
18

YaConv: Convolution with Low Cache Footprint

IVAN KOROSTELEV and JOÃO P. L. DE CARVALHO, University of Alberta, Canada

JOSÉ MOREIRA, IBM Research, USA

JOSÉ NELSON AMARAL, University of Alberta, Canada

This article introduces YaConv, a new algorithm to compute convolution using GEMM microkernels from a Ba-

sic Linear Algebra Subprograms library that is efficient for multiple CPU architectures. Previous approaches

either create a copy of each image element for each filter element or reload these elements into cache for each

GEMM call, leading to redundant instances of the image elements in cache. Instead, YaConv loads each image

element once into the cache and maximizes the reuse of these elements. The output image is computed by

scattering results of the GEMM microkernel calls to the correct locations in the output image. The main advan-

tage of this new algorithm—which leads to better performance in comparison to the existing im2col approach

on several architectures—is a more efficient use of the memory hierarchy. The experimental evaluation on

convolutional layers from PyTorch, along with a parameterized study, indicates an average 24% speedup over

im2col convolution. Increased performance comes as a result of 3× reduction in L3 cache accesses and 2×
fewer branch instructions.
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1 INTRODUCTION

Convolutional neural networks (CNNs) deliver reliable solutions for the problems of image

classification, speech recognition, recommendation, and language translation. Software frame-

works such as Caffe, Tensorflow, and PyTorch have emerged to support the increasing variety

of CNNs on multiple hardware architectures. Most of these frameworks introduce a middle-layer

representation for the network primitives that are efficiently implemented in high-performance

numerical libraries [5, 16, 24]

Training and running a CNN is a computationally-intensive task with convolution layers

accounting for roughly 80% of the total CNN inference time on a contemporary CPU. More
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than three-quarters of the CNN inference market relies on CPUs because of their low in-

ference latency [22]. General matrix multiplication (GEMM) is the most-used primitive in

high-performance libraries. Convolution is typically computed by performing the im2col
transformation on the input image and calling a library GEMM routine [3]. Other approaches

suggest reducing the memory footprint of im2col or implementing convolution through efficient

architecture-specific assembly kernels [1, 4, 7, 8, 11].

The convolution algorithm presented in this article targets memory hierarchy optimization on

CPUs. The core idea of YaConv is to pack the input image into an L3-cache-resident buffer, preload

a smaller chunk of the buffer into L1 cache, and use this image chunk for computation with all

L2-cache-resident filter elements before switching to other image elements. To our knowledge,

YaConv is the first convolution algorithm that implements all of the following:

(1) uses unchanged GEMM microkernel from a high-performance library;

(2) integrates domain-specific packing of elements the into cache with the calls to GEMM micro-

kernels;

(3) avoids unnecessary additional copies of input-image elements.

Points (2) and (3) are important distinct design decisions. Several methods have been proposed to

eliminate or reduce the copy of the image tensor in memory [1, 4, 11]. However, unlike YaConv,

they do not address the cache reload issue encountered while calling a library GEMM routine multiple

times on the same elements. Moreover, YaConv is a novel algorithm that benefits lessons learned

from the seminal work by Goto and Van Geijn [9]. In particular, YaConv employes a tiling and

packing strategy that allows convolution to be efficiently expressed in terms of GEMM calls, while

eliminating redundant copies of the input image.

YaConv successfully repurposes GEMM building blocks to perform convolution. It aims to compute

convolution at a performance level that is close to the machine’s peak without requiring the writ-

ing of new assembly kernels. Different from other Basic Linear Algebra Subprograms (BLAS)

operations, which can be directly and efficiently implemented in terms of GEMM micro-kernel calls,

convolution has many variants and widely different algorithms. Therefore, it is difficult to justify

the time and effort needed not only to implement, but also to maintain, multiple micro-kernel

implementations for convolution. Processor-architecture industrial organizations already spend

significant resources ensuring that the GEMM micro kernel is performant in their current and novel

architectures. Thus, YaConv’s design saves engineering and time effort by reusing the already

widely used and maintained GEMM micro kernels in high-performance BLAS libraries. This arti-

cle shows that a very efficient convolution algorithm can be constructed using the building blocks

and lessons learned from the BLIS Project [16] to implement novel tiling and packing logic while

reusing GEMM micro kernels—also a core concept in BLIS. There are several ways to implement a

convolution algorithm with the same constraints. The version implemented and evaluated in this

article is the most promising in terms of performance on the actual layers found in PyTorch.

For some layers, YaConv’s performance is on par with a library GEMM routine, which is around

80–90% of the machine’s theoretical peak performance [9, 16, 24]. In comparison with another

solution that also works for multiple CPU architectures, im2col convolution, YaConv is 24% faster,

measured as the geometric mean of the speedup (w.r.t. im2col) over 73 layers taken from real CNN

models. Moreover, YaConv achieves this level of performance using 10× less memory than im2col
convolution, requiring only a small buffer space.

An experimental study based on varying input image sizes confirms that the performance of

YaConv is dependent on architecture-specific parameters within the GEMM microkernel. The results

of this study point to ways to reduce this sensitivity by tuning the image height in the intermediate

layers of certain CNNs. Alternatively, the insights from this study could guide design decisions in
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code generators for CNN, such as Ansor [26], or into compiler framework, e.g., LLVM [12] and

MLIR [13]. Cache utilization evaluation on the range of inputs reveals that two parameters—the

number of output channels (M) and image height (H )—affect the performance of YaConv the most,

with consistent speedup over the baseline when M < 500 or H > 20.

The contributions of this article include:

• A clear description of the cache inefficiencies of the previous convolution algorithms

(Section 3) that guides the design principles for YaConv;

• Explanation of the new convolution algorithm that avoids unnecessary additional copies

of image elements (Section 4) and a working implementation that uses unchanged GEMM
microkernels, integrated into the popular numerical library BLIS [16];

• A public and free software implementation of YaConv as an extension to BLIS [16];1 and

• An experimental evaluation study on convolutional layers found in practice and on a grid

of parameters indicating that the performance of YaConv is superior to im2col on multiple

architectures due to better utilization of the memory hierarchy (Section 5).

2 CONVOLUTION USING OUTER PRODUCT

GEMM is a standard routine from BLAS that has been optimized for over 40 years and has

close to peak performance implementations in the open-source libraries such as BLIS and

OpenBLAS [16, 24]. In mathematical notation, GEMM is expressed by the formula

C = β ·C + α · A ∗ B, (1)

where α and β are scalars, AM×K and BK×N are the input matrices, and CM×N is the output

matrix. Most high-performance implementations of GEMM rely on the seminal work of Goto and

Geijn [9]. Peak CPU performance for GEMM is achieved by a loop nest that optimizes data cache

and TLB locality and leverages an efficient GEMM microkernel. Throughout the article, we refer to

this algorithm as the conventional GEMM algorithm.

2.1 Outer Product

Matrix multiplication is often introduced as the computation of multiple inner products, as defined

by the sum C[i][j] =
∑

K

k=1 A[i][k] · B[k][j]. Implementations of GEMM directly using this inner

product form suffer from poor reuse of loaded register values. Instead, the GEMM microkernel in

BLAS libraries is implemented as multiple outer product computations.

Figure 1(a) shows one outer product update (rank-1 update) that computes partial result

Cmr×nr
+= amr×1 ∗ b1×nr

. In each update, elements of the vector amr×1 and elements of the vector

b1×nr
are loaded into vector registers. Either elements of a orb are broadcast in registers to produce

an operand tile of sizemr × 1 or 1 × nr . The values in registers are multiplied and accumulated to

Cmr×nr
. To compute the full GEMM, this step is repeated for each column of Amr×k and each row of

Bk×nr
, as shown in Figure 1(b).

Unrolling the loop along k dimension and prefetching the next elements are commonly imple-

mented to achieve better performance [9, 16, 24]. After k-loop unrolling, several columns of A and

rows of B are used for each update to maximize vector-register utilization. Sizesmr and nr control

the amount of register reuse by the outer product update [9]. These two parameters depend on

the architecture and define the minimum GEMM size the microkernel will compute at peak perfor-

mance. To utilize the microkernel for the full GEMM, a cache-aware strategy must tile the arrays into

cache-sized buffers. Moreover, the elements should be placed in the buffers in the order in which

they will be accessed by the outer-product updates, as shown in Figure 1(b).

1Link to YaConv full source code implementation: https://github.com/ivan23kor/yaconv.
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Fig. 1. GEMM as outer product.

Fig. 2. Convolution notation and an example of naive convolution.

2.2 Convolution Notation

Convolutional neural networks consist of layers, each of which has a fixed weight tensor. Each

convolutional layer can be expressed by the formula

WFh×Fw×C×M ⊗ IH×W ×C = OHout×Wout×M , (2)

where IH×W ×C and OHout×Wout×M are the input and output tensors andWFh×Fw×C×M is the weight

tensor.

Figure 2(a) illustrates the tensor notation and the meaning of symbols ·, *, ⊗, and× used through-

out this article. A variable input to each layer is the tensor IH×W ×C that contains an image of height

H , widthW , and the number of input channelsC . Shown in Figure 2(a), a weight tensor has shape

Fh × Fw ×C ×M and consists of M filters. Each filter is a tensor of shape [Fh × Fw ×C], where C
is the number of channels, Fh is the height of the filter, and Fw its width. The output tensor has

dimensions [Hout ×Wout ×M], where Hout andWout are the output image height and width. Vertical
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Fig. 3. im2col convolution.

and horizontal padding Ph , Pw with zero-elements are typically applied to enlarge the input image

so that the output image is of the same size (Hout = H ,Wout =W ).

3 CACHE INEFFICIENCIES OF PREVIOUS ALGORITHMS

Figure 2(b) shows how a naive algorithm computes convolution I5×5×2 ⊗ W3×3×2×M = O3×3×M .

For this example, the naive method iterates over image patches of dimensions [3 × 3 × 2] and

computes the sum of products between each input image patch and each filter. The highlighted

output elements in Figure 2(b) are computed using all weight elements in the filter and the input

elements surrounded by dashed lines. The depth dimension of the selected output elements (output

channels) corresponds to the number of filters in the weight tensor.

The naive approach underutilizes the available vector units on a CPU and suffers from poor

cache locality of the patch elements. In Figure 2(b), every Fw ·C = 3 · 2 = 6 elements of each image

patch lie consecutively in memory. However, two consecutive rows within the same patch lie at

an offset of (W − Fw ) · C = (5 − 3) · 2 = 4 elements in memory, as each patch of size I3×3×2 is a

part of the entire image I5×5×2. This causes loading of cache lines and populating TLB entries for

the elements not in the order they are accessed during computation.

3.1 Convolution With im2col Transformation

im2col addresses the problems of the naive approach by placing the patch elements adjacently

in memory and calling a performant GEMM routine to compute the output. Figure 3 provides

an example convolution W3×3×C×M ⊗ I5×5×C = O3×3×M computed through the im2col + GEMM
path. The whole algorithm is broken into four steps, indicated with red circles. Along with the

description of the im2col transform, Figure 3 shows data movement in the cache-resident buffers

of the GEMM routine.
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Step in Figure 3 demonstrates how im2col copies the input tensor into a patch buffer as an

[Fh ·Fw ·C]× [Hout ·Wout] matrix. Each column in this matrix is a flattened patch of the input of size

Fh×Fw ×C . There areHout ·Wout columns in the im2col buffer corresponding to the output image of

sizeHout×Wout. Computing a GEMM between the reshaped weight tensor as a matrix [M]×[Fh ·Fw ·C]

and the im2col matrix produces a matrix of shape [M] × [Hout ·Wout]. The output of GEMM is the

output tensor Hout×Wout×M stored as a column-major matrix of leading dimension M in memory.

Step in Figure 3 shows the movement of the elements of the im2col buffer during the GEMM
call. In the GEMM implementation, the second matrix is packed to an L3-cache-sized buffer in a layout

that facilitates L1 cache and register reuse by the outer product microkernel (Section 2.1). The blue

arrows within the packed im2col buffer demonstrate the order of the elements in memory, with

each arrow’s length capped at nr —an architecture-dependent factor introduced in Section 2.1.

Step in Figure 3 shows how the GEMM routine packs the weight tensor into an L2-cache-

resident buffer as an [M] × [Fh · Fw ·C] matrix. Packing the weight tensor after the im2col buffer

ensures that the packed weight buffer elements are in L2 cache and the majority of the packed

im2col buffer elements are in L3 cache (except for those that were evicted during the weight

copy). Similarly to the packed im2col buffer, the green arrows of lengthmr (Section 2.1) show the

memory layout of the elements in the weight buffer.

In step , the outer product GEMM microkernel multiplies the tiles [mr ] × [Fh · Fw · C] of the

packed weight and [Fh · Fw ·C] × [nr ] of the im2col buffer. The result of each microkernel call is

stored in the output as a block of sizemr ×nr at the corresponding tile offset in the packed buffers.

The GEMM routine applies tiling along each matrix dimension to ensure that each packed buffer

fits in the respective cache level, in the case when the weight tensor and/or the im2col matrix are

larger than L2 and/or L3 cache. Placement of the packed buffers into L2 and L3 cache is ensured

by the order of the packing steps. By packing the im2col buffer before the weight tensor, the GEMM
routine ensures that the weight elements are not evicted from L2.

Weight and im2col buffer elements are streamed from the respective packed weight and packed

im2col buffers that reside in L2 and L3 cache. For instance, highlighted tiles in Figure 3—one from

the packed weight buffer and one from the patch buffer—are multiplied to produce the block of

output shown as a grey rectangle. Tile offsets within the weight and patch buffers directly translate

into vertical and horizontal (on Figure 3) block offsets in the output. Parameters mr and nr are

optimized for L1 cache and register reuse within the microkernel.

4 YACONV

Two principles are at the core of the new convolution algorithm: the algorithm should not require

redundant copies or loads of input elements in cache and the algorithm must use unaltered GEMM
microkernels. We follow the CPU cache utilization guidelines presented in Reference [9]. YaConv
introduces a new iteration pattern for convolution and controls packing of the input tensor ele-

ments into the cache. Eliminating redundant copies in the image tensor is central to YaConv and

it also enables the reuse of the filter tensor as discussed bellow (Figure 4, step ). The tensor-

streaming choices for both im2col-based convolution and YaConv are determined by the nesting

order of the loops surrounding the micro kernel. YaConv nests the loops in such a way that the

packing of each tensor in a given level of the memory hierarchy is based on how the operands

are used in the micro kernel. Although the results show that YaConv significantly outperforms

im2col-based convolutions, this article does not claim that the packing choices made are optimal.

Alternative nesting orders can be found by space exploration via analytical models [15].

In naive convolution, two loops iterate over the spatial dimensions of the input image and

compute the sum of products between the weight tensor and each image patch (Figure 2(b)).
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Fig. 4. The novel YaConv algorithm.

In YaConv, these sums do not happen in the same loop iteration. Instead, the YaConv computes

one-row convolutions between a selected row of each filter and the corresponding image

patches.

Figure 4 demonstrates how YaConv computes the same convolution as in Figure 3 using packing

and outer-product microkernels from a library GEMM. In step , YaConv reshapes the input tensor

as a column-major matrix [W ·C]× [H ]. This step does not incur any data copy overhead, because

the memory layout of such a matrix matches the layout of the input tensor IH×W ×C .

Step in Figure 4 shows how YaConv packs the input tensor into an L3-cache-resident buffer.

Zeroed-out elements in the right tile of size [W ·C] × nr artificially extend the size of the packed

input tensor buffer. The reason for doing so lies within the GEMM microkernel—it performs poorly

when the matrix sizes are not multiples of nr . By first packing the input tensor, we bring the input

tensor elements to all cache levels, ensuring that the buffer is in L3 cache.

In step , YaConv packs the weight tensor as Fh separate matrices of size M × [Fw · C] into

an L2-cache-resident buffer. This copy operation might evict some input tensor elements—as it

happens in the traditional GEMM algorithm—but ensures that M · Fw ·C weight tensor elements are

loaded to L2 cache. To perform partial convolutions for each filter row, one M × [Fw ·C] matrix is

packed in the weight buffer at a time.

In step , YaConv computes each convolutionW1×Fw×C×M ⊗ IH×W ×C = OHout×Wout×M asWout

GEMMs with sizes [H ] × [Fw ·C] × [M]. Having packed the input tensor as contiguous tiles of size

[W · C] × [nr ], YaConv passes portions of size [Fw · C] × [nr ] of the packed input buffer as a

second operand to the GEMM microkernel—one of such portions is highlighted by the blue rectagle

in Figure 4. The first operand of the microkernel call is a tile of size [mr ]× [Fw ·C] from the packed

weight buffer.

Each GEMM with sizes [mr ]× [Fw ·C]× [nr ] computes nr output elements formr output channels.

All of these elements correspond to the same column of the output image (Wout-dimension), given

by the vertical offset of the tile of size [Fw ·C]× [nr ] within the packed input tensor. One GEMM call

computes the result of applying one row of mr filters to nr rows of the input image at the same

column offset. The corresponding weight and input tensor elements are highlighted by green and

blue rectangles in Figure 4. Each result of sizemr ×nr is placed in the output array (column-major

[M]× [Hout ·Wout] matrix) as nr columns at strideWout ·M , because every GEMM call corresponds to

applying one filter row over nr input image rows at a fixed column.
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4.1 Extra Memory Usage

Because YaConv computes GEMM between every possible combination of the weight and image tiles,

and some of these elements are not part of the convolution result, they are not accumulated in the

output. In the example in Figure 4, the first filter row is multiplied with elements of the blue portion

of the input image as part of the GEMM microkernel call with width nr = 4. However, only the first

three columns of this highlighted image area should be multiplied with the first filter row and the

result of this multiplication to be stored in the output tensor. The result of the dot product between

the elements 16, 17, 18 of the input tensor and the first filter row is a part of applying the filter on

the image when the last filter row is outside of the image bounds.

One way to discard these elements is to adjust the width of every GEMM microkernel call to

smaller values than nr , leading to significant performance degradation. Instead, YaConv reserves a

larger buffer for the output elements than the Hout ·Wout ·M elements needed by convolution. The

actual output tensor Hout ×Wout ×M is located at an offset within this buffer space, while the extra

space is used for the spillover elements of the GEMM calls.

The output buffer contains the output array and two extra parts before and after the actual

output tensor. For a given problem, YaConv uses space for (Fh − 1 − Ph ) ·Wout ·M extra elements

before the output array. Because the image buffer is enlarged to the optimal microkernel size and

to account for the spillover results from GEMM, YaConv also reserves some space for the elements

immediately after the actual output. In Figure 4, Hextra is the H enlargement required until the next

multiple ofnr . Therefore, extra space required after the output array is (Hextra+Fh−1−Ph ) ·Wout ·M ,

where the second part comes from the GEMM spillover elements. In total, YaConv requires (Hextra +

2 · (Fh − 1 − Ph ) ·Wout ·M extra space, at that Hextra < nr . Asymptotically, extra space complexity

for YaConv is O ((Fh − Ph ) ·Wout ·M ), which is sublinear on the output size Hout ·Wout ·M .

4.2 Tiling and Block Sizes

In real applications, weight and image tensors are large enough to not fit in the cache. We add

loop tiling to our algorithm to improve cache locality and TLB entry usage, as suggested by Goto

and Geijn. The conventional GEMM algorithm [9] uses three cache block sizes MC,KC,NC for two

packed buffers ÃMC×KC and B̃KC×N C :

(1) KC is calculated to fill L1 cache with tiles mr × KC and KC × nr of the operands of each

microkernel call;

(2) MC is set to fill the L2 cache with MC × KC elements of the packed buffer Ã;

(3) NC determines the size of the buffer B̃ that resides in L3 cache.

High-performance BLAS libraries set these sizes more conservatively as temporary variables and

output tile mr × nr take some L1 cache space, and TLB is typically a more limiting factor than L2

cache [9, 16, 24].

The sizes for weight and image buffers in YaConv are taken from the BLIS implementation of the

GEMM routine. The order of calls to packing routines determines the cache-level residence for each

buffer. YaConv packs a portion of the image in the outermost loop, thus loading its elements to all

cache levels. The packing of weight elements into the buffer follows image packing. Such an order,

coupled with adequate tile sizes, ensures that the weight elements will not be evicted from L2

cache by the image elements during packing. Two innermost loops around the microkernel (with

steps nr and mr ) iterate over L1-sized tiles of weight and image buffers and call the microkernel

code to compute partial results.

Additionally, when W = Fh = Fw = 1, Ph = Pw = 0, the weight and image tensors can be

thought of as matrices and convolution degenerates into a GEMM with sizes M × C × Hout. The
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Table 1. Clockrate, Cache Sizes, Output Tile Dimensions of the GEMM Microkernel and Linux Kernel
Version of the Machines Used for the Experiments

Architecture Clock, GHz L1, KiB L2, KiB L3, MiB GEMM tile size Kernel

Intel® Cascade Lake 3.5 32 1024 36 / 24 32 × 12 4.15.0

AMD Zen 2 2.0 32 512 16 / 4 6 × 16 4.15.0

IBM Power10 4.0 32 2048 64 / 8 8 × 16 5.11.0

Intel® Haswell 2.7 32 256 30 / 12 6 × 16 5.6.13

L1 and L2 cache sizes are per core. L3 size is followed by the number of cores sharing L3 cache.

loops over Fh and Wout contain only one iteration and YaConv becomes the conventional matrix

multiplication algorithm.

5 COMPARING YACONV WITH IM2COL ON MULTIPLE MACHINES

The experimental results in this section indicate that:

(1) YaConv outperforms the im2col baseline on PyTorch layers by 23-25% on multiple

architectures.

(2) The superior performance of YaConv is explained by better L3 cache usage. Moreover, in

most cases, YaConv reduces L1 cache usage as compared to im2col-based convolution.

(3) As expected, the performance of YaConv compares unfavourably with im2col for small

image heights H , which are not a multiple of architecture-dependent GEMM microkernel

sizes. Better performance for YaConv can be achieved by adjusting the image size to match

architecture-dependent values.

5.1 Experimental Methodology

Table 1 provides hardware information about the four machines used for the experiments. The

cache sizes are given per node, i.e., L3 cache is shared among some cores on each platform. Each

binary runs the same convolution on a batch of N images, where N is adjusted to ensure that

each execution lasts at least 1 s on a 100 GFLOPS machine. FLOPS are calculated as the number

of single-floating-point operations, given by 2 · N · H ·W · C · Fh · Fw · M , divided by the wall

clock time of the respective convolution routine on the whole image batch. The results presented

for each experiment are mean values of ten runs. Unless explicitly specified, the relative standard

deviation observed is less than 5%.

Benchmarking cache performance is difficult because of the complex hierarchy of modern CPU

memory systems. Although im2col does extra work copying input image elements to another

buffer, it loads the elements into the cache and populates the TLB entries. This data preparation

by im2col reduces data access time within the packing routines of the library GEMM. Thus, for

a fair comparison, this experimental evaluation compares the performance of the whole im2col-

based convolution routine with YaConv. There should be fewer accesses to the last levels of the

memory hierarchy by YaConv, because YaConv loads each input image element exactly once into

an L3-cache-resident buffer. Both YaConv and im2col-based convolution implementations allocate

temporary space once for the whole batch of images.

The implementation of im2col from Caffe is used for the baseline, followed by a call to BLIS

GEMM [10]. BLIS2 was built using the default library-provided flags for each platform and the same

flags were used to build the microkernels for integration into YaConv. All platforms run a 64-bit

2BLIS version b3e674db3c05ca586b159a71deb1b61d701ae5c9.
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Table 2. Values for Selected Convolution
Parameters from 218 Layers in PyTorch,

from Most to Least Common

Parameter(s) Common values

H ,W 14, 7, 28, 56

Fh , Fw 3, 5

C 64, 192, 32, 128

M 128, 256, 64, 192

Linux kernel and all benchmarks are compiled using gcc with -O2 with -mtune=native. perf was

used to collect cache and TLB counters [23].

5.2 Performance on PyTorch Layers

This evaluation uses convolutional layer parameters from thirteen pre-trained CNN models in

Torchvision, which is a part of the PyTorch project [17]. Of 661 layers, 400 layers are a special case

of convolution with filter size 1, which both PyTorch and Tensorflow compute as a direct call to

the library GEMM. Also, YaConv cannot handle convolutions with non-unit strides because of the

element ordering restrictions imposed by the GEMM microkernel. Thus, another 42 non-unit-stride

layers were eliminated leaving 218 layers with unit stride and filter size greater than 1. Some of

these layers have the same geometry: 73 unique layers can be used for the evaluation of YaConv.

The most common values for H ,W , Fh , Fw ,C,M are provided in Table 2.

Figure 5 presents the ratios between YaConv and im2col for the following measurements pro-

vided by perf: (a) number of L1 cache accesses; (b) number of total branch instructions exe-

cuted; (c) total routine GFLOPS. Layers are shown on the x-axis in the formatHW C Fh Fw M Ph Pw

and are sorted by the GFLOPS ratio between YaConv and the baseline. To improve visibility, the

graph presents only half of the 73 layers. Layers are selected by choosing every second layer from

the sorted list. Figure 5 indicates that YaConv reduces the number of branches taken by the im2col
convolution algorithm. For all machines, the ratio of L1 cache loads between the two algorithms

decreases with a larger speedup of YaConv over im2col convolution, pointing to increased reuse

of elements in L1 cache as the source of the observed speedup. Moreover, YaConv achieves up to

24% speedup over im2col-based convolution across all four evaluated machines—over 3× on Intel

Cascade Lake and Power10 for some input sizes.

The reduction in the number of branches taken in comparison with im2col-based convolution

is due to the elimination of the im2col transform. YaConv does not make a copy of an image

element for each of the filter elements. YaConv loads each image element into L3 cache exactly once,

resulting in fewer L3 cache loads and misses. However, for some layers, the L3 cache performance

measured in the experiments does not support this hypothesis. Cache design in some architectures

is complex and L3 performance requires further investigation. Additionally, the slowest layers

in Figure 5 are also the ones where YaConv accesses L1 cache more than the baseline. The two

following sections present a detailed study on Intel Cascade Lake, where parameters are varied to

identify performance trends. The same studies were conducted on all four machines, exhibiting

similar trends in algorithm runtimes and cache utilization. Detailed results are presented for one

machine for brevity.

For a few small image sizes (H =W = 7, 13, and 14), im2col-based convolution exhibits better

cache and TLB usage and thus performs better than YaConv. This performance difference occurs

because im2col-based convolution computes GEMMs over an input image of widthH×W—with sev-

eral full GEMM tiles and only a few non-full tiles due to replication of input pixels. In contrast, Yaconv
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Fig. 5. Ratios for L1 cache, branches, and GFLOPS between YaConv and im2col on layers from PyTorch
across four machines.

does not replicate pixels and has to compute GEMMs over packed buffers of width H—which need

to be padded to the size of the GEMM micro kernel, thus exhibiting poor cache and TLB utilization.

Adopters of YaConv may easily build a solution that selects between YaConv with an im2col-based

convolution based on the value of H andW to always deliver the best performance. This happens

for 9 out of 36 input shapes, as Figure 5 shows. Section 5.3 further contrasts im2col-based convo-

lution and YaConv for many image sizes and gives insight on how to address these edge cases.

5.3 YaConv Performance Varies with Image Sizes

The values ofH ,W , andC in the layers in Figure 5 were selected from the real CNNs from PyTorch.

A more comprehensive understanding of the performance of YaConv can be gained by varying

these values. Figure 6 presents cache and runtime profile collected on the Intel Cascade Lake ma-

chine using the same methodology as in the Section 5.2. All subfigures have fixed parameters

C = 300, Fh = Fw = 3, Ph = Pw = 1 and vary square image sizes H = W and M in the range of

values found in actual CNNs. The color of points in the heatmaps represents the value of the ratio
YaConv
im2col for each metric.

Two insights can be gained from Figure 6. First, the repetitive pattern with step size 12 on the

plots confirms that computing full GEMM microkernel on partially filled tiles significantly affects

performance. For this machine, the microkernel uses nr = 12 to maximize the use of the vector

unit. Therefore, when H is a multiple of 12, Figure 6 shows the fewest L1 cache and TLB accesses

and the best runtime for YaConv.
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Fig. 6. Varying image size H = W and number of input channels with fixed M = 200, Fh = Fw = 3, Ph =

Pw = 1 on Intel Cascade Lake (where H and W are the height and width of the image and M is the number
of output channels).

Second, YaConv performs better with smaller values forM . With the fixed valueC = 300, relative

speedup of YaConv over im2col convolution gradually decreases until M = 480. After that point,

the relative performance stabilizes with further increase in M . As shown in Figure 8(a) in the

following Section 5.4, this effect can be explained by the gradual increase in the number of L3 cache

loads that depends on the memory stride M of the weight tensor elements. However, performance

metrics do not show any trend while varying the number of input channels C .

In Figure 5(a), the worst-performing layers on Intel Cascade Lake have H =W = 7, 13, 14, most

of which come from one CNN (GoogLeNet). In im2col-based convolution, the width of the image

buffer is H ·W , which includes several full GEMM tiles even for the smallest images H =W = 7. In

YaConv, the same input image is packed into a buffer of width H and padded to the full tile with

zeroes. For larger image sizes this padding does not play a big role, because the partially filled

tiles are a small portion of the whole computation. However, for small H , the extra zero elements

require more usage of the cache and the TLB entries and the result of GEMM for these elements is

not used for accumulation of the output. This is confirmed by sharp vertical edges in Figures 6(a)

and 6(b). The performance patterns shown in Figure 6 are also observed in other architectures and

can be used to improve the performance of YaConv by adjusting the image size for layers in the

middle of the network according to architecture-specific values.

5.4 YaConv Improves L3 Cache Performance

The vertical axis in Figure 7 presents the ratios of L3 accesses and misses and GFLOPS between

YaConv and im2col collected on Intel Cascade Lake. Thus, GFLOPS values greater than one in-

dicate that YaConv performs better than im2col-based convolution. Values of cache access and

misses lower than one also indicate that YaConv performs better than im2col-based convolution.

The horizontal axis contains the same layers as Figure 5(a). While most layers experience a reduc-

tion in L3 cache usage, YaConv brings an increase in cache accesses and misses for certain sizes

of the parametersC and M , e.g., 128, 512, 1024. These increases in L3 accesses and misses seem to

occur more often when H =W = 7. Thus, a parameterized performance study could reveal more

information about the correlation of these misses with performance.

The set of experiments shown in Figure 8 varies the number of input channels C on the hori-

zontal axis, the number of output channels M on the vertical axes with fixed image and filter sizes

H = W = 7, Fh = Fw = 3. The ratio of L3 cache loads is given as im2col
YaConv , whereas the ratio for

GFLOPS is YaConv
im2col . Values for both of these ratios in Figure 8 are presented with the corresponding

color on the heatmap so that larger numbers are better for YaConv. The same color scales are used

for both subfigures with each color scale adjusted to show an interval between the minimum and

the maximum values on each heat map. Some locally large values in Figure 8(a) were clipped to
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Fig. 7. L3 cache usage and GFLOPS on PyTorch layers on Intel Cascade Lake.

Fig. 8. Varying the number of input and output channels with fixed image and filter size on Intel® Cas-
cade Lake.

4 to prevent the figure from giving a distorted image of performance. The range of values was

chosen to cover most of the poorly-performing layers from Figure 5.

When the number of output channels does not exceed the cache block size along that dimension

(M < 480 in Figure 8(a)), the geometric mean of the reduction of L3 accesses of YaConv w.r.t

im2col is 3×. With further increase in M , relative improvement of L3 usage in YaConv gets worse

down to 1.6×. The heatmaps in Figures 8(a) and 8(b) indicate a correlation between the number

of L3 cache loads and YaConv performance. Figure 8 exhibits a pattern of significantly worse

L3 cache utilization by YaConv around specific values, e.g., C < 60,C ≈ 800,C ≈ 940. While
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performing experiments for a smaller range of parameters but with step size 1, we found that the

same pattern persists on a finer scale and some input values cause a sudden increase in the whole

memory hierarchy utilization. This could be explained by the parameter sizes (leading dimensions

of tensors), coinciding with cache associativity stride and causing more hit conflicts than an

average case. We observed similar trends on other machines and for the heat maps produced with

other fixed image sizes.

6 RELATED WORK

Many convolution algorithms are not expressed in terms of GEMM [2]. For instance, prior work

explored the use of Fast-Fourier Transform [18] and Winograd’s algorithm [14]. Winograd-based

convolution algorithms are designed to minimize arithmetic intensity and aim to be efficient for

convolutions over small tiles for small filters and small batch sizes. YaConv does not reduce the

arithmetic intensity of convolutions, but does eliminate unnecessary copies performed by tradi-

tional GEMM-based convolutions. Moreover, YaConv is not sensitive to small filters and batch sizes,

but YaConv is sensitive to the number of filters and performs better with small number of filters.

FFT-based convolution algorithms are known to be faster then direct convolution algorithms for

large filter sizes [19]. Although the complexity of convolution algorithms is established, there is

no thorough empirical study contrasting standardized and well-maintained implementations of

such algorithms on modern hardware. This work enables such study by making available an im-

plementation of YaConv that extends and re-uses building blocks from BLIS—a widely used, well-

documented and maintained linear algebra library[16]—publicly available and as free software.3

The remainder of this section focuses on previous work closely related with YaConv, which is a

novel convolution algorithm aimed at reusing GEMM micro kernels from high-performance libraries.

A common approach to deal with the performance inefficiencies of naïve convolution is im2col
convolution. The method was first introduced by Chellapilla et al. and it became popular due to

its use in Caffe [3, 10]. im2col is a data-copy procedure that prepares patches of the input image

in a separate patch matrix. Each patch is a portion of the input image of the same size as the filter.

Each input element is copied up to Fh · Fw times into this patch matrix—one time for each patch-

filter product in which the element takes part. (The exact number of copies depends on the stride

of the convolution.) The goal of the im2col transformation is to place patch elements adjacent in

memory to optimize cache locality and to take advantage of the highly optimized GEMM routines

readily available for most architectures. im2col has three drawbacks: (1) memory footprint: the

patch matrix requires additional storage of O (Fh · Fw ) of the image size; (2) an additional copy

operation; and (3) enlarged inner dimension of the GEMM, given by the size Fh · Fw ·C of the patch

matrix, leads to lower reuse of elements loaded into the cache. This effect is pronounced when

K >> M and K >> N .

A way to reduce the overhead of im2col consists in not creating the patch matrix explic-

itly [6, 11]. One solution to avoid the creation of a patch matrix consists in creating an extra level

of indirection in the form of a buffer of pointers to input image patches. This extra indirection

reduces the space and time needed to prepare the patches for access—there is no need to have mul-

tiple copies of the same element. However, it increases the access time for each element, because

each access requires one additional pointer dereference [6]. This Indirect Convolution Algorithm

requires a modified GEMM microkernel that allows arbitrary strides between elements [6]. Another

solution integrates im2col with the packing step of GEMM in BLIS [16] to prevent the extra data

copying [11]. Although neither of these methods keeps redundant copies of input elements in

memory, each matrix element is loaded into cache Fh · Fw times. In contrast, YaConv changes the

3Link to YaConv full source code implementation: https://github.com/ivan23kor/yaconv.
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packing routine and the iteration pattern to eliminate the need to copy the input elements either

directly or via pointers.

The same approach can be implemented in hardware [21]. Soltaniyeh et al. design a new accel-

erator that integrates the im2col transform and GEMM. To decrease the overhead of the data trans-

formation, the authors design interconnected patch units based on systolic arrays. These units act

as buffers for holding common patch elements and reduce redundant accesses to the same ele-

ments. Although YaConv could be implemented in hardware, YaConv’s key design points allow it

to be implemented on any commodity hardware without special instructions or specific hardware

support.

Another way to reduce the memory footprint of im2col is to call the library GEMM routine several

times [4]. Memory Efficient Convolution (MEC) creates a different patch matrix that reduces

the size of the patch matrix by a factor of Fw in comparison with the original im2col transforma-

tion [4]. The GEMM routine is calledWout times on this transformed patch matrix, each time storing

its output at an offset in the output tensor. Although the MEC algorithm reduces the space over-

head and can be faster in some cases, it was shown to underperform im2col on a wide range of

input parameters [1]. A reason for the MEC’s inefficiency could be the cache overwrite between

consecutive GEMM calls. The number of algebraic operations needed to compute a GEMM with sizes

100 × 100 × 100 is the same as the number of operations needed to compute a GEMM with sizes

100 × 100 × 10 ten times. However, the latter can be several times slower, because fewer elements

are reused while they are available in the caches.

Reducing the memory bandwidth per element can be achieved by manipulating data in regis-

ters [25]. Zhao et al. optimize convolution training for the Sunway TaihuLight supercomputer that

features CPE vector units organized in a mesh. The authors propose to map the whole convolu-

tion to tiles that fit in each CPE and move the overlapping patch elements between adjacent CPEs

with specialized register communication instructions. In the same way as YaConv, this approach

eliminates the need for extra buffer space and uses elements in the cache until no longer needed.

However, the solution depends on the instruction-level optimizations available on the specific ar-

chitecture under evaluation [25].

Anderson et al. propose a way to repeatedly call the GEMM routine without copying elements

of the input tensor. Their low-memory algorithm separates the weight tensor Fh × Fw × M × C
into Fh · Fw tensors, each of shape 1 × 1 × M × C . Anderson et al. notice that convolution with

1 × 1 filters is the same as a GEMM with sizes M × C × [Hout ·Wout]. Convolution with any other

filter size is a sum of Fh · Fw such convolutions, each corresponding to scaling the whole input

image by one of the Fh · Fw filter elements [1]. To account for the relative position of the 1 × 1

filter elements within the Fh × Fw ×M ×C weight tensor, Fh · Fw scalings are accumulated in the

output array at corresponding offsets. Although MEC and the approach of Anderson et al. solve

the memory problem of im2col convolution, they do not address the problem of redundant cache

reloads. YaConv makes full use of each element present in the cache before the element is evicted,

because YaConv integrates the loading of elements into cache with computation.

While the aforementioned methods either explicitly copy the input tensor or call a GEMM routine

several times, direct convolution methods optimize the naive convolution loop nest. As naive con-

volution suffers from cache misses and an unoptimized multiply-add pattern, one solution is to

call specific efficient assembly code for each convolution size at run-time. Georganas et al. present

a JIT-optimized implementation for convolution that is aimed at whole-model performance opti-

mization. They design efficient assembly kernels for direct convolution using hardware-specific

vector instructions and cache prefetching [7]. To alleviate memory bandwidth issues, cache and

register blocking are applied to change the layout of elements in memory [7]. This approach attains

up to 90% of the peak machine performance but requires an enormous amount of engineering for
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each instruction set (10K+ code lines in assembly). However, YaConv introduces a generic cache

utilization strategy and relies on the existing GEMM microkernels. With its new approach, YaConv
achieves the same convolution performance as the work of Georganas et al. without requiring

hand-crafted assembly programming.

A novel batch-reduce GEMM kernel may be better suited for convolution [8]. The suggested mi-

crokernel introduces additional optimization opportunities for convolution, as contrasted with the

traditional GEMM microkernel from Equation (1). Among several deep-learning primitives, the con-

volution implementation of Georganas et al. matches the performance of their previous work [7]

and significantly reduces the amount of manual assembly engineering. While this work achieves

the best performance of all convolution algorithms found in the literature, it introduces a new mi-

crokernel that has to be written for each architecture. YaConv relies on the GEMM microkernel that is

also used for most level-3 BLAS routines and machine learning workloads, e.g., kMeans, PCA, SVM.

As compared to GEMM-based algorithms, YaConv uses asymptotically less extra memory [1, 3, 4].

Convolution based on the im2col transform creates a patch matrix of sizeO (Fh ·Fw ·C ·Hout·Wout) [3].

MEC requires O (Fh ·C ·Hout ·Wout) extra space [4]. The algorithm of Anderson et al. also requires

extra memory immediately before and after the output array, which they estimate asO (M ·H ·W ).
Considering that C ≈ M and H ≈ Hout ≈ W ≈ Wout, YaConv uses the same or less extra space in

comparison with GEMM-based methods.

Optimal tiling size can be found through space exploration or by using an analytical model [15].

Convolution algorithms such as YaConv and the analytical model by Li et al. are complementary.

Li et al.’s solution also relies on BLIS-like micro kernels (Section 6, second paragraph in Reference

[15]). The analytical-model approach proposed by Li et al. can be used in an automated-tuning

approach to discover good tile sizes for YaConv, and similar algorithms, for specific convolutions.

7 FUTURE WORK

The convolution algorithm design proposed in this work is not the only solution to cache reload

problems of previous approaches. As it was shown in the experimental evaluation, YaConv is sen-

sitive to image height, which can be addressed in the future by, e.g., changing the order of the

dimensions of the packed image buffer. This change will bring a new iteration pattern that can

support non-unit strides.

Once the edge cases for single-threaded performance are fully addressed, YaConv can be paral-

lelized similarly to the parallel implementation of the conventional GEMM algorithm [20]. Because

YaConv’s loop nest degenerates into the library GEMM algorithm when W = Fh = Fw = 1, the

same loops of the convolution algorithm can therefore be parallelized. YaConv is well-positioned

for multithreaded scaling because of the algorithm’s focus on minimizing the number of L3 cache

accesses, which is shared among cores, by improving the reuse of elements in the cache.

Last, as the aforementioned performance improvements are implemented, the algorithm can be

ported to a compiler framework that supports matrix multiplication building blocks, e.g., LLVM

or MLIR [12, 13].

8 CONCLUSION

The main idea behind the design of YaConv is to prevent unnecessary copies of image elements,

improve cache utilization, and make direct use of unmodified GEMM building blocks from high-

performance numerical libraries. Achieving these goals required thinking of the input tensor as

an [W ·C] × [H ] matrix and packing it in the contiguous layout for outer-product GEMM matrices;

packing the weight tensor in the same way that is done in the GEMM routine of the im2col-based

convolution; calling the GEMM microkernel on these contiguously packed filter and image elements,

and cleverly scattering the results of this computation into the resulting image. The resulting
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algorithm, YaConv, eliminates explicit image transformations, has a smaller memory footprint,

and delivers superior performance than im2col by improving cache usage. YaConv is the first

convolution algorithm that uses unmodified packing and GEMM microkernels from a numerical

library to compute convolution without multiplying the number of input tensor elements kept in

memory or the number of times these elements are loaded into the cache. A detailed performance

study, varying parameters on multiple machines, helps understand the superior performance of

YaConv in comparison with im2col: It reduces the number of branches and LLC cache accesses.
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