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Abstract—Memory dependence prediction is a fundamental
technique to increase instruction- and memory-level parallelism in
out-of-order processors, which are crucial for high performance.
However, over the years, the performance gap of state-of-the-art
memory dependence predictors with respect to an ideal predictor
has grown due to the increase of the pipeline width, reaching up
to 6% for modern architectures. State-of-the-art predictors brace
context sensitivity, however, not-well-adjusted history lengths lead
to loss of accuracy and high storage requirements.

This work proposes PHAST, a novel context-sensitive memory
dependence predictor that identifies for each load the minimum
history length necessary to provide precise predictions. Our key
observation is that for each load, it suffices to identify the youngest
conflicting store and the path between them. This observation is
proven empirically using an unlimited budget version of PHAST,
which performs close to an ideal predictor with a 0.47% gap.

Through cycle-accurate simulation of the SPEC CPU 2017
suite, we show that a 14.5KB implementation of PHAST falls
1.50% behind an ideal predictor. Compared to the top-performing
state-of-the-art predictors, PHAST achieves average speedups of
5.05% (up to 39.7%), 1.29% (up to 22.0%), and 3.04% (up to
38.2%) with respect to an 18.5KB StoreSets, a 19KB NoSQ, and
a 38.6 MDP-TAGE, respectively. This stems from a considerable
misprediction reduction, ranging between 62.5% and 70.0%, on
average.

I. INTRODUCTION

High-performance out-of-order processors can execute loads

speculatively before previous (older) stores. Still, to safeguard

sequential semantics, loads need to obtain the data written by

previous stores in case both the load and the store target the

same memory location, i.e., they are conflicting or memory
dependent. To this end, when executing, loads search the store

queue (SQ) looking for older conflicting stores. The SQ holds,

in program order, the stores that have been dispatched but not

written to memory yet. In case of dependence, loads obtain the

required data from the store through a mechanism called store-

to-load forwarding. However, if the target address of previous

stores has not been computed when a load executes (i.e., the

load overtakes the store) the memory dependence cannot be

disambiguated at that time without a prediction.

Memory dependence prediction (MDP) [24], [25] is crucial

for performance in modern out-of-order processors as it predicts

if a load is dependent on a previous unresolved store. In

case a dependence is predicted, the load waits at the issue

stage until the conflicting store computes its target address,

and after that, the load can be resolved through store-to-load

forwarding. When a no-dependence is predicted, the load

can execute speculatively, retrieving the data either from a
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Fig. 1: Average MPKI for SPEC CPU 2017 of branch (gray)

and memory dependence (red-green) predictors proposed over

the past 30 years (x axis). For MDP, we show the MPKI

reported by a Nehalem-like processor [13], released in 2008

previously already-resolved conflicting store or from the cache

hierarchy. When stores compute their target addresses, they

search the load queue (LQ), which tracks loads from dispatch

to commit in program order, looking for younger dependent

speculative loads. In case of a match, a memory order violation

is detected and the speculative load has to be re-executed.

While branch prediction has attracted a lot of interest over

the last decades [14], [16], [17], [22], [23], [32], [33], [35]–

[38], [45], MDP has received less attention, with just a few

notable proposals, namely, Store Sets [7], CHT [44], Store

Vector [41], the predictor employed in NoSQ [39], and MDP-

TAGE [28]. On one hand, branch prediction is a more critical

problem as it drives instruction fetch. On the other hand,

on machines contemporary with those works, early memory

dependence predictors already achieved lower mispredictions

per kilo-instructions (MPKI) than branch predictors. This is

depicted in Figure 1, which shows the average MPKI for the

SPEC CPU 2017 benchmark suite [40] considering both branch

predictors (gray circles) and memory dependence predictors

(red and green circles and names in bold) proposed over the

past 30 years (see Section V for a detailed description of the

methodology employed). For memory dependence predictors,

we show both MPKI that cause memory dependence violations

(false negatives) with a red circle and MPKI due to false

dependencies (false positives) with a dotted line towards a
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Fig. 2: Trends in MDP for successive processor generations

and the five state-of-the-art memory dependence predictors

evaluated in this work: Store Sets, Store Vectors, the NoSQ

predictor, and MDP-TAGE

green circle. While the first class of mispredictions is more

critical, as they result in a pipeline squashing, the second class

can also severely limit performance when it becomes frequent,

as they incur unnecessary stalls.

However, the number of in-flight instructions is increasing

and so is the MPKI of memory dependence predictors. The

reason is that (i) there are more unresolved in-flight stores

since the SQ is larger and (ii) more loads execute out-of-

order with respect to previous stores due to a higher execution

width. Figure 2a shows the MPKI of the memory dependence

predictors considered in this work for various processor

generations1. Store Sets, with around 1 MPKI in a Nehalem-

like processor [13], suffers around 2 MPKI in the more recent

AlderLake-like processor [30]. Besides, since the number of

branch prediction squashes is practically independent of the

processor size, memory dependence mispredictions account

for a larger fraction of the squashes in modern processors.

Additionally, squashes become more costly since more work is

discarded when a misprediction occurs. As a result, memory

dependence predictors are farther from an ideal scenario in

current processors. As shown in Figure 2b, the performance gap

of the mainstream Store Sets memory dependence predictor to

an ideal predictor grows from 1.8% in a Nehalem-like processor

to 6.0% in an AlderLake-like processor. This motivates us to

revisit the problem of memory dependence prediction.

The main limitations of early state-of-the-art memory de-

pendence predictors, e.g., Store Sets, CHT, and Store Vectors,

are that (i) they link loads with a set of store instructions

and (ii) they do not explicitly leverage context information,

such as branch history, in their predictions. Both limitations

lead to extra unnecessary load stalls due to false positives.2

On the other hand, recent predictors, as NoSQ [39] and

1Results for CHT and Store Vector are not shown further since they
underperform the mainstream Store-Sets.

2Store Sets does not show a high false-positive MPKI in Figure 1 because
they are replaced by artificial store-store dependencies (see Section VII).

MDP-TAGE [28], track a single store (in particular, the store
distance [44], i.e., the number of stores older than the load

but younger than the conflicting store) and leverage context

information to detect loads conflicting with stores from different

paths. Nevertheless, these predictors are trained without using

context-dependent history lengths. As we show in Section III,

this training either provides sub-optimal performance (for

shorter histories than necessary) or dramatically increases the

number of tracked histories (i.e. larger histories than necessary).
This work makes two main observations. First, each time

a load executes, it depends on at most one store, because

even in the presence of several older stores targeting the same

address, loads need to be squashed only if they overtake the

younger store (the one that forwards the latest value). The only

exception to this rule are loads that read from memory locations

written by two or more previous stores (Section III-A). Second,

the minimum context information required for precise MDP

is the execution path from the store to the dependent load. In

other words, adding information about branches much older

than the conflicting store as in prior works does not increase

the accuracy of the predictor, but pollutes the prediction tables

(Section III-B).
Based on the previous observations, we propose PatH-Aware

STore-distance (PHAST), a memory dependence predictor that,

upon detecting a conflict, trains the predictor with (i) the

information about the path taken from the store to its dependent

load and (ii) the store distance. The path is defined as the

global history of divergent branches, that is, any branch that

can take different paths on different executions. Those branches

include both conditional branches and indirect branches. The

predictor is trained with a history length representative of that

dependence, namely N +1 divergent branches older than the

load, where N is the number of divergent branches between

the load and the store. For prediction, loads perform multiple

accesses using a set of history lengths, and on a match with

one of the lengths, the corresponding store distance is provided

(Section IV).
This work makes the following contributions:

• We prove that the path followed from the conflicting

store to its dependent load is the only context information

required to provide near-ideal accuracy (within 0.47%

performance degradation).

• We design PHAST, a cost-effective predictor using only the

aforementioned context information. On a conflict, PHAST

considerably reduces the number of entries required

for prediction compared to predetermined-history-length

training schemes, by precisely detecting the minimum

necessary history length for each dependence.

• Through cycle-accurate simulation, we show that PHAST

achieves high accuracy with an average MPKI of 0.766.

This represents a reduction of 62.0% with respect to the

top-performing predictor, NoSQ. Performance-wise, with

a storage budget of 14.5KB, PHAST outperforms state-of-

the-art larger predictors such as 19KB NoSQ and 38.6KB

MDP-TAGE with a mean speedup of 1.29% (up to 22.0%)

and 3.04% (up to 38.2%), respectively.
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II. BACKGROUND

In this section, we describe the three top-performing state-

of-the-art memory dependence predictors, which we use for

comparison to PHAST.

A. Store Sets

Proposed by Chrysos and Emer [7], the Store Sets predictor

groups all conflicting stores of a load in a set. Each set is

defined by a unique identifier, named the Store Set Identifier

(SSID), which is created upon a memory order violation and

assigned to both the load and the store.

Store Sets is implemented using two tagless tables. The

first table, known as Store Sets Identification Table (SSIT),

contains the SSID of every active set and a valid bit. SSIT is

accessed by every load and store using their instruction address,

or program counter (PC). If the entry in the SSIT is valid, the

SSID is used to access the second table, Last Fetched Store

Table (LFST). LFST includes a valid bit and the id of the last

store of the set that was fetched.

Whenever a load retrieves a valid SSID, it will check the

LFST to get the id of the last fetched store belonging to the

set and, if it is valid, a dependency will be established between

the load and the store.

Since loads must wait on all the stores in the set, stores that

access the LFST and find a valid id will set a dependency on

that store before updating the table. By doing so, every store

in the set will be serialized and the load will execute once all

the stores belonging to the set and older than the store with a

dependence on the load have executed.

Given that each load and store can have one valid SSID at

most, the authors proposed a rule for merging two sets in one

and allowing multiple loads to depend on the same store.

The main disadvantage of the merging rule is that the

predictor may end up converging several sets into one, forcing

the execution of all memory instructions in order. To tackle

this problem, the tables are reset periodically.

B. NoSQ predictor

Sha et al. [39] proposed a store-load bypassing predictor to

map each dynamic load to the dynamic store from which it will

receive the value. This predictor consists of two load-indexed

tables structured as set-associative caches. Each entry contains

a partial tag, a distance field that marks the dependency of

the load, and an n-bit counter that indicates if the prediction

should be considered.

One of the tables is for path-insensitive loads and it only

requires the PC of the load to index it. The other table captures

path-sensitive loads by hashing the PC of the load with a fixed

number of bits of the branch history of conditional branches

(1 taken/not-taken bit per branch) and calls (2 bits of the PC

per call). When a memory order violation occurs, an entry is

allocated in both tables. Similarly, loads will access both tables

to check for a dependency and, in case of a match in both of

them, the path-sensitive prediction is used.

The path-sensitive table is accessed using a history length

of 8 bits. When larger history is needed to correctly predict

dependencies, the number of false positives will increase. On

the other hand, dependencies that require fewer branches for

correct prediction will allocate in the path-sensitive table more

entries than necessary.

C. MDP-TAGE

Perais and Seznec [27], [28] modified the TAGE branch

predictor [34] to also predict memory dependencies using store

distances. A TAGE entry consists of a partial tag, a useful bit

(u), and a 3-bit saturating counter. When memory dependencies

are predicted, only the u bit is used to control the prediction:

if there is a tag match and the u bit is not zero, then the

prediction is used. The 3-bit saturating counter is used to

record the store distance. A value of 111b in the saturated

counter is reserved to mark the load as dependent on all older

stores. This way, branches, and memory dependences can use

the same Omnipredictor. In our evaluation, we use MDP-TAGE

as a standalone predictor and we increase the saturating-counter

field to 7 bits to be able to track distances to all in-flight stores.

When a memory order violation is detected, a TAGE entry

is allocated. If the faulting load had no prediction, the smaller

history length is used to allocate an entry, setting the u bit to

1 and the counter value to the distance between the load and

the store. If there was already an incorrect prediction, an entry

with a larger history than the original prediction is allocated.

On a prediction, the match with a larger history length is taken.

In order to forget predictions, TAGE resets the u counters

periodically. This frequency has to be tuned for memory

dependence prediction, which requires a higher reset frequency.

To this end, when a false dependency is detected the entry can

also be reset with a probability of 1
256 .

MDP-TAGE has three main limitations. Firstly, the predictor

is trained using a sort of brute force. It starts allocating entries

on conflicts using a short history length (e.g., 6 branches)

and, if the used history length is not enough to offer correct

predictions, it will allocate entries using larger history lengths

following a geometric sequence until it reaches the length that

suits the dependence. Hence, the a particular dependence can

cause allocation of several entries with different history lengths.

Secondly and similar to the NoSQ predictor, when the history

length used is larger than needed, MDP-TAGE will need to

learn all combinations of the history, leading up to 2n -1

additional entries (being n the number of extra history bits

used). For example, assuming that a single bit per branch is

tracked by the history, if a load requires 4 branches to capture

the dependence and MDP-TAGE uses 6 branches, up to 4

entries will be required in the 6-bit history table to learn the

dependence. This causes the same dependence to be scattered

in multiple entries across the same table.

Lastly, MDP-TAGE generates many false dependencies either

when a memory dependence occurs infrequently, since it needs

to wait until the entry gets reset to forget the prediction, or when

a short-history-length entry is allocated for a larger dependence,

since dependence-free executions having the same short history

will be predicted as dependent.
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III. MOTIVATION

This section elaborates on the two observations that drive our

memory dependence predictor. First, loads depend commonly

on a single store. Second, the context information required for

precise dependence predictions is the path from the store to

its dependent load.

A. Store sets versus single store

Early techniques for MDP enforce dependencies between a

load and a set of previous stores [7], [41], [44]. Although those

techniques can keep the MPKI that results in memory order

violations very low, the MPKI because of false dependencies

increases, which unnecessarily delays the execution of loads

(see Section VI). In practice, however, a single dependent store

is commonly found per load. Even when several previous stores

target the same address as the load, the load is indeed only

dependent on the youngest store among them.

Figure 3 shows several scenarios that motivate the single-

store dependence in the presence of two stores targeting the

load address a. In case (a), the load executes after the stores,

and therefore the forwarding logic will provide the data written

by the second store. In case (b), the load executes before

the second store but after the first store, getting the data

forwarded from the first store. When the second store resolves

its target address, a dependency with the load is detected, and

the load is correctly squashed. In case (c), the load executes

after the second store, getting the data forwarded from it, but

before the first store. When the first store resolves the target

address, the load should not be squashed, as the loaded value is

correct (see Section IV-A1 for details). Finally, in case (d), the

load overtakes both stores. When the stores are resolved they

conflict with the load, thus forcing its re-execution. However,

the predictor should only learn the actual dependence with the

second store. Indeed, in all cases where the load waits for the

second store, the load does not squash, so learning just the

correct store distance suffices for accurate MDP.

In some cases, the data required by a load is written by

two or more previous stores. For example, in 525.x264 3, an

8-byte load operation has 8 previous 1-byte dependent stores.

In those cases, one could argue that several stores should

be predicted as dependent. However, our analysis (Figure 4)

shows that (1) the percentage of loads that depend on multiple

stores is low (0.04% of executed loads, on average) and (2)

the multiple stores commonly execute in order among other

reasons because their target addresses depend on the same

physical register (70%, on average). The benchmark with more

loads depending on several stores is 503 bwaves, with still a

very low percentage of such loads (0.25%) which are executing

in order, while fourteen benchmarks do not have any of such

loads. As a result, just tracking the youngest conflicting store

and waiting for it to be resolved ensures that the load executes

in order with respect to all previous dependent stores. Hence,

we conclude that predicting a group of stores is not necessary

for achieving accurate predictions. When the load depends on

different stores on different paths, context information should

determine the dependence precisely.

lda

Sta

St?

(c)

lda

Sta

Sta

(a)

lda

St?

Sta

(b)

lda

St?

St?

(d)

Fig. 3: Examples of two stores targeting the same address as

a subsequent load. Stores with a question mark as a subscript

indicate that they have not yet computed their target address.

Arrows indicate forwarding (if red, incorrect forwarding). The

red x indicates that the load will be squashed when the store

computes its target address
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Fig. 4: Percentage of loads that depend on multiple stores

B. Context information

Store Vectors attempted to include context information in

their predictions (e.g., global branch direction history) with

limited success [41]. Other predictors, such as the NoSQ

predictor and MDP-TAGE, leverage global branch history with

a better outcome. The key aspect that brings benefits when

using context information is predicting a single store distance

(as in NoSQ and MDP-TAGE).

Nevertheless, NoSQ and MDP-TAGE blindly train the

predictor using predetermined history lengths. NoSQ uses

an 8-branch history length while MDP-TAGE uses several

geometrically increasing history lengths. We argue that training

the predictor with predetermined history lengths is a sub-

optimal decision: when the selected history length is shorter

than necessary, many false positives can be introduced; and

when it is much larger than necessary, the number of entries

allocated suffers an exponential explosion, which results in

high pollution of the prediction structures. In this paper, we

present a mechanism for determining the training history length

based on the context of the conflict.

Current predictors that use context information are based

on designs originally proposed for branch prediction, where, a

priori, there is no notion of optimal history length. For instance,

as stated in Section II, MDP-TAGE needs to perform a brute-

force-like exploration to find the suitable history length for

a given prediction. In contrast, we make the key observation

that for MDP the path between the conflicting store and its
dependent load corresponds to the history prefix that effectively
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Fig. 5: Two scenarios in which information about where the

conflicting store is located in the code is required for path

disambiguation

determines the context in which a conflict may happen. The

rationale behind this affirmation is that if the exact path repeats

from the store to the load, there is a high chance that the

dependence will repeat too. Consequently, PHAST uses the

history length of the store-to-load path to train the predictor.

This is the key contribution of our work.

In particular, we claim that the history should consider only

divergent branches, as this offers the predictor the unique path

from the store to the load. Divergent branches are those that

are conditional and/or indirect. For conditional branches, the

necessary information is the taken/not taken outcome. For

indirect branches, the information required is the target of the

branch. Furthermore, to precisely determine the path of the

conflict the address where the divergent branch previous to the

store jumps (even in the case of conditional branches) is also

included in the history. This way, N +1 conditional/indirect

branches are collected, where N is the distance in terms of

those branches from the store to the load.

Figure 5 motivates through two scenarios why the N + 1

conditional/indirect branch is needed. In both cases, the store

distance of the conflicting store on the left path is 0 (i.e. no

stores appear in between Sta and Lda), while the store distance

of the conflicting store on the right path is 1. The code executed

between the load and the store contains only non-divergent

branches, so no history would be necessary when tracking only

branches between the load and the store. As a consequence,

the same history will report conflicts with a store distance of 0

or 1 depending on the previous execution path. As mentioned,

our solution to differentiate those paths is adding to the context

information the target address of the divergent branch previous

to the conflicting store.

C. Analysis of unconstrained predictors

Figure 6 shows a study conducted to demonstrate the claims

made in this section. First, we executed unlimited versions

of both the NoSQ predictor (blue line), considering a history

length ranging from 1 to 16 branches (x-axis), and MDP-

TAGE (purple line). The history tracks only the taken/not

taken behaviour of conditional branches and either the PC of

the calls for NoSQ or targets of indirect branches for MDP-

TAGE, it ends with the PC of the dependent load, and it is not

compressed, meaning that all previous information is present

in the history. No aliasing is possible in these predictors. We

report both the IPC normalized to an ideal predictor (Figure 6a)

and the average number of paths tracked per application to

perform the predictions (Figure 6b).

UnlimitedNoSQ UnlimitedMDPTAGE UnlimitedPHAST

(a) IPC normalized to ideal MDP
(higher is better)

(b) Average number of paths
(lower is better)

Fig. 6: IPC and average number of paths detected for

UnlimitedNoSQ, using different history sizes (x axis), for

UnlimitedMDPTAGE, and for UnlimitedPHAST

For NoSQ, the increase in IPC is marginal when including

more than 9 branches in the history, whereas the number of

tracked paths increases exponentially as more branches are

considered (Figure 6b). On the other hand, MDP-TAGE shows

a higher IPC than the 6-branch NoSQ predictor, but lower

than the 7-branch NoSQ predictor because MDP-TAGE ideal

performance is biased towards the first (smallest) history used

to track dependencies (6 bits). The use of larger histories

(allocated when the smaller history misses dependent stores)

can ideally offer extra performance, but this small uplift in

performance would come with a considerable number of tracked

paths (more than 16000, on average, Figure 6b), which will

not help prediction when the branches are older than the one

previous to the conflicting store, as claimed in this work.

In contrast, unlimitedPHAST (green line) is trained using

the history length that effectively determines the context of the

conflict, so it improves over NoSQ by using the optimal length

for each conflict and over MDP-TAGE by always training (or

allocating) the entry that corresponds to the optimal length and

updating the same prediction counter. In other words, if the

path between the load and the store repeats, then PHAST will

allocate only one entry, whereas in MDP-TAGE the same path

can be scattered among many entries and counters will only

be updated for the entry used for prediction.

An example of the advantages of PHAST can be seen in

511.povray, where a load can conflict with three different

stores separated from the load by a single indirect branch.

MDP-TAGE uses an initial history length of 6 and it suffers

from extra memory order violations until it registers all possible

path combinations. PHAST, however, suffers a single violation

per store by using a 2-branch history.

Finally, the improvements of unlimitedPHAST are achieved

with less than a third of the paths detected by the 16-branch

NoSQ and half of the detected by MDP-TAGE. This reduced

number of paths will derive in either less aliasing or less storage

when using a limited version of the predictor. The performance

gap between UnlimitedPHAST and an ideal predictor is just

0.47%, confirming that the proposed selection of history length

is effective for MDP.
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IV. PHAST

This section presents PHAST, a novel memory dependence

predictor based on (i) the fact that each executed load

commonly depends on at most one store and (ii) the use of the

optimal history length for training the predictor on conflicts,

which corresponds to the minimum length able to identify

unequivocally the path between the store and the load. First,

we describe the behaviour of PHAST. Then, we present our

cost-effective implementation.

A. Predictor behaviour

The following aspects define a memory dependence predictor:

detecting dependencies, updating the predictor, predicting de-

pendencies, and propagating the dependencies to the scheduler.

1) Detecting dependencies: Before starting with updating

the predictor it is important to describe the two main techniques

employed to squash mispeculated instructions: eager squash

and lazy squash. Eager squash acts as soon as the mispeculation

is detected, and therefore, it can squash instructions that are

part of the wrong path. Lazy squash waits until the commit

stage, thus only performing squashes when actually required.

The follow-up question is when to update the predictor.

There are two main choices here, too. The predictor may be

updated when the mispeculation is detected, thus training it

fast, but potentially with dependencies that may not exist in

the execution of the program. Otherwise, the predictor may

be updated at commit, when the detected mispeculation is

guaranteed to actually happen.

Our evaluation is conducted using lazy squash for memory

conflicts. We performed an analysis of both updating the

predictors at mispeculation and at commit. We found that

all state-of-the-art predictors performed better when updat-

ing at mispeculation, with the exception of NoSQ, which

had a negligible difference. However, PHAST benefits from

performing the update at commit, as it avoids learning long

paths that are not leading to actual dependencies. It is

important to note that updating the predictor at commit is

also possible with eager squash. For this, it would be necessary

to track the information of the mispeculated instructions in a

buffer, including instruction order (e.g., an increasing sequence
number [31]) and the information necessary to update the

predictor.

We turn back our attention now to Figure 3 (d). An

update when the mispeculation is detected may lead the

predictor to learn the first store incorrectly as dependent if

that store executes first. However, when waiting until commit,

the predictor can be updated when all previous stores are

executed, thus avoiding updating the predictor with unnecessary

dependencies.

On the other hand, when a load receives the data through

forwarding, it should not be squashed by stores older than the

one forwarding the data, as depicted in Figure 3 (c). While

this observation seems intuitive, these squashes happen in

accurate research simulators such as Gem5 [19], and can

significantly impact the predictor behaviour as shown later

in Fig. 12. To avoid such squashes, the load can track the

sequence number of the forwarding store. Stores searching the

LQ can compare its sequence number with the sequence number

of the forwarding store, ignoring the memory dependence

violation if the forwarder is younger. NoSQ, not having an

SQ in their proposal used a different mechanism to achieve a

similar purpose. They filter squashes by making use of the Store

Vulnerability Window concept (see Section VII for details).

2) Updating the predictor: PHAST is updated on the detec-

tion of a true dependence. To this end, we need information

about the store distance and the path from the store to the

load. The distance can be obtained in a similar way as in

Store Vectors by calculating the difference between the store

queue indexes of the store previous to the load and the store

involved in the conflict [41]. In order to calculate the length

of the history between the store and the load, a global register

tracks the number of conditional and indirect branches that

are decoded. When a load or store is decoded, it receives a

copy of the register value. Upon a conflict, the length of the

history can be obtained by calculating the difference between

both values. The register should be large enough to account

for wraparounds of the counter, usually to track the maximum

expected number of divergent branches in the pipeline plus

one extra bit [5].

For the update, when a load is about to be squashed at the

commit stage, the predictor receives the PC of the load and

the history length from the store to the load. Then, the history

is collected from a global history register at commit.3 The

global history register (both at decode and commit) needs to

track per divergent branch: a bit indicating the type of branch

(conditional or indirect), a bit indicating if the branch is taken

or not, and a few bits (e.g., 5 least significant bits) of the

actual destination taken by the branch (the branch target if

taken). Having all the history entries the same length makes

the history easily to be processed in parallel.

The history is formed with the branch outcome (taken/not

taken) bit for conditional branches, the destination for indirect

branches, and the destination of the divergent branch previous

to the store. The history is combined, using a hash function,

with the PC of the load to generate the index and tag of the

predictor caches.

Then, the information is stored in a prediction cache that

contains a tag, a store distance field, and an n-bit confidence

counter. The confidence counter is used to disable aliased

dependencies that cause mispredictions. On a new entry, the

store distance is stored and the confidence counter is set to the

maximum. If an entry already existed with non-zero confidence,

then the entry is replaced.

When a load with a predicted distance commits, it updates

the confidence. If the load waited for the correct store, the

counter is reset to the maximum value. Otherwise, the counter

is decremented.

3) Predicting dependencies: Each load performs a MDP at

the decode stage. The prediction is done for a set of history

3Alternatively, we could access the history at decode since we know the
number of branches that the load is ahead of.

520

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on January 26,2025 at 00:43:33 UTC from IEEE Xplore.  Restrictions apply. 



lengths considered by the predictor. The more lengths, the

more accurate the prediction will be, but the more searches in

the prediction tables are necessary. The histories and PC are

hashed in the same way as when updating the predictor. In case

of a match for any of the history lengths with a confidence

greater than zero, the store distance is retrieved. If several

matches are found, the larger history length is selected. If there

is no match in the table or the confidence is zero, we predict

no dependence.

Although this process requires a set of searches with different

histories, memory dependence prediction is not as critical as

branch prediction and can take several cycles to provide a

prediction without hurting performance. Prediction can start as

soon as the load is decoded, and the outcome is not used at

least until the load is allocated in the issue queue. Still, high-

performance branch predictors, e.g., TAGE, also do several

searches with different history lengths.

4) Propagating dependencies to the scheduler: If a depen-

dence is predicted between a load and a store, then the store

distance must be converted into a dependence for the load

to wait until the previous store executes. To propagate the

dependence, PHAST employs a similar mechanism as in the

NoSQ microarchitecture and MDP-TAGE. In particular, when

the load is allocated in the LQ, the conflicting store is detected

by subtracting the predicted distance from the index of the

most recent store added in the SQ. It is worth noting that

PHAST, like other store-distance predictors, is independent of

the synchronization method. We opted for using the index of

the SQ as register tag for the store-distance predictors evaluated

in this work.

B. A cost-effective implementation

Our implementation of PHAST consists of a table for each

of the possible history lengths. Tables are searched in parallel

on each prediction, similar to the structure of a TAGE branch

prediction, already adopted in commercial designs [9].

The first decision is the set of selected history lengths.

Tracking the whole range of history lengths is not feasible

from the scalability and lookups point of view. After analyzing

the performance of UnlimitedPHAST with several maximum

history lengths (Section VI-A) we concluded that a maximum

length of 32 suffices for highly accurate prediction. With that

in mind, and inspired by TAGE, we set up a geometric-like

sequence of eight history lengths: (0, 2, 4, 6, 8, 12, 16, 32).

Histories not covered by this sequence are truncated. For

example, all dependencies with a history length of 9, 10, and

11 branches use the 8 branches closer to the load. Note that

the optimal history lengths for MDP differ from the ones for

branch prediction, which implies that an Omnipredictor [28]

cannot be tuned for both types of prediction.

The predictor is accessed with a compressed form of the

history. First, we found out by performing a sensitivity analysis

that taking the five least significant bits of the branch targets

suffices for avoiding most aliasing scenarios. The resulting

history is then folded until S+T bits remain, where S denotes

the number of bits necessary for indexing our prediction

TABLE I: System configuration

4-core Alder Lake Processor [8]
Front-end width 6-wide fetch and decode
Branch predictor TAGE-SC-L [35]
Back-end width 12 execution ports and commit width
ROB/IQ/LQ/SB 512/204/192/114 entries

Memory hierarchy
L1I (private) 32KB, 8 ways [42], 4-cycle hit latency, pipelined,

64 MSHRs
L1D (private) 48KB 12 ways [42], 5-cycle hit latency, pipelined,

64 MSHRs
L1D prefetcher IP-stride with a prefetch degree of 3
L2 (private) 1.25MB, 10 ways [42], 14-cycle hit latency, 64 MSHRs
L3 (shared) 3MB/bank (4 banks), 12 ways [42], 36-cycle hit latency,

64 MSHRs
Memory 4GB, 100-cycle access latency

table and T is the number of bits used for the tag. For the

index, the PC of the load is hashed in the following manner:

(PC
⊕
(PC >> 2)

⊕
(PC >> 5)), while for the tag the PC is

offset by 3 and 7. The hashed PCs and the folded history are

then combined with an exclusive OR.4

Each table is four-way associative, and stores entries contain-

ing a 16-bit tag, a 7-bit store distance field, a 4-bit confidence

counter, and a 2-bit field for the less-recently-used (LRU)

replacement policy. The confidence counter is used to discard

predictions with low confidence due to aliasing. A size for each

table of 128 sets (512 entries) achieves a good performance-area

trade-off and requires just 14.5KB.

V. EXPERIMENTAL METHODOLOGY

Our simulation infrastructure consists of a cycle-accurate

in-house simulator modeling in detail an out-of-order processor

with an x86 instruction set architecture. The core is fed with

an instruction flow (split into micro-operations at decode)

generated by Sniper [6]. The memory hierarchy is modeled

with Gems [21], using its embedded GARNET interconnect

network model [3]. Wrong-path execution is modeled similarly

as in the Scarab simulator [1]. The energy consumption of the

memory dependence predictor is computed with Cacti-P [18]

using a 7nm process technology [2] (see Table II).

The simulated core resembles an Intel Alder Lake microar-

chitecture [30]. The main system parameters are summed up

in Table I. The pipeline has 3 ports for load execution and 2

ports for store execution. The 2-ported LQ and the 3-ported SB

are searched associatively and in parallel with the L1D access,

incurring the same latency as the L1D [10], but allowing 2

and 3 new searches, respectively, each cycle (pipelining).

Stores are issued once both the address and the data registers

are ready. We perform eager squash on branch misprediction for

a fast recovery, but lazy-squash for the less frequent memory

order violations. Delaying memory dependence squashes until

commit simplifies the design of PHAST and, as shown in the

results, the number of mis-speculations is very low in all state-

of-the-art MDPs, so this decision does not cause noticeable

effects in performance.

4This hashes are indeed used by all predictors evaluated in this work as it
improves their performance.
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TABLE II: Configuration of the state-of-the-art predictors

Predictor Tables Total Fields Energy per Size
entries per entry access (pJ) (KB)

Store Sets
SSIT 8K

valid bit
0.2403

18.512 bit SSID

LFST 4K
valid bit

0.1026
10 bit St ID

NoSQ 2 4K

22 bit tag

0.3721 197 bit counter
7 bit distance
2 bit lru

12
7-15 bit tag

1.3103 38.625MDP-TAGE 16K 7 bit distance
1 bit u

MDP-TAGE-S 8 4K

16 bit tag

0.4421 137 bit distance
2 bit lru
1 bit u

PHAST 8 4K

16 bit tag

0.4856 14.54 bit counter
7 bit distance
2 bit lru

We compare PHAST to the state-of-the-art memory depen-

dence predictors described in Section II: Store Sets [7], the

predictor employed by NoSQ [39], and a standalone MDP-

TAGE [28] (i.e., only used for memory dependence prediction)

with 7-bits to track the store distance in order to be able to track

all store distances. The MDP-TAGE features 12 components

that use the (6, 2000) geometric history lengths [34], but

we also evaluate it using the same table and history lengths

configuration as PHAST (labeled as MDP-TAGE-S, for Shorter

history lengths) in order to demonstrate that our improvements

are due to the accurate selection of the history length for

training. Table II details the configuration and storage of the

best performance-storage trade-off version of each predictor,

which is used in the evaluation (the complete performance-

storage analysis is presented in the next section).

Predictors are evaluated with the SPEC CPU 2017 benchmark

rate suite [40]. The applications supporting multiple inputs

have been relabeled with an increasing counter (each counter

meaning a different input). For each pair of application/input,

we generated a set of intervals using Simpoints [29]. For each

interval, we simulate 100M instructions.

VI. RESULTS

This section, first, analyses the potential of the unlimited

version of PHAST. Then, we show the effects of filtering

memory order violations when store-to-load forwarding takes

place. Finally, we compare the top-performing state-of-the-art

predictors against a cost-effective implementation of PHAST.

A. Potential of PHAST and analysis

In this section, we detail the per-application performance

gap of our unlimited version with regard to a perfect memory

dependence predictor. Figure 7 shows the IPC obtained with

UnlimitedPHAST normalized to an ideal scenario. The geo-

metric mean shows that UnlimitedPHAST is 0.47% behind the

ideal predictor. The applications that are farther from the ideal

scenario are 502.gcc 1, 502.gcc 2, 510.parest and 541.leela.
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Fig. 7: IPC of the UnlimitedPHAST predictor normalized to a

perfect memory dependence predictor (higher is better)
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The 502.gcc applications exhibited the highest number of paths

among all applications as well as many occasional dependencies

that were not path dependent. On the other hand, 541.leela had

a total number of paths below average but suffered a similar

level of memory order violations as 502.gcc while having a

higher amount of false dependencies.

Figure 8 presents the MPKI of UnlimitedPHAST. The vast

majority of memory order violations are due to cold misses at

the start of the simulation. Although applications 502.gcc 1
and 502.gcc 3 show a high number of memory order violations,

they are cold misses. Both applications showed an abnormally

high amount of paths to track as already mentioned above.

Regarding false dependencies, some applications such as

510.parest, 531.deepsjeng, 541.leela, and 544.nab present the

highest amount of this type of misprediction, followed by all

variants of 502.gcc. Since our unlimited predictor tracks the full

path from the branch before the conflicting store to the load,

aliasing is discarded as a reason. In these cases, the problem is

due to load-store pairs that are not path-independent but data-

dependent, so they conflict occasionally. Finally, it is worth

noting that false dependencies only impact the performance if

the loads are on the critical path.

Figure 9 shows the number of paths detected per application

for UnlimitedPHAST. Most applications present fewer than
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UnlimitedPHAST
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Fig. 10: Percentage of conflicts detected at each history length

five thousand different paths. Exceptions to this are 500.perl-
bench 2, 502.gcc 1, 2, 3 and 5, 526.blender, 527.cam4, and

531.deepsjeng. Nonetheless, for these applications, most of the

paths are used just a few times, especially the longest ones.

Because of this, we believe that these long histories can be

obviated without much consequences to performance.

Figure 10 depicts the percentage of unique conflicts detected

with UnlimitedPHAST at each history length up to 32 branches

(85.4% of all unique conflicts). Most conflicts appear in the

range of [0−19] branches (73.6% of all unique conflicts). In

addition, dependencies with long history lengths are unlikely

to show at run time, so they have less impact in execution

time. Figure 11 shows how the normalized IPC of the

UnlimitedPHAST is affected when limiting the history length.

The figure reveals that tracking a maximum history length of

32 branches is enough to achieve the performance of unlimited

histories, since most conflicts occur with shorter history lengths.

It is worth noting that for most benchmarks it is enough to

track up to 16 branches, but for a small subset, greater histories

offer performance improvements.

B. Effect of avoiding squashes on forwarding

Figure 12 shows, for our evaluated predictors, the geometric

mean of the IPC normalized with respect to an ideal predictor.

The predictors are both run when the optimization to avoid

squashing for forwarded loads described in Section IV-A1 is

off (No FWD) and on (FWD). This optimization, despite not

being present in state-of-the-art simulators is fundamental for

performance when predicting a single dependent store. In all

the paper, except in this sub-section, our evaluation uses FWD.
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Fig. 11: Normalized IPC of UnlimitedPHAST at several

maximum history lengths (higher is better)
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Fig. 12: IPC of memory dependence predictors against a perfect

predictor with (FWD) and without filtering through forwarding

(higher is better)

Store Sets shows less than a 1% increase in IPC when

enabling the forwarding optimization. The reason for the

variation is the merging of sets. When a store has to be added

to a new set, it will cause the merging of both sets, predicting

false positives in two loads.

On the other hand, the NoSQ predictor and MDP-TAGE

show an increment of around 2% in performance. Since loads

only wait for one store, filtering re-executions helps eliminate

the incorrect memory order violations depicted in Fig 3(c).

PHAST is by large the most benefited predictor, with

an increase of 5%. The reason is that when several stores

match the load address (as depicted in Figure 3), the filtering

allows PHAST to only learn the dependence between the load

and the most recent store. If PHAST learns older incorrect
dependences (Figure 3(c)), there is a high chance that they

have longer histories, making PHAST select them over the

correct dependence. In those cases, PHAST will predict wrong

distances until the saturated counter of that entry reaches zero.

At that point, although PHAST will give the correct distance,

the memory order violation with the incorrect store may re-

trigger. Although NoSQ and MDP-TAGE are also susceptible

to this case, they show a higher IPC without FWD because

they reduce the memory order violations by increasing false

dependencies. In the case of NoSQ, once the saturated counter

is below the threshold, the path-independent table will provide

the wrong prediction until its counter is reduced to below the

threshold, while MDP-TAGE will only reset the entry with a

probability of 1/256 or after 512K accesses.

C. Comparison to state-of-the-art predictors

We start our comparison by showing the performance-storage

trade-off of the evaluated predictors in Figure 13. PHAST is

able to outperform all the state-of-the-art predictors while

requiring less storage. Both PHAST and MDP-TAGE-S use a

similar prediction structure, being the key difference the fact

523

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on January 26,2025 at 00:43:33 UTC from IEEE Xplore.  Restrictions apply. 



5 10 15 20 25 30 35 40
Size (KB)

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

N
or

m
al

iz
ed

 IP
C

Store Sets NoSQ Predictor MDP-TAGE MDP-TAGE-S PHAST

Fig. 13: Performance (higher is better) versus storage of Store

Sets, NoSQ predictor, MDP-TAGE, MDP-TAGE with PHAST

configuration and PHAST at different budgets compared against

an ideal MDP

that PHAST chooses the minimum effective history length for

training, while MDP-TAGE starts the training at the lower

predetermined length and increases it on mispredictions. Even

with a budget of 7.25 KB, PHAST still shows a higher

IPC (97.74% compared to the ideal) than the state-of-the-art

predictors. Store Sets and the NoSQ predictor show practically

no improvement after doubling their storage. For the rest of

the evaluation, we use for each predictor the size that achieves

better performance-storage trade-off, detailed in Table II.

The MPKI for each application is depicted in Figure 14. Store

Sets includes an implicit path sensitivity since the dependence

will only be predicted if the instance of the store is present [39].

Nonetheless, sharing the entries of the SSIT between loads

and stores is a double-edged sword: on the one hand, it helps

to reduce false dependencies by not making the load stall

if an instance of the dependent store is not present. On the

other hand, merging sets increase false dependencies. Adding

explicit path information to the memory dependence predictor

helps in reducing mispeculations in NoSQ and MPD-TAGE.

MDP-TAGE-S is able to reduce false negatives with respect

to MDP-TAGE thanks to the use of shorter histories. This

supports our claim that an Omnipredictor cannot be tuned for

both MDP and branch prediction. However, MDP-TAGE-S

has the highest MPKI due to false dependencies due to the

large number of tables with short histories, which causes a

load to require several mispredictions until it finds its right

history length. PHAST presents the lower MPKI for both false

negatives and false positives.

Our unlimited implementation of PHAST showed low

performance in applications 502.gcc 1 to 502.gcc 3, and

541.leela. However, in the case of 502.gcc, PHAST is able to

greatly decrease the MPKI compared to the rest of the state-

of-the-art predictors. While the MPKI for false negatives that

PHAST predicted is on par with NoSQ and MDP-TAGE-S,

the false positives are reduced to half.

Regarding 541.leela, it did not have many path-dependent

conflicts, which increased the false positive mispredictions of

PHAST. Once the saturated counter was decreased to zero, the

next time the conflict is presented, PHAST would not predict

it, leading to a memory order violation. NoSQ is able to reduce

the false negative MPKI with the use of the path-independent

table, which in turn increases the false positive MPKI.

On the other hand, PHAST exhibits great performance

in applications such as 500.perlbench 1, 511.povray, and

531.deepsjeng, where both types of MPKI are significantly

decreased. 511.povray, is an application where memory depen-

dencies are tightly connected to branch history. This has been

corroborated by Perais and Seznec in their MDP-TAGE [27],

as it was able to improve the performance of this application.

However, the use of not-well-adjusted history lengths leads to

a loss of accuracy.

Figure 15 shows the IPC for all applications normalized to

an ideal predictor. PHAST is the closest to the ideal MDP with

a gap of 1.5%, improving over Store Sets by 5.05% (up to

39.7%), the NoSQ predictor by 1.29% (up to 22.0%), MDP-

TAGE by 3.04% (up to 38.2%) and MDP-TAGE-S by 2.10%

(up to 17.6%). These results come as a consequence of the

MPKI reduction shown from each application in Figure 14.

Another issue regarding Store Sets is that when multiple

instances of a store are in-flight, the load will be always made

dependent on the youngest of those instances while also forcing

all instances to execute in-order. NoSQ and PHAST are able to

overcome this problem by using explicit path information. This

can be seen in applications such as 500.perlbench 3, where

NosQ, PHAST, and even MDP-TAGE achieve at least a 95%

of the IPC compared to an ideal predictor, while Store Sets

falls behind.

MDP-TAGE performs slightly better than Store Sets because

it always marks a load to depend on a unique store, at most.

However, it has a higher amount of memory order violations

compared to NoSQ and PHAST because when predicting for

a single store, accuracy is vital. MDP-TAGE trains blindly on

a set of geometric history lengths, which accounts for many

mispredictions that either result in unnecessary stalls or in

squashes. Although the NoSQ predictor uses a fixed length, it

avoids many of the squashes with the path-insensitive table at

the cost of increasing the false dependencies.

Regarding NoSQ, our PHAST implementation has a speedup

of 1.29%, achieving the same or better performance in all

applications with the exception of 525.x264 and 541.leela.

Overall, both predictors present a low MPKI related to memory

order violations but, PHAST has fewer MPKI due to false

dependencies, which makes a total reduction in MPKI of

62% (20% less MPKI in memory order violations and 65%

less MPKI in false dependencies). The main reason for this

improvement is using only the path information comprehended

between the conflicting store and the dependent load. NoSQ,

by using a fixed history length, can either lead to an explosion

of paths or extra false positives.

Finally, regarding energy consumption, it is key to highlight

that PHAST reduces the number of re-executed instructions

by 2% with respect to the NoSQ predictor and 8% with

respect to Store Sets, which implies important reductions in

the energy consumption of the entire core. Figure 16 shows the

energy consumption of the predictors, broken down into reads

and writes. The main observation is that the consumption of
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Fig. 14: MPKI of the evaluated memory dependence predictors with the exception of CHT (lower is better)
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standard TAGE-like predictors is much higher than the other

memory dependence predictors. Hence, compared to the vast

structures (branch predictors and BTBs) required to steer fetch

accurately, the consumption of the memory dependent predictor

represents a small fraction.

VII. RELATED WORK

Önder and Gupta [26] analyzed the main drawbacks of the

Store Sets predictor: the serialization of the stores of the same

set and the inability to distinguish dependencies among multiple

instances of the same store. If Store Sets allows out-of-order

issuing of the stores of a set, false memory order violations
may appear between the load and stores from the set other

than the correct provider. To tackle this problem, they moved

the memory disambiguation to commit stage by comparing the

value obtained by the load with the value of the store. If the

values are the same, the memory order violation is ignored. In

our case, the filtering done with the forwarding (Section IV-A1)

can achieve a similar result (except for the case of silent stores)

without having to do an extra check on commit.

NoSQ [39] performs speculative memory bypassing (SMB)

[25], [43] without an SQ. It makes use of the Store Vulnerability

Window (SVW) described by Roth et al. [31]. The SVW

filters re-execution with the help of a Store Sequence Bloom

Filter (SSBF), which is a small untagged direct mapped

address-indexed table that tracks the sequence number of the

youngest committed store that wrote in each address. When

a load executes, it records the sequence number of the last

store that committed. If a store forwards the data to the

load, that sequence number will be overwritten with the one

corresponding to the forwarding store. Later, prior to commit,

the load will access the SSBF with its target address and check

if the sequence number contained is younger than the one it

recorded. The rule to skip re-execution is different for bypassing

and non-bypassing loads. The latter will perform an inequality
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test, skipping re-execution if the sequence number recorded by

the load is less than or equal to the sequence number written

in the entry of the SSBF. For bypassing loads, re-execution can

only be skipped if the sequence numbers are the same. NoSQ

upgraded the SSBF to a tagged set-associative table managed in

a FIFO fashion, which improves the filtering of squashes.Again,

PHAST is also able to filter squashes when older stores than

a forwarding one conflict with the load (Section IV-A1).

Later, Jin and Önder [15] proposed improvements to the

NoSQ mechanism. When NoSQ has low confidence for a

predicted memory dependence, instead of bypassing, it forces

the load to wait until the store is committed and the cache is

updated. To eliminate the need of delaying these low confidence

loads, the authors proposed to perform predication and take

both the cache data and the store data. If the prediction was

right, the store data is kept; otherwise, the cache value is used.

Alves et al. [4] proposed a mechanism to filter the L1/TLB

probes by using a store-queue/buffer/cache (S/QBC). This adds

a third logical partition to the SQ/SB that maintains data that

has already been written back. A memory dependence predictor

based on store distance [44] is used to predict a hit or miss in the

S/QBC. Hits predicted correctly reduce energy consumption

since the L1/TLB is not probed, while correctly predicted

misses reduce the latency by letting the load probe both the

S/QBC and L1/TLB in parallel.

Lustig et al. [20] make use of memory dependence prediction

and memory disambiguation to achieve high-performance

forwarding. Memory dependence prediction is used to anticipate

the same-physical address dependencies between stores and

loads. Later, the memory disambiguation will assert the

prediction. If correct, the pairing of the store and the load

ensures that synonyms can be detected while maintaining the

TLB off the critical path.

Huang et al. [12] propose the use of software assistance to

identify loads that will not conflict with older unresolved stores

and prevent them from competing for the LQ and SQ resources.

The idea is to analyze the binary with software and annotate

it. Later, the hardware can make use of the annotations to

know what set of dynamic memory operations needs memory

disambiguation. These instructions, guaranteed not to overlap

with older unresolved stores, do not need to check the SQ

when they execute, nor do they need an entry in the LQ.

Hasan [11] proposes a perceptron-based memory dependence

predictor designed for energy-constrained devices. The scheme

is based on the application of perceptron to branch prediction

and uses a history vector containing the results of the past

n loads retired and whether or not they caused a violation.

The resulting memory dependence predictor was able to gain

almost as much IPC speedup as the Store Sets.

VIII. CONCLUSION

We have presented PHAST, a memory dependence predictor

that is trained with the execution path between the conflicting

store and its dependent load and predicts the exact distance of

the conflicting store on that path. We have shown that using

that path information, an unlimited predictor can practically

reach the performance of an ideal predictor while keeping the

number of tracked paths reduced.

With a budget of just 14.5KB PHAST outperforms all the

state-of-the-art predictors evaluated in this work (speedups of

5.05% over Store Sets, 3.04% over MDP-TAGE and 1.29%

over the NoSQ predictor, with improvements of up to 22%

compared against NoSQ) and with a performance gap of 1.5%

with respect to an ideal predictor.
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