

including user-visible problems like slow compile times, buggy

implementations, suboptimal diagnostic quality, poor debugging

experience for optimized code, etc.

The MLIR project1 aims to directly tackle these program-

ming language design and implementation challenges—by mak-

ing it cheap to define and introduce new abstraction levels, and

provide “in the box” infrastructure to solve common compiler

engineering problems. MLIR does this by (1) standardizing

the Static Single Assignment (SSA)-based IR data structures,

(2) providing a declarative system for defining IR dialects, and

(3) providing a wide range of common infrastructure including

documentation, parsing and printing logic, location tracking,

multithreaded compilation support, pass management, etc.

This paper further presents the overarching principles under-

lying the design and implementation of MLIR. We will explore

the essential design points of the system and how they relate

to the overarching principles, sharing our experience applying

MLIR to a number of compilation problems.

A. Contributions

Most of the MLIR system is built out of well known concepts

and algorithms. Yet the objectives and design are sufficiently

1https://mlir.llvm.org

978-1-7281-8613-9/21/$31.00 © 2021 IEEE CGO 2021, Virtual, Republic of Korea2

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Co

de
 G

en
er

at
io

n
an

d
O

pt
im

iza
tio

n
(C

GO
) |

 9
78

-1
-7

28
1-

86
13

-9
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CG

O
51

59
1.

20
21

.9
37

03
08

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

novel that studying them offer vast opportunities for research,

and even more so within the boundaries of the following

overarching principles:

Parsimony: Apply Occam’s razor to builtin semantics,

concepts, and programming interface. Harness both intrin-

sic and incidental complexity by abstracting properties of

operations and types. Specify invariants once, but verify

correctness throughout. Query properties in the context of

a given compilation pass. With very little builtin, this opens

the door to extensibility and customization.

Traceability: Retain rather than recover information.

Declare rules and properties to enable transformation, rather

than step wise imperative specification. Extensibility comes

with generic means to trace information, enforced by extensive

verification. Composable abstractions stem from “glassboxing”

their properties and separating their roles—type, control, data

flow, etc.

Progressivity: Premature lowering is the root of all evil.

Beyond representation layers, allow multiple transformation

paths that lower individual regions on demand. Together with

abstraction-independent principles and interfaces, this enables

reuse across multiple domains.

While these principles are well established, one of them is

often implemented at the expense of another; e.g., layering

in network and operating system stacks aligns with the

progressivity principle but breaks parsimony. This has also been

the case in compilers with multiple layers of IR. Also, following

these principles may hurt expressiveness and effectiveness;

e.g., traceability in safety-critical and secure systems involves

limiting optimizations and their aggressivity.

In a nutshell, we identify design and engineering principles

for compiler construction to thrive in a narrow middle that sup-

port an open semantics ecosystem. We discovered complexity

can be tamed without restricting expressivity, allowing for fast

IR design exploration and consolidation across domains, both

of which are severely lacking in production systems.

The contributions of this paper are: (1) positioning the

problem of building scalable and modular compiler systems

in terms of proven design and engineering principles; (2) a

description of a novel compiler infrastructure that follows these

principles, with important industrial and research applications;

(3) exploration of selected applications to diverse domains, il-

lustrating the generality of the approach and sharing experience

developing systems that build on the MLIR infrastructure.

B. Where Did MLIR Come From?

Work on MLIR began with a realization that modern machine

learning frameworks are composed of many different compilers,

graph technologies, and runtime systems (see Figure 1)—which

did not share a common infrastructure or design principles. This

manifested in multiple user-visible ways, including poor error

messages, failures in edge cases, unpredictable performance,

and difficulty generalizing the stack to support new hardware.

We soon realized that the compiler industry as a whole

has a similar problem: existing systems like LLVM are very

TensorFlow
Graph

XLA HLO

TensorRT

nGraph

Core ML

TensorFlow Lite

LLVM IR

TPU IR

Several others

NNAPI

Many other

Fig. 1. TensorFlow execution spanning different frameworks.

C, C++,
ObjC,
CUDA,

OpenCL

Swift

Rust

Julia

Clang AST

Swift AST

Rust AST

Julia AST

Java & JVM
languages Java BC

SIL IR

MIR IR

Julia IR

LLVM IR

Fig. 2. Compilation pipeline with mid-level language IRs.

successful at unifying and integrating work across a range

of different languages, but high-level languages often end up

building their own high-level IR and reinventing the same kind

of technology for higher levels of abstraction (see Figure 2).

At the same time, the LLVM community struggled with the

representation of parallel constructs, and how to share front-

end lowering infrastructure (e.g. for C calling conventions, or

cross-language features like OpenMP), with no satisfactory

solutions.

Faced with this challenge, given we could not afford to im-

plement N improved compiler instances, we decided to go for a

more general solution: investing in a high quality infrastructure

which would benefit multiple domains, progressively upgrading

existing systems, making it easier to tackle pressing problems

like heterogeneous compilation for specialized accelerators,

and provide new research opportunities. Now that we gathered

a significant amount of experience building and deploying

MLIR-based systems, we are able to look back on its rationale

and design and discuss why this direction was pursued.

II. DESIGN PRINCIPLES

Let us now explore the requirements that guided the design

of MLIR and their relation with the overarching principles.

Little Builtin, Everything Customizable [Parsimony]:

The system is based on a minimal number of fundamental

concepts, leaving most of the intermediate representation fully

customizable. A handful of abstractions—types, operations

and attributes, which are the most common in IRs—should

be used to express everything else, allowing fewer and more

consistent abstractions that are easy to comprehend, extend

and adopt. Broadly, customizability ensures the system can

adapt to changing requirements and is more likely to be

applicable to future problems. In that sense, we ought to build

an IR as a rich infrastructure with reusable components and

programming abstractions supporting the syntax and semantics

of its intermediate language.

A success criterion for customization is the possibility to

express a diverse set of abstractions including machine learning

graphs, ASTs, mathematical abstractions such as polyhedral,

3
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

Control Flow Graphs (CFGs) and instruction-level IRs such

as LLVM IR, all without hard-coding concepts from these

abstractions into the system.

Certainly, customizability creates a risk of internal frag-

mentation due to poorly compatible abstractions. While there

is unlikely a purely technical solution, the system should

encourage one to design reusable abstractions and assume

they will be used outside of their initial scope.

SSA and Regions [Parsimony]: The Static Single Assign-

ment (SSA) form [3] is a widely used representation in com-

piler IRs. It provides numerous advantages including making

dataflow analysis simple and sparse, is widely understood by the

compiler community for its relation with continuation-passing

style, and is established in major frameworks. As a result, the

IR enforces the value-based semantics of SSA, its referential

transparency and algorithmic efficiency, all considered essential

to a modern compiler infrastructure. However, while many

existing IRs use a flat, linearized CFG, representing higher

level abstractions push introducing nested regions as a first-

class concept in the IR. This goes beyond the traditional region

formation to lift higher level abstractions (e.g., loop trees),

speeding up the compilation process or extracting instruction,

or SIMD parallelism [4], [5], [6]. To support heterogeneous

compilation, the system has to support the expression of

structured control flow, concurrency constructs, closures in

source languages, and many other purposes. One specific

challenge is to make CFG-based analyses and transformations

compose over nested regions.

In doing so, we agree to sacrifice the normalization, and

sometimes the canonicalization properties of LLVM. Being

able to lower a variety of data and control structures into

a smaller collection of normalized representations is key to

keeping compiler complexity under control. The canonical

loop structure with its pre-header, header, latch, body, is a

prototypical case of a linearized control flow representation

of a variety of loop constructs in front-end languages. We

aim at offering users a choice: depending on the compilation

algorithm of interest, of the pass in the compilation flow, nested

loops may be captured as nested regions, or as linearized

control flow. By offering such a choice, we depart from the

normalization-only orientation of LLVM while retaining the

ability to deal with higher level abstractions when it matters.

In turn, leveraging such choices raises questions about how to

control the normalization of abstractions, which is the purpose

of the next paragraph.

Maintain Higher-Level Semantics [Progressivity]: The

system needs to retain the information and structure that are

required for analysis or optimizing performance. Attempts

to recover abstract semantics once lowered are fragile and

shoehorning this information at low-level often invasive (e.g.,

all passes need to be revisited in the case of using debug

information to record structure). Instead, the system should

maintain the structure of computations and progressively lower

to the hardware abstraction. The loss of structure is then

conscious and happens only where the structure is no longer

needed to match the underlying execution model. For example,

the system should preserve the structured control flow such

as loop structure throughout the relevant transformations;

removing this structure, i.e. lowering to a CFG essentially

means no further transformations will be performed that

exploits the structure. The state of the art in modeling parallel

computing constructs in a production compiler highlights how

difficult the task may be in general [7], [8].

As a corollary, mixing different levels of abstraction and

different concepts in the same IR is a key to allowing a part of

the representation to remain in higher-level abstraction while

another part is lowered. This would enable, for instance, a

compiler for a custom accelerator to reuse some higher-level

structure and abstractions defined by the system alongside with

primitive scalar/vector instructions specific to the accelerator.

Another corollary is that the system should support pro-

gressive lowering,from the higher-level representation down

to the lowest-level, performed in small steps along multiple

abstractions. The need for multiple levels of abstractions stems

from the variety of platforms and programming models a

compiler infrastructure has to support.

Previous compilers have been introducing multiple fixed

levels of abstraction in their pipeline—e.g. the Open64 WHIRL

representation [9] has five levels, as does the Clang compiler

which lowers from ASTs to LLVM IR, to SelectionDAG, to

MachineInstr, and to MCInst. More flexible designs are required

to support extensibility. This has deep implications on the

phase ordering of transformations. As compiler experts started

implementing more and more transformation passes, complex

interactions between these passes started appearing. It was

shown early on that combining optimization passes allows the

compiler to discover more facts about the program. One of the

first illustrations of the benefits of combining passes was to

mix constant propagation, value numbering and unreachable

code elimination [10].

Declaration and Validation [Parsimony and Traceability]:

Defining representation modifiers should be as simple as

introducing new abstractions; a compiler infrastructure is

only as good as the transformations it supports. Common

transformations should be implementable as rewrite rules

expressed declaratively, in a machine-analyzable format to

reason about properties of the rewrites such as complexity and

completion. Rewriting systems have been studied extensively

for their soundness and efficiency, and applied to numerous

compilation problems, from type systems to instruction se-

lection. Since we aim for unprecedented extensibility and

incremental lowering capabilities, this opens numerous avenues

for modeling program transformations as rewrite systems.

It also raises interesting questions about how to represent

the rewrite rules and strategies, and how to build machine

descriptions capable of steering rewriting strategies through

multiple levels of abstraction. The system needs to address

these questions while preserving extensibility and enforcing

monotonic and reproducible behavior.

The openness of the ecosystem also calls for an extensive

validation mechanism. While verification and testing are useful

to detect compiler bugs, and to capture IR invariants, the need

4
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

for robust validation methodologies and tools is amplified in

an extensible system. The mechanism should aim to make this

easy to define and as declarative as practical, providing a single

source of truth. A long term goal would be to reproduce the

successes of translation validation [11], [12], [13], [14] and

modern approaches to compiler testing [15]. Both are currently

open problems in the context of an extensible compiler.

Source Location Tracking [Traceability]: The provenance

of an operation—including its original location and applied

transformations—should be easily traceable within the system.

This intends to address the lack-of-transparency problem,

common to complex compilation systems, where it is virtually

impossible to understand how the final representation was

constructed from the original one.

This is particularly problematic when compiling safety-

critical and sensitive applications, where tracing lowering

and optimization steps is an essential component of software

certification procedures [16]. When operating on secure code

such as cryptographic protocols or algorithms operating on

privacy-sensitive data, the compiler often faces seemingly

redundant or cumbersome computations that embed a security

or privacy property not fully captured by the functional

semantics of the source program: this code may prevent the

exposure of side channels or harden the code against cyber or

fault attacks. Optimizations may alter or completely invalidate

such protections [17]; this lack of transparency is known as

WYSINWYX [18] in secure compilation. One indirect goal

of accurately propagating high-level information to the lower

levels is to help support secure and traceable compilation.

III. IR DESIGN

Our main contribution is to present an IR that follows the

principles defined in the previous section. This is what MLIR

does and we review its main design points in this section.

MLIR has a generic textual representation (example in Fig-

ure 3) that supports MLIR’s extensibility and fully reflects the

in-memory representation, which is paramount for traceability,

manual IR validation and testing. Extensibility comes with the

burden of verbosity, which can be compensated by the custom

syntax that MLIR supports; for example, Figure 7 illustrates

the user-defined syntax for Figure 3.

Operations: The unit of semantics in MLIR is an

“operation”, referred to as Op. Everything from “instruction”

to “function” to “module” are modeled as Ops in this system.

MLIR does not have a fixed set of Ops, but allows (and en-

courages) user-defined extensions, according to the parsimony

and “everything customizable” principles. The infrastructure

provides a declarative syntax for defining Ops based on

TableGen [19], as illustrated in Figure 5.2

Ops (see Figure 4) have a unique opcode, a string identifying

the operation and its dialect. Ops take and produce zero or

more values, called operands and results respectively, and these

are maintained in SSA form. Values represent data at runtime,

2Alternatives have been proposed, aiming for higher productivity, soundness
guarantees, and better interoperability with high-level languages; this still a
subject of active design discussions.

// Attribute aliases can be forward-declared.
#map1 = (d0, d1) -> (d0 + d1)
#map3 = ()[s0] -> (s0)

// Ops may have regions attached.
"affine.for"(%arg0) ({
// Regions consist of a CFG of blocks with arguments.
^bb0(%arg4: index):
 // Block are lists of operations.
 "affine.for"(%arg0) ({
 ^bb0(%arg5: index):
 // Ops use and define typed values, which obey SSA.
 %0 = "affine.load"(%arg1, %arg4) {map = (d0) -> (d0)}
 : (memref<?xf32>, index) -> f32
 %1 = "affine.load"(%arg2, %arg5) {map = (d0) -> (d0)}
 : (memref<?xf32>, index) -> f32
 %2 = "std.mulf"(%0, %1) : (f32, f32) -> f32
 %3 = "affine.load"(%arg3, %arg4, %arg5) {map = #map1}
 : (memref<?xf32>, index, index) -> f32
 %4 = "std.addf"(%3, %2) : (f32, f32) -> f32
 "affine.store"(%4, %arg3, %arg4, %arg5) {map = #map1}
 : (f32, memref<?xf32>, index, index) -> ()
 // Blocks end with a terminator Op.
 "affine.terminator"() : () -> ()
 // Ops have a list of attributes.
 }) {lower_bound = () -> (0), step = 1 : index, upper_bound = #map3}
 : (index) -> ()
 "affine.terminator"() : () -> ()
}) {lower_bound = () -> (0), step = 1 : index, upper_bound = #map3}
 : (index) -> ()

Fig. 3. MLIR generic representation for polynomial multiplication using affine
and std dialects. The same IR is displayed with the custom syntax Figure 7.

%results:2 = "d.operation"(%arg0, %arg1) ({
 // Regions belong to Ops and can have multiple blocks.
 ^block(%argument: !d.type):
 // Ops have function types (expressing mapping).
 %value = "nested.operation"() ({
 // Ops can contain nested regions.
 "d.op"() : () -> ()
 }) : () -> (!d.other_type)
 "consume.value"(%value) : (!d.other_type) -> ()
 ^other_block:
 "d.terminator"() [^block(%argument : !d.type)] : () -> ()
 })
// Ops can have a list of attributes.
{attribute="value" : !d.type} : () -> (!d.type, !d.other_type)

// Regions belong to Ops and can have multiple blocks.

 })

Region
^block(%argument: !d.type):
// Ops have function types (expressing mapping).
%value = "nested.operation"() ({

 }) : () -> (!d.other_type)
"consume.value"(%value) : (!d.other_type) -> ()

Block

^other_block:
"d.terminator"() [^block(%argument : !d.type)] : () -> ()

Block

// Ops can contain nested regions.
"d.op"() : () -> ()

Region

Fig. 4. Operation (Op) is a main entity in MLIR; operations contain a list of
regions, regions contain a list of blocks, blocks contains a list of Ops, enabling
recursive structures

and have a Type that encodes the compile-time knowledge

about the data. In addition to an opcode, operands and results,

Ops may also have Attributes, Regions, Successor Blocks, and

Location Information. Figure 3 illustrates values and Ops, %-

identifiers are (packs of) named values, with “:” specifying

the number in a pack if more than one and “#’ a particular

value. In the generic textual representation, operation names

are quoted string literals followed by operands in parentheses.

Compiler passes treat unknown Ops conservatively, and

MLIR has rich support for describing the semantics of Ops to

passes through traits and interfaces as described in Section V-A.

Op implementation has verifiers that enforce the Op invariants

and participate in overall IR validation.

Attributes: MLIR attributes contain compile-time

information about operations, other than the opcode. Attributes

are typed (e.g., integer, string), and each Op instance has an

open key-value dictionary from string names to attribute values.

In the generic syntax, attributes are found in a brace-enclosed

comma-separated list of pairs. Figure 3 uses attributes to define

5
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

// An Op is a TableGen definition that inherits the "Op" class parameterized
// with the Op name
def LeakyReluOp: Op<"leaky_relu",
 // and a list of traits used for verification and optimization.
 [NoSideEffect, SameOperandsAndResultType]> {
 // The body of the definition contains named fields for a one-line
 // documentation summary for the Op.
 let summary = "Leaky Relu operator";

 // The Op can also a full-text description that can be used to generate
 // documentation for the dialect.
 let description = [{
 Element-wise Leaky ReLU operator
 x -> x >= 0 ? x : (alpha * x)
 }];

 // Op can have a list of named arguments, which include typed operands
 // and attributes.
 let arguments = (ins AnyTensor:$input, F32Attr:$alpha);

 // And a list of named and typed outputs.
 let results = (outs AnyTensor:$output);
}

Fig. 5. Operation Definition Syntax (ODS) provides a concise way of defining
new Ops in MLIR. Here, one defines the LeakyRelu Op taking a tensor
and a floating-point value, and returning a tensor of the same type as the input
one.

bounds of a loop that are known to be constant affine forms:

{lower_bound = () -> (0), step = 1 : index,

upper_bound = #map3} where lower_bound is an

example of an attribute name. The () -> (0) notation is

used for inline affine forms, in this case producing an affine

function producing a constant 0 value. The #map3 notation

is used for attribute aliases, which allow associate attribute

values with a label upfront.

Attributes derive their meaning either from the Op semantics

or from the dialect (Section III) they are associated with. As

with opcodes, there is no fixed set of attributes. Attributes may

reference foreign data structures, which is useful for integrating

with existing systems, e.g., the contents of (known at compile

time) data storage in an ML system.

Location Information: MLIR provides a compact represen-

tation for location information, and encourages the processing

and propagation of this information throughout the system,

following the traceability principle. It can be used to keep the

source program stack trace that produced an Op, to generate

debug information. It standardizes the way to emit diagnostics

from the compiler, and is used by a wide range of testing tools.

Location information is also extensible, allowing a compiler

to refer to existing location tracking systems, high-level

AST nodes, LLVM-style file-line-column address, DWARF

debugging info, etc.

Regions and Blocks: An instance of an Op may have a list

of attached regions. A region provides the nesting mechanism

in MLIR: it contains a list of blocks, each of which contains

a list of operations (that may contain further regions). As

with attributes, the semantics of a region are defined by the

operation they are attached to, however the blocks inside the

region (if more than one) form a Control Flow Graph (CFG).

For example, the affine.for operation in Figure 3 is a

loop with the single-block body attached as a region, located

between ({ and }) delimiters. The Op specifies the flow of

control across regions. In this example, the body is executed

repeatedly until the upper bound is reached.

The body of each region is a list of blocks, and each block

ends with a terminator operation, that may have successor

blocks to which the control flow may be transferred. Each

terminator (e.g. “switch”, “conditional branch” or “unwind”)

defines its own semantics. It may chose to transfer the control

flow to another block in the same region, or return it to the Op

enclosing the region. The graph of successors defines a CFG,

allowing standard SSA-based control flow within a region.

Instead of using φ nodes, MLIR uses a functional form of

SSA [20] where terminators pass values into block arguments

defined by the successor block. Each block has a (potentially

empty) list of typed block arguments, which are regular values

and obey SSA. The semantics of terminator Ops defines what

values the arguments of the block will take after the control

is transferred. For the first (entry) block of the region, the

values are defined by the semantics of the enclosing Op. For

example, affine.for uses the entry block argument %arg4

as loop induction variable. Finally, this explicit graph design

and the extensibility of Ops is reminiscent of the sea-of-nodes

representation [21]: this connection is intentional and has been

a major influence for the selection of MLIR’s flavor of SSA.

Value Dominance and Visibility: Ops can only use values

that are in scope, i.e. visible according to SSA dominance,

nesting, and semantic restrictions imposed by enclosing opera-

tions. Values are visible within a CFG if they obey standard

SSA dominance relationships, where control is guaranteed to

pass through a definition before reaching a use.

Region-based visibility is defined based on simple nesting of

regions: if the operand to an Op is outside the current region,

then it must be defined lexically above and outside the region

of the use. This is what allows Ops within an affine.for

operation to use values defined in outer scopes.

MLIR also allows operations to be defined as isolated from

above, indicating that the operation is a scope barrier—e.g.

the “std.func” Op defines a function, and it is not valid for

operations within the function to refer to values defined outside

the function. In addition to providing useful semantic checking,

a module containing isolated-from-above Ops may be processed

in parallel by an MLIR compiler since no use-def chains may

cross the isolation barriers. This is important for compilation

to utilize multicore machines.

All these design choices highlight the progressivity principle,

while erring on the side of parsimony when a concept does

not appear to be generic and essential enough to be builtin.

Symbols and Symbol Tables: Ops can have a symbol

table attached. This table is a standardized way of associating

names, represented as strings, to IR objects, called symbols.

The IR does not prescribe what symbols are used for, leaving

it up to the Op definition. Symbols are most useful for named

entities need that not obey SSA: they cannot be redefined within

the same table, but they can be used prior to their definition.

For example, global variables, functions or named modules

can be represented as symbols. Without this mechanism, it

would have been impossible to define, e.g., recursive function

6
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

referring to themselves in their definition. Symbol tables can

be nested if an Op with a symbol table attached has associated

regions containing similar Ops. MLIR provides a mechanism

to reference symbols from an Op, including nested symbols.

Dialects: MLIR manages extensibility using Dialects,

which provide a logical grouping of Ops, attributes and

types under a unique namespace. Dialects themselves do not

introduce any new semantics but serve as a logical grouping

mechanism that provides common Op functionality (e.g.,

constant folding behavior for all ops in the dialect). They

organize the ecosystem of language- and domain-specific

semantics while following the parsimony principle. The dialect

namespace appears as a dot-separated prefix in the opcode,

e.g., Figure 3 uses affine and std dialects.

The separation of Ops, types and attributes into dialects is

conceptual and is akin to designing a set of modular libraries.

For example, a dialect can contain Ops and types for operating

on hardware vectors (e.g., shuffle, insert/extract element, mask),

and another dialect can contain Ops and types for operating

on algebraic vectors (e.g. absolute value, dot product, etc.).

Whether both dialects use the same vector type and where does

this type belong are design decisions left to MLIR user.

While it is possible to put all Ops, types and attributes in

a single dialect, it would quickly become unmanageable due

to the large number of simultaneously present concepts and

name conflicts, amongst other issues. Although each Op, type

and attribute belongs to exactly one dialect, MLIR explicitly

supports a mix of dialects to enable progressive lowering. Ops

from different dialects can coexist at any level of the IR at

any time, they can use types defined in different dialects, etc.

Intermixing of dialects allows for greater reuse, extensibility

and provides flexibility that otherwise would require developers

to resort to all kinds of non-composable workarounds.

Type System: Every value in MLIR has a type, which is

specified in the Op that produces the value or in the block

that defines the value as an argument. Types encode compile-

time information about a value. The type system in MLIR is

user-extensible, and may, for example, refer to existing foreign

type systems. MLIR enforces strict type equality checking and

does not provide type conversion rules. Ops list their inputs

and result types using trailing function-like syntax. In Figure 3,

std.load maps from the memory reference and index types

to the type of the value it loads.

From the type theory point of view, MLIR only supports

non-dependent types, including trivial, parametric, function,

sum and product types. While it is possible to implement a

dependent type system by combining Ops with symbols and

user-defined types, such types will be opaque to the IR.

For convenience, MLIR provides a standardized set of

commonly used types, including arbitrary precision integers,

standard floating point types, and simple common containers—

tuples, multi-dimensional vectors, and tensors. These types

a merely a utility and their use is not required, illustrating

parsimony.

Functions and Modules: Similarly to conventional IRs,

MLIR is usually structured into functions and modules.

However, these are not separate concepts in MLIR: they are

implemented as Ops in the builtin dialect, again an illustration

of parsimony in the design.

A module is an Op with a single region containing a single

block, and terminated by a dummy Op that does not transfer

the control flow. Like any block, its body contains a list of Ops,

which may be functions, global variables, compiler metadata,

or other top-level constructs. Modules may define a symbol in

order to be referenced.

Similarly, a function is an Op with a single region that may

contain zero (in case of declaration) or more blocks. Built-in

functions are compatible with “call” and “return” operations

of the “std” dialect, which transfer the control to and from the

function, respectively. Other dialects are free to define their

own function-like Ops.

IV. EVALUATION: APPLICATIONS OF MLIR

MLIR is a system that aims to generalize and drive a wide

range of compiler projects, so our primary evaluation metric is

to show that it is being adopted and used for diverse projects.

By doing so we acknowledge the software engineering nature

of the problem and contributions. We provide a summary of

community activity and describe a few use cases in more

detail to highlight the generality and extensibility of MLIR and

evaluate how well compiler and domain experts experience the

design principles of the IR.

Today, MLIR is a growing open source project with a

community spanning academia and industry.3 For example,

the first academic workshop about the use of MLIR in High-

Performance Computing was attended by individuals from 16

universities and involved 4 national laboratories from 4 different

countries.4 MLIR was also endorsed by 14 multinational

companies and at the 2019 LLVM Developer Meeting more

than 100 industry developers attended a roundtable event

about MLIR. Community adoption and participation is a proxy

measure for usability and need. More than 26 dialects are in

development in public or private and 7 projects across different

companies are replacing custom infrastructure with MLIR. We

argue that this shows a real need for MLIR, as well as endorses

its usability.

A. TensorFlow Graphs

While the other discussed representations are familiar to

most compiler developments, one of key use cases for MLIR

is to support the development of machine learning frameworks.

Their internal representations is often based on a data flow

graph [22] with a dynamic execution semantics.

TensorFlow [23] is an example of such framework. Its

representation is a high-level dataflow computation where the

nodes are computations which can be placed on various devices,

including specific hardware accelerators.

MLIR is used in TensorFlow to model this internal represen-

tation and perform transformations for the use cases presented

in Figure 1: from simple algebraic optimizations to retargeting

3https://www.c4ml.org.
4http://www.cs.utah.edu/~mhall/mlir4hpc.

7
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

%0 = tf.graph (%arg0 : tensor<f32>, %arg1 : tensor<f32>,
 %arg2 : !tf.resource) {
 // Execution of these operations is asynchronous, the %control return value
 // can be used to impose extra runtime ordering, for example the assignment
 // to the variable %arg2 is ordered after the read explicitly below.
 %1, %control = tf.ReadVariableOp(%arg2)
 : (!tf.resource) -> (tensor<f32>, !tf.control)
 %2, %control_1 = tf.Add(%arg0, %1)
 : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
 %control_2 = tf.AssignVariableOp(%arg2, %arg0, %control)
 : (!tf.resource, tensor<f32>) -> !tf.control
 %3, %control_3 = tf.Add(%2, %arg1)
 : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
 tf.fetch %3, %control_2 : tensor<f32>, !tf.control
}

Fig. 6. SSA representation of a TensorFlow graph in MLIR.

graphs for parallel and distributed execution on data center

clusters and asynchronous hardware acceleration, from lowering

to a representation suitable for mobile deployment to generating

efficient native code using domain-specific code generators

like XLA [24]. The representation of a TensorFlow graph in

MLIR is illustrated on Figure 6. It illustrates the modeling

of asynchronous concurrency, where the dataflow graph is

desynchronized via implicit futures and side-effecting Ops

are serialized through explicit control signals (also following

dataflow semantics). Despite the widely different abstractions,

concurrency, asynchrony, delayed evaluation, MLIR offers the

same infrastructure, analysis and transformation capabilities

as for any other dialect or compiler pass. In particular,

essential graph-level transformations implemented in Grappler 5

are expressible in MLIR for both TensorFlow models and

low level LLVM IR: dead code/node elimination, constant

folding, canonicalization, loop-invariant code motion, common

subexpression/subgraph elimination, instruction/device-specific-

kernel selection, rematerialization, layout optimization; while

other transformations may be domain-specific: optimizations

for mixed precision, op fusion, shape arithmetic.

B. Polyhedral Code Generation

One of the original motivations for MLIR was the explo-

ration of polyhedral code generation for accelerators. The

affine dialect is a simplified polyhedral representation that

was designed to enable progressive lowering. While a full

exploration of the design points here is out of scope for this

paper, we illustrate aspects of the affine dialect to show the

modeling power of MLIR and contrast the affine dialect with

past representations [25], [26], [27], [28], [29].

1) Similarities: The MLIR affine dialect operates on a

structured multi-dimensional type for all accesses to memory.

In the default case, these structured types are injective: different

indexings are guaranteed not to alias by construction, a common

precondition for polyhedral dependence analyses.

Affine modeling is split in two parts. Attributes are used

to model affine maps and integer sets at compile-time and

Ops are used to apply affine restrictions to the code. Namely,

affine.for Op is a “for” loop with bounds expressed as

affine maps of values required to be invariant in a function.

Thus loops have static control flow. Similarly, affine.if

5https://www.tensorflow.org/guide/graph_optimization

is a conditional restricted by affine integer sets. The bodies

of loops and conditionals are regions that use affine.load

and affine.store to restrict indexing to affine forms of

surrounding loop iterators. This enables exact affine dependence

analysis while avoiding the need to infer affine forms from a

lossy lower-level representation.

// Affine loops are Ops with regions.
affine.for %arg0 = 0 to %N {
 // Only loop-invariant values, loop iterators, and affine functions of
 // those are allowed.
 affine.for %arg1 = 0 to %N {
 // Body of affine for loops obey SSA.
 %0 = affine.load %A[%arg0] : memref<? x f32>
 // Structured memory reference (memref) type can have
 // affine layout maps.
 %1 = affine.load %B[%arg1] : memref<? x f32, (d0)[s0] -> (d0 + s0)>
 %2 = mulf %0, %1 : f32
 // Affine load/store can have affine expressions as subscripts.
 %3 = affine.load %C[%arg0 + %arg1] : memref<? x f32>
 %4 = addf %3, %2 : f32
 affine.store %4, %C[%arg0 + %arg1] : memref<? x f32>
 }
}

Fig. 7. Affine dialect representation of polynomial multiplication
C(i+j) += A(i) * B(j).

2) Differences with existing polyhedral: They are numerous:

(1) Rich types: the MLIR structured memory reference type

contains a layout map connecting the index space of the buffer

to the actual address space. This separation of concerns makes

loop and data transformations compose better: changes to data

layout do not affect the code and do not pollute dependence

analysis. Such mixes of transformations have been explored

previously [30] but are uncommon.

(2) Mix of abstractions: Bodies of affine loops in MLIR

can be expressed with operations on typed SSA values.

Therefore, all traditional compiler analyses and transformations

remain applicable and can be interleaved with polyhedral

transformations. On the contrary, polyhedral compilers often

abstract such details away completely, making it challenging

for a polyhedral compiler to manipulate, e.g., vector types.

(3) Smaller representation gap: One of the key features

of the polyhedral model is its ability to represent the order

of loop iterations in the type system. In this system, a large

number of loop transformations compose directly and can be

reasoned about using simple mathematical abstractions [26].

However, polyhedral transformations require raising into a

representation often drastically different from the original [31],

[32]. Furthermore, the conversion from transformed polyhedra

to loops is computationally hard [33]. MLIR-based represen-

tation maintains high-level loop structure around lower-level

representation, removing the need for raising.

(4) Compilation speed is a crucial goal for MLIR as discussed

in Section V-D, but has not been a focus of most existing

polyhedral approaches. These rely heavily on algorithms with

exponential complexity: on integer linear programming to

derive loop orderings automatically and on polyhedron scanning

algorithms to convert the representation back to loops. The

MLIR approach explicitly does not rely on polyhedron scanning

since loops are preserved in the IR. In addition, code generation

may take place ahead-of-time, e.g., when producing generic

8
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

code for dynamic shapes, or just-in-time when specializing

tensor operations on static shapes. The latter puts stricter

constraints on available resources, and both scenarios are

important.

Experience with the affine dialect shows that first-class affine

abstractions facilitate the design and implementation of domain-

specific code generators, including the linalg dialect,6 and

declarative rewrite rules in RISE.7 These developments and

the affine dialect itself represent important explorations that

the MLIR design made practical.

C. Fortran IR (FIR)

The LLVM Fortran frontend “flang” is currently under major

development, led by NVIDIA/PGI. Similar to Swift, Rust, and

others, flang needs a specialized IR in order to support advanced

transformations for high-performance Fortran codebase, and is

using MLIR to support these Fortran-specific optimizations [34].

These high-level optimizations—advanced loop optimizations,

array copy elimination, call specialization, devirtualization—

would be hard implement using only LLVM.

For example, FIR is able to model Fortran virtual dispatch

table as a first class concept (see Figure 8).

// Dispatch table for type(u)
fir.dispatch_table @dtable_type_u {
 fir.dt_entry "method", @u_method
}

func @some_func() {
 %uv = fir.alloca !fir.type<u> : !fir.ref<!fir.type<u>>
 fir.dispatch "method"(%uv) : (!fir.ref<!fir.type<u>>) -> ()
 // ...
}

Fig. 8. FIR has first class support for dynamic virtual function dispatch tables.

The ability to model the high-level semantics of the pro-

gramming language in a structured IR is very powerful. For

example, first-class modeling of the dispatch tables allows a

robust devirtualization pass to be implemented. While this could

have been implemented with a bespoke compiler IR, the use of

MLIR allowed the flang developers to spend their engineering

resources focused on the IR design for their domain instead

of reimplementing basic infrastructure.

The choice of MLIR also unlocks the reusability of other

dialects that are not specific to Fortran: a language-independent

OpenMP dialect could be shared between Fortran and C lan-

guage frontends. Similarly, targeting a heterogeneous platform

using OpenACC becomes tractable within MLIR through the

sharing and reuse of the GPU-oriented dialects and passes. This

is straightforward thanks to MLIR begin specifically designed

to support a mix of composable dialects.

D. Domain-Specific Compilers

The applications above are within large workflows. But

MLIR also helps building smaller domain specific compilers.

6https://mlir.llvm.org/docs/Dialects/Linalg.
7https://rise-lang.org/mlir.

A reusable and modular infrastructure makes these specialized

paths feasible and relatively cheap to build.

Optimizing MLIR Pattern Rewriting: MLIR has an extensi-

ble system for pattern rewrites. In addition to statically declared

patterns, we had applications where the rewrite patterns needed

to be dynamically extensible at runtime, allowing hardware

vendors to add new lowerings in drivers. The solution was

to express MLIR pattern rewrites as an MLIR dialect itself,

allowing us to use MLIR infrastructure to build and optimize

efficient Finite State Machine (FSM) matcher and rewriters on

the fly. This work includes FSM optimizations seen in other

systems, such as the LLVM SelectionDAG and GlobalISel

instruction selection systems.

Lattice Regression Compiler: Lattice regression [35] is

a machine learning technique renowned for fast evaluation

times and interpretability. The predecessor of the compiler

was implemented using C++ templates. This allowed for

high-performance code with metaprogramming, but expressing

general optimizations on the end-to-end models was not

straightforward. This particular lattice regression system is

used in applications with multiple millions of users and hence

performance improvements are critical.

MLIR was used as the basis for a new compiler for this

specialized area, which was driven by a specialized search

approach—effectively resulting in a machine learning problem

being solved during compilation. The resultant compiler was

developed by investing a 3 person-month effort, and resulted

in up to 8× performance improvement on a production model,

while also improving transparency during compilation.

V. CONSEQUENCES OF THE MLIR DESIGN

The MLIR design facilitates the modeling of new language

and compiler abstractions while reusing existing, generic ones.

Effectively, the solution to many problems is to “add new

ops, new types”, possibly collected into “a new dialect”.

This is a significant design shift for compiler engineering.

It produces new opportunities, challenges, and insights. This

section explores a few of them.

A. Reusable Compiler Passes

The ability to represent multiple levels of abstraction in

one IR incentivizes the passes that operate across these levels.

MLIR handles extensibility by inverting the common approach:

since there are more Ops than passes, it is easier for Ops

to know about passes. This also improves modularity as the

dialect-specific logic is implemented within the dialects instead

of the core transformations. Since the passes rarely need to

know all aspects of an Op, MLIR relies on the following

mechanisms to implement generic passes.

Operation Traits: Many common “bread and butter”

compiler passes, such as Dead Code or Common Subexpression

Elimination, rely on simple properties like “is terminator” or

“is commutative”. We define such properties as Op Traits. An

Op exhibits a trait unconditionally, e.g., a “standard branch”

Op is always a terminator. For many passes, it is sufficient

to know that an Op has a set of traits to operate on it, for

9
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

example by swapping the operands or removing Ops with no

side effects and no users.

Traits can serve as verification hooks allowing to share the

logic across multiple Ops that have the trait. For example,

the “isolated from above” trait verifies that no regions in the

Op use values defined in the regions enclosing the Op. It

allows for generic processing of functions, modules and other

self-contained structures.

Interfaces: When the unconditional, static behavior is

insufficiently expressive, the processing can be parameterized

through interfaces, a concept borrowed from object-oriented

programming. An interface defines a view into the behavior of

an IR object that abstracts away unnecessary details. Unlike

traits, interfaces are implemented by IR objects, using arbitrary

C++ code that can produce different results for different objects.

For example, the “call” Op implements a “call-like” interface,

but different instances of the Op call different functions.

MLIR passes can be implemented in terms of interfaces,

establishing a contract with any Op that opts into being

processed by a pass. Continuing the call-like example, consider

the MLIR inlining pass that works on TensorFlow graphs, Flang

functions, closures in a functional language etc. Such a pass

needs to know: (1) whether it is valid to inline an operation into

a given region, and (2) how to handle terminator operations

that ended up in the middle of a block after inlining.

In order to query an Op about these properties, the pass

defines a dedicated interface so that Ops may register their

implementation with MLIR to benefit from inlining. The

inlining pass will treat conservatively, i.e. ignore, any operation

that does not implement the respective interface.

Constant folding is implemented through the same mecha-

nism: each Op implements the “fold” interface by providing

a function that may produce an attribute holding the value

if the Op is foldable. More generic canonicalization can

be implemented similarly: an interface populates the list of

canonicalization patterns amenable to pattern-rewriting.This

design separates generic logic from Op-specific logic and puts

the latter in the Op itself, reducing the well-known maintenance

and complexity burden of “InstCombine”, “PeepholeOptimizer”

and the likes in LLVM.

Interfaces can be implemented by dialects rather than specific

Ops, which enables shared behavior or delegation to the

external logic, for example when constant folding TensorFlow

Ops. Interfaces are also supported on types and attributes, for

example an addition operation may support any type that self-

declares as “integer-like” with queryable signedness semantics.

B. Dialect-Specific Passes

Finally, it is valid and useful to define passes that are specific

to particular dialects, which can be driven by full semantics of

operations in the dialect(s) they are designed for. These passes

are just as useful in the MLIR system as they are in other

compiler systems. For example, code generators that want to do

custom scheduling of machine instructions based on particular

machine constraints or other tricks that do not fit into a broader

framework. This is a simple and useful starting point for new

transformations, where generalization isn’t required.

C. Mixing Dialects Together

One of the most profound (but also most difficult to grok)

aspects of MLIR is that it allows and encourages mixing

operations from different dialects together into a single program.

While certain cases of this are reasonably easy to understand

(e.g. holding host and accelerator computation in the same

module) the most interesting cases occur when dialects are

directly mixed— because this enables an entire class of reuse

that we have not seen in other systems.

Consider the affine dialect described in Section IV-B. The

definition of affine control flow and affine mappings are

independent of the semantics of the operations that are

contained in affine regions. In our case, we combine the

affine dialect with the “standard” dialect that represents simple

arithmetic in a target independent form like LLVM IR, with

multiple target-specific machine instruction dialects for internal

accelerators. Others have combined it with abstractions from

other problem domains.

The ability to reuse generic polyhedral transformations

(using Op interfaces to get semantics of operations in specific

transformations) is a powerful (and exciting to us) way of

factoring compiler infrastructure. Another example is that an

OpenMP dialect could be used and reused across a wide variety

of source-language IRs.

D. Parallel Compilation

An important aspect of MLIR is the possibility to use multi-

core machines to increase the compilation speed. In particular,

the “isolated from above” trait (Section V-A) allows Ops such

as functions to opt into the concurrent IR traversal mechanism

supported by MLIR’s pass manager. Indeed this trait guarantees

that SSA use-def chain cannot cross the region boundaries and

can be processed in isolation. MLIR also does not feature whole-

module use-def chains, but instead references global objects

through symbol tables (Section III) and defines constants as

operations with attributes (Section III).

E. Interoperability

Our work involves interoperation with a large number of

existing systems, e.g., machine learning graphs encoded as

protocol buffers, compiler IRs including LLVM IR, proprietary

instruction sets, etc. Often the representation has a number

of suboptimal or unfortunate decisions that made sense in

the context of an existing system, but capabilities of MLIR

enable a more expressive representation. Because importers and

exporters are notoriously difficult to test (test cases are often

binary), we want to make sure their complexity is minimized.

The solution is to define a dialect that corresponds to the

foreign system as directly as possible—allowing round tripping

to-and-from that format in a simple and predictable way. Once

the IR is imported into MLIR, it can be raised and lowered

to a more convenient IR using all of the MLIR infrastructure,

which allows those transformations to be tested similarly to

all the other MLIR passes.

10
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

There are numerous examples of such dialects, including

the LLVM dialect which maps LLVM IR into MLIR. This

approach has worked well for us, and the MLIR tooling has

also been useful to write tests for these foreign file formats.

F. Unopinionated Design Provides New Challenges

While MLIR allows one to define almost arbitrary abstrac-

tions, it provides very little guidance on what should be done:

what works better or worse in practice? We now have some

experience with a number of engineers and researchers applying

the techniques and technologies to new problem domains,

and have realized that the “art” of compiler IR design and

abstraction design is not well understood in the compiler and

languages field—many people work within the constraints of

established systems, but relatively few have had the opportunity

define the abstractions themselves.

This is a challenge, but is also another set of opportunities

for future research. The broader MLIR community is building

expertise with these abstraction design trade-offs, and we expect

this to be a fertile area of study over time.

G. Looking Forward

The design of MLIR is different enough from other compiler

infrastructures that we are still learning—even after building

and applying it to many different systems. We believe that

there is still a lot to discover, and several years of research

will be required to better understand the design points and

establish best practices. For example, the rise of out-of-tree

dialects, increasing number of source language frontends using

MLIR, possible application to Abstract Syntax Trees, and

applications to structured data (like JSON, protocol buffers, etc)

which are still very early and are likely to uncover interesting

new challenges and opportunities. Better support for just-in-

time compilation and precise garbage-collection would also be

interesting, leveraging the modularity and programmability of

the IR.

VI. RELATED WORK

MLIR is a project that overlaps with multiple different

domains. While the composed infrastructure provides a novel

system, individual components have analogs in the literature.

For references and discussion directly related to the IR design

itself, please refer to Section II.

MLIR is a compiler infrastructure akin to LLVM [1], but

where LLVM has been a great boon to scalar optimizations

and homogeneous compilation, MLIR aims to model a rich

set of data structures and algorithms as first-class values and

operations, including tensor algebra and algorithms, graph

representations, as well as heterogeneous compilation. MLIR

allows mix-and-match optimization decomposing compilation

passes into components and redefining lowering, cleanup roles.

This is largely attributed to the pattern rewriting infrastructure,

capturing full-fledged transformations as a composition of

small local patterns and controlling which pattern rewrites are

applied at the granularity of an individual operation. Extending,

formalizing, and verifying the rewriting logic automatically

would be an important next step [36], [37]. On the backend

side, MLIR’s DDR has an analogue to LLVM’s instruction

selection infrastructure, supporting extensible operations with

multi-result patterns and specification as constraints [38].

Numerous programming languages and models tackle hard-

ware heterogeneity. Originally a homogeneous programming

model, OpenMP added support for offloading tasks and parallel

regions to accelerators [39], based on earlier proposals such as

StarSs and OpenACC [40], [41]. C++ AMP, HCC and SyCL

leverage a conventional Clang/LLVM flow and modern C++ to

provide a high-level abstraction for hardware acceleration [42].

Unfortunately, all these examples very quickly lower high-level

constructs to calls to a runtime execution environment, relying

on pre-existing optimizations in the host language (typically

C++) to alleviate the abstraction penalty. Far fewer efforts

target the heterogeneous compilation process itself. Parallel

intermediate representations extending LLVM IR address part

of the issue but traditionally focus on the homogeneous setting

[7], [8]. The most ambitious effort to date may be Liquid Metal

[43], with a co-designed Domain Specific Language (DSL)

and compilation flow converting managed object semantics

into static, vector or reconfigurable hardware; yet most of the

effort in its Lime compiler reside in fitting round objects into

square hardware (paraphrasing Kou and Palsberg [44]). MLIR

provides a direct embedding for high level languages embracing

heterogeneity through extensible set of operations and types,

while providing a common infrastructure for gradually lowering

these constructs with maximal reuse of common components

across the different targets.

Tackling language heterogeneity has been a long-term

promise of metaprogramming systems, and of multistage

programming in particular. Lightweight Modular Staging

(LMS) [45] is a state of the art framework and runtime

code generator, providing a library of core components for

generating efficient code and embedding DSLs in Scala.

Delite [46] promises dramatic productivity improvements for

DSL developers, while supporting parallel and heterogeneous

execution. This approach is complementary to MLIR, providing

a higher-level of abstraction to embed DSLs and implement

optimizations through generic metaprogramming constructs.

One step further up into the language syntax, ANTLR [47]

is among a class of parser generators that aim to facilitate

the development of compiler frontends. MLIR currently does

not have a general parser generator, no AST construction or

modeling functionality. Combining MLIR with a system such

as ANTLR could expand reusability upstream all the way to

frontends and development environments.

More narrowly construed by their application to machine

learning, XLA [24], Glow [48] and TVM [49], address similar

heterogeneous compilation objectives. These frameworks pro-

vide domain-specific code generation instances, starting from

a graph abstraction and targeting multi-dimensional vector

abstractions for accelerators. All of these could leverage MLIR

as infrastructure, taking advantage of the common functionality

while using their current code generation strategies. Similarly,

the loop nest metaprogramming techniques from Halide [50]

11
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

and TVM [49], earlier loop nest metaprogramming [26], [51],

[52], [53], and automatic flows such as PolyMage [54], Tensor

Comprehensions [29], Stripe [55], Diesel [56], Tiramisu [57]

and their underlying polyhedral compilation techniques [25],

[27], [58], [28] could co-exist as different code generation paths

within an MLIR-based framework. This would greatly increase

code reuse, defragmentation of the landscape, interoperability

across domain, and portability. This is actually one of the

motivations for the IREE project,8 building on MLIR at multiple

levels of abstraction, from tensor algebra and operator graphs

down to the low-level orchestration of asynchronous coroutines

and code generation for multiple CPU and GPU architectures

(within the Vulkan/SPIR-V standard).

Finally, interoperability formats, such as ONNX [59], have

a different approach towards addressing the diversity of ML

frontends by providing a common set of ops that different

frameworks could map on to. ONNX would be a candidate as

a dialect in MLIR to and from which ops could be converted.

VII. CONCLUSION AND FUTURE WORK

We presented MLIR, a concrete answer to the dual scientific

and engineering challenge of designing a flexible and extensible

infrastructure for compiler construction, ranging from backend

code generation and orchestration of heterogeneous systems, to

graph-level modeling for machine learning, and to the high-level

language semantics of programming languages and domain-

specific frameworks. We demonstrated its applicability to a

range of domains and discussing research implications.

Motivated by the success of LLVM and looking ahead, we

are eager to see how established communities in programming

languages and high-performance computing, as well domain

experts can benefit from the introduction of higher level,

language-specific IRs. We also believe MLIR catalyzes new

areas of research, as well as new approaches to teaching the

art of compiler and IR design.

ACKNOWLEDGMENTS

This paper and project would not have been possible without

the contributions of numerous other individuals. We express

our gratitude to all. We also acknowledge the Google Visiting

Researcher Program for supporting the third author at the early

times of MLIR.

APPENDIX

A. Abstract

The artifact for this paper includes the MLIR system,

instructions on how to download and build it and link to

MLIR-related source code in TensorFlow.

B. Artifact Check-List (Meta-Information)

• Program: MLIR
• Compilation: LLVM C++ toolchain
• Run-time environment: Recommended Linux
• Publicly available?: Yes
• Archived: DOI 10.5281/zenodo.4283090

8https://google.github.io/iree.

C. Description

1) How Delivered: To download MLIR please run

git clone \
https://github.com/llvm/llvm-project.git

Instructions for downloading and building MLIR are also

available at https://mlir.llvm.org/getting_started.

Additional information is available at mlir.llvm.org.

2) Software Dependencies: Downloading MLIR requires git.

Building MLIR requires Ninja (https://ninja-build.org/) and a

working C++ toolchain including clang and lld.

D. Installation

To build and test MLIR on Linux execute the following

commands:

mkdir llvm-project/build
cd llvm-project/build
cmake -G Ninja ../llvm \
-DLLVM_ENABLE_PROJECTS=mlir \
-DLLVM_BUILD_EXAMPLES=ON \
-DLLVM_TARGETS_TO_BUILD="X86;NVPTX;AMDGPU" \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
-DLLVM_ENABLE_LLD=ON

cmake --build . --target check-mlir

E. Applications

MLIR use in TensorFlow can be observed in code lo-

cated at https://github.com/tensorflow/tensorflow/tree/master/

tensorflow/compiler/mlir/. Tests located in the tensorflow/tests

subdirectory contain MLIR snippets illustrating TensorFlow

graph representation and transformations. Instructions for

building TensorFlow from source are available at https://www.

tensorflow.org/install/source.

REFERENCES

[1] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of

the International Symposium on Code Generation and Optimization:

Feedback-directed and Runtime Optimization, ser. CGO ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 75–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[2] T. Lindholm and F. Yellin, Java Virtual Machine Specification, 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently computing static single assignment form and
the control dependence graph,” ACM Trans. Program. Lang. Syst.,
vol. 13, no. 4, pp. 451–490, Oct. 1991. [Online]. Available:
http://doi.acm.org/10.1145/115372.115320

[4] R. Johnson, D. Pearson, and K. Pingali, “The program structure tree:
Computing control regions in linear time,” in Proceedings of the ACM

SIGPLAN 1994 Conference on Programming Language Design and

Implementation, ser. PLDI ’94. New York, NY, USA: ACM, 1994, pp.
171–185. [Online]. Available: http://doi.acm.org/10.1145/178243.178258

[5] W. A. Havanki, S. Banerjia, and T. M. Conte, “Treegion scheduling
for wide issue processors,” in Proceedings of the Fourth International

Symposium on High-Performance Computer Architecture, Las Vegas,

Nevada, USA, January 31 - February 4, 1998, 1998, pp. 266–276.
[Online]. Available: https://doi.org/10.1109/HPCA.1998.650566

[6] G. Ramalingam, “On loops, dominators, and dominance frontiers,” ACM

Trans. Program. Lang. Syst., vol. 24, no. 5, pp. 455–490, 2002. [Online].
Available: https://doi.org/10.1145/570886.570887

12
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

[7] D. Khaldi, P. Jouvelot, F. Irigoin, C. Ancourt, and B. Chapman,
“LLVM parallel intermediate representation: Design and evaluation
using OpenSHMEM communications,” in Proceedings of the Second

Workshop on the LLVM Compiler Infrastructure in HPC, ser. LLVM ’15.
New York, NY, USA: ACM, 2015, pp. 2:1–2:8. [Online]. Available:
http://doi.acm.org/10.1145/2833157.2833158

[8] T. B. Schardl, W. S. Moses, and C. E. Leiserson, “Tapir: Embedding fork-
join parallelism into LLVM’s intermediate representation,” SIGPLAN

Not., vol. 52, no. 8, pp. 249–265, Jan. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3155284.3018758

[9] Open64 Developers, “Open64 compiler and tools,” 2001.

[10] C. Click and K. D. Cooper, “Combining analyses, combining
optimizations,” ACM Trans. Program. Lang. Syst., vol. 17, no. 2, pp.
181–196, Mar. 1995. [Online]. Available: http://doi.acm.org/10.1145/
201059.201061

[11] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in
Tools and Algorithms for Construction and Analysis of Systems, 4th

International Conference, TACAS ’98, Held as Part of the European

Joint Conferences on the Theory and Practice of Software, ETAPS’98,

Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, 1998, pp.
151–166. [Online]. Available: https://doi.org/10.1007/BFb0054170

[12] G. C. Necula, “Translation validation for an optimizing compiler,”
SIGPLAN Not., vol. 35, no. 5, pp. 83–94, May 2000. [Online]. Available:
http://doi.acm.org/10.1145/358438.349314

[13] J. Tristan and X. Leroy, “Formal verification of translation validators:
a case study on instruction scheduling optimizations,” in Proceedings

of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL 2008, San Francisco, California,

USA, January 7-12, 2008, 2008, pp. 17–27. [Online]. Available:
https://doi.org/10.1145/1328438.1328444

[14] ——, “Verified validation of lazy code motion,” in Proceedings of the

2009 ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, 2009, pp.
316–326. [Online]. Available: https://doi.org/10.1145/1542476.1542512

[15] Y. Chen, A. Groce, C. Zhang, W. Wong, X. Z. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’13, Seattle,

WA, USA, June 16-19, 2013, 2013, pp. 197–208. [Online]. Available:
https://doi.org/10.1145/2491956.2462173

[16] B. Schommer, C. Cullmann, G. Gebhard, X. Leroy, M. Schmidt, and
S. Wegener, “Embedded Program Annotations for WCET Analysis,” in
WCET 2018: 18th International Workshop on Worst-Case Execution

Time Analysis, vol. 63. Barcelona, Spain: Dagstuhl Publishing, Jul.
2018. [Online]. Available: https://hal.inria.fr/hal-01848686

[17] S. T. Vu, K. Heydemann, A. de Grandmaison, and A. Cohen, “Secure
delivery of program properties through optimizing compilation,” in ACM

SIGPLAN 2020 International Conference on Compiler Construction (CC

2020), San Diego, CA, Feb. 2020.

[18] G. Balakrishnan and T. Reps, “Wysinwyx: What you see is not
what you execute,” ACM Trans. Program. Lang. Syst., vol. 32,
no. 6, pp. 23:1–23:84, Aug. 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1749608.1749612

[19] “TableGen - LLVM 10 Documentation,” Online,
=https://llvm.org/docs/TableGen/, accessed Nov 22, 2019, 2019.
[Online]. Available: https://llvm.org/docs/TableGen/

[20] A. W. Appel, “SSA is functional programming,” ACM SIGPLAN

NOTICES, vol. 33, no. 4, pp. 17–20, 1998.

[21] C. Click and M. Paleczny, “A simple graph-based intermediate
representation,” in Papers from the 1995 ACM SIGPLAN Workshop

on Intermediate Representations, ser. IR ’95. New York, NY, USA:
Association for Computing Machinery, 1995, p. 35–49. [Online].
Available: https://doi.org/10.1145/202529.202534

[22] A. Veen, “Dataflow machine architecture,” ACM Comput. Surv., vol. 18,
pp. 365–396, 12 1986.

[23] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[24] “XLA - TensorFlow, compiled,” Google Developers Blog, https:
//developers.googleblog.com/2017/03/xla-tensorflow-compiled.html, Mar
2017. [Online]. Available: https://developers.googleblog.com/2017/03/
xla-tensorflow-compiled.html

[25] P. Feautrier, “Some efficient solutions to the affine scheduling problem.
part II. multidimensional time,” Int. J. Parallel Program., vol. 21, no. 6,
pp. 389–420, 1992.

[26] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam, “Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies,” Int. J. Parallel

Program., vol. 34, no. 3, pp. 261–317, Jun. 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10766-006-0012-3

[27] S. Verdoolaege, “ISL: An integer set library for the polyhedral
model,” in Proceedings of the Third International Congress Conference

on Mathematical Software, ser. ICMS’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 299–302. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1888390.1888455

[28] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado,
and F. Catthoor, “Polyhedral parallel code generation for CUDA,” ACM

Trans. Archit. Code Optim., vol. 9, no. 4, pp. 54:1–54:23, Jan. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2400682.2400713

[29] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. Devito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “The next
700 accelerated layers: From mathematical expressions of network
computation graphs to accelerated GPU kernels, automatically,” ACM

Trans. Archit. Code Optim., vol. 16, no. 4, pp. 38:1–38:26, Oct. 2019.
[Online]. Available: http://doi.acm.org/10.1145/3355606

[30] C. Reddy and U. Bondhugula, “Effective automatic computation
placement and data allocation for parallelization of regular programs,”
in Proceedings of the 28th ACM International Conference on

Supercomputing, ser. ICS ’14. New York, NY, USA: ACM, 2014, pp.
13–22. [Online]. Available: http://doi.acm.org/10.1145/2597652.2597673

[31] T. Grosser, A. Größlinger, and C. Lengauer, “Polly - performing
polyhedral optimizations on a low-level intermediate representation,”
Parallel Processing Letters, vol. 22, no. 4, 2012. [Online]. Available:
https://doi.org/10.1142/S0129626412500107

[32] L. Chelini, O. Zinenko, T. Grosser, and H. Corporaal, “Declarative loop
tactics for domain-specific optimization,” TACO, vol. 16, no. 4, pp.
55:1–55:25, 2020. [Online]. Available: https://doi.org/10.1145/3372266

[33] C. Bastoul, “Code generation in the polyhedral model is easier than you
think,” in Proceedings of the 13th International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 7–16. [Online]. Available:
https://doi.org/10.1109/PACT.2004.11

[34] E. Schweitz, “An MLIR dialect for high-level optimization of fortran,”
LLVM Developer Meeting, Oct 2019.

[35] E. Garcia and M. Gupta, “Lattice regression,” in Advances in Neural

Information Processing Systems 22, Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta, Eds. Curran
Associates, Inc., 2009, pp. 594–602. [Online]. Available: http:
//papers.nips.cc/paper/3694-lattice-regression.pdf

[36] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/xt
0.17. A language and toolset for program transformation,” Sci. Comput.

Program., vol. 72, no. 1-2, pp. 52–70, 2008. [Online]. Available:
https://doi.org/10.1016/j.scico.2007.11.003

[37] J. Meseguer, “Twenty years of rewriting logic,” in Proceedings of the

8th International Conference on Rewriting Logic and Its Applications,
ser. WRLA’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 15–17.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1927806.1927809

[38] P. Thier, M. A. Ertl, and A. Krall, “Fast and flexible instruction
selection with constraints,” in Proceedings of the 27th International

Conference on Compiler Construction, ser. CC 2018. New York,
NY, USA: ACM, 2018, pp. 93–103. [Online]. Available: http:
//doi.acm.org/10.1145/3178372.3179501

[39] OpenMP ARB, “The OpenMP API specification for parallel program-
ming,” Online, https://www.openmp.org, accessed Feb 19, 2020.

[40] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Hierarchical task-
based programming with starss,” IJHPCA, vol. 23, no. 3, pp. 284–299,
2009. [Online]. Available: https://doi.org/10.1177/1094342009106195

[41] “OpenACC application programming interface,” Online, https://www.
openacc.org, accessed Feb 19, 2020.

[42] “SyCL: C++ single-source heterogeneous programming for OpenCL,”
Online, https://www.khronos.org/sycl, accessed Feb 19, 2020.

13
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

[43] J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink, R. Rabbah,
and S. Shukla, “A compiler and runtime for heterogeneous computing,”
in Proceedings of the 49th Annual Design Automation Conference, ser.
DAC ’12. New York, NY, USA: ACM, 2012, pp. 271–276. [Online].
Available: http://doi.acm.org/10.1145/2228360.2228411

[44] S. Kou and J. Palsberg, “From oo to fpga: Fitting round objects into
square hardware?” in Proceedings of the ACM International Conference

on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’10. New York, NY, USA: ACM, 2010, pp. 109–124.
[Online]. Available: http://doi.acm.org/10.1145/1869459.1869470

[45] T. Rompf and M. Odersky, “Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls,” Commun.

ACM, vol. 55, no. 6, pp. 121–130, 2012. [Online]. Available:
https://doi.org/10.1145/2184319.2184345

[46] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun, “Delite: A compiler architecture for performance-oriented
embedded domain-specific languages,” ACM Trans. Embedded Comput.

Syst., vol. 13, no. 4s, pp. 134:1–134:25, 2014. [Online]. Available:
https://doi.org/10.1145/2584665

[47] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll(k) parser generator,”
Softw. Pract. Exper., vol. 25, no. 7, pp. 789–810, Jul. 1995. [Online].
Available: http://dx.doi.org/10.1002/spe.4380250705

[48] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein, J. Montgomery, B. Maher,
S. Nadathur, J. Olesen, J. Park, A. Rakhov, M. Smelyanskiy, and M. Wang,
“Glow: Graph lowering compiler techniques for neural networks,” 2018.

[49] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“TVM: An automated end-to-end optimizing compiler for deep
learning,” in 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 578–594. [Online]. Available: https:
//www.usenix.org/conference/osdi18/presentation/chen

[50] J. Ragan-Kelley, A. Adams, D. Sharlet, C. Barnes, S. Paris, M. Levoy,
S. Amarasinghe, and F. Durand, “Halide: Decoupling algorithms
from schedules for high-performance image processing,” Commun.

[58] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan,
“A practical automatic polyhedral parallelizer and locality optimizer,”
in Proceedings of the ACM SIGPLAN 2008 Conference on

Programming Language Design and Implementation, Tucson, AZ,

ACM, vol. 61, no. 1, pp. 106–115, Dec. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3150211

[51] G. Rudy, M. M. Khan, M. Hall, C. Chen, and J. Chame, “A programming
language interface to describe transformations and code generation,” in
Languages and Compilers for Parallel Computing, K. Cooper, J. Mellor-
Crummey, and V. Sarkar, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 136–150.

[52] L. Bagnères, O. Zinenko, S. Huot, and C. Bastoul, “Opening polyhedral
compiler’s black box,” in Proceedings of the 2016 International Sym-

posium on Code Generation and Optimization, CGO 2016, Barcelona,

Spain, March 12-18, 2016, 2016, pp. 128–138.

[53] A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, O. Kiselyov,
and D. Padua, “In search of a program generator to implement
generic transformations for high-performance computing,” Sci. Comput.

Program., vol. 62, no. 1, pp. 25–46, Sep. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2005.10.013

[54] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “PolyMage: Automatic
optimization for image processing pipelines,” in International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2015, pp. 429–443.

[55] T. Zerrell and J. Bruestle, “Stripe: Tensor compilation via the
nested polyhedral model,” CoRR, vol. abs/1903.06498, 2019. [Online].
Available: http://arxiv.org/abs/1903.06498

[56] V. Elango, N. Rubin, M. Ravishankar, H. Sandanagobalane, and
V. Grover, “Diesel: Dsl for linear algebra and neural net computations
on gpus,” in Proceedings of the 2nd ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages, ser.
MAPL 2018. New York, NY, USA: ACM, 2018, pp. 42–51. [Online].
Available: http://doi.acm.org/10.1145/3211346.3211354

[57] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral
compiler for expressing fast and portable code,” in Proceedings of the

2019 IEEE/ACM International Symposium on Code Generation and

Optimization, ser. CGO 2019. IEEE Press, 2019, p. 193–205.
USA, June 7-13, 2008, 2008, pp. 101–113. [Online]. Available:
https://doi.org/10.1145/1375581.1375595

[59] The Linux Foundation, “ONNX: Open neural network exchange,”
Online, https://github.com/onnx/onnx, accessed Feb 19, 2020. [Online].
Available: https://github.com/onnx/onnx

14
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 06,2025 at 18:10:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

