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Abstract—Modern data center applications experience frequent
branch mispredictions – degrading performance, increasing cost,
and reducing energy efficiency in data centers. Even the state-of-
the-art branch predictor, TAGE-SC-L, suffers from an average
branch Mispredictions Per Kilo Instructions (branch-MPKI) of
3.0 (0.5-7.2) for these applications since their large code footprints
exhaust TAGE-SC-L’s intended capacity.

In this work, we propose Whisper, a novel profile-guided
mechanism to avoid branch mispredictions. Whisper investigates
the in-production profile of data center applications to identify
precise program contexts that lead to branch mispredictions.
Corresponding prediction hints are then inserted into code
to strategically avoid those mispredictions during program
execution. Whisper presents three novel profile-guided techniques:
(1) hashed history correlation which efficiently encodes hard-to-
predict correlations in branch history using lightweight Boolean
formulas, (2) randomized formula testing which selects a locally-
optimal Boolean formula from a randomly selected subset of
possible formulas to predict a branch, and (3) the extension of
Read-Once Monotone Boolean Formulas with Implication and
Converse Non-Implication to improve the branch history coverage
of these formulas with minimal overhead.

We evaluate Whisper on 12 widely-used data center applica-
tions and demonstrate that Whisper enables traditional branch
predictors to achieve a speedup close to that of an ideal branch
predictor. Specifically, Whisper achieves an average speedup of
2.8% (0.4%-4.6%) by reducing 16.8% (1.7%-32.4%) of branch
mispredictions over TAGE-SC-L and outperforms the state-of-
the-art profile-guided branch prediction mechanisms by 7.9% on
average.

I. INTRODUCTION

Modern data center applications exhibit large instruction

footprints and suffer from frequent frontend and misprediction1

stalls, incurring performance losses worth millions of dollars [1,

2, 3, 4, 5, 6, 7]. These applications contain complex application

logic [1, 2, 3] and frequently use different libraries [6], language

runtimes [8, 9], and kernel modules [3, 10]. As a result, these

applications’ hot code footprints range from tens to hundreds

of megabytes [1, 3, 6, 11] which overwhelm on-chip cache

structures like the Instruction cache (I-cache), Branch Target

Buffer (BTB), and the branch predictor, whose sizes are only

hundreds of kilobytes [5]. Consequently, processors are unable

to sufficiently fetch useful instructions [3] when executing

modern data center applications – leading to frequent frontend

and misprediction stalls [5]. These stalls notably increase the

1we use ‘branch misprediction’ and ‘misprediction’ interchangeably

Total Cost of Ownership (TCO) of a data center [3, 6], and

even a single-digit reduction of these stalls can save millions

of dollars in management and energy costs while significantly

reducing the global carbon footprint [4].

Several techniques have been proposed to address these

challenges including decoupled frontends [12] leveraging Fetch

Directed Instruction Prefetching (FDIP) [13, 14, 15] and Profile-

Guided Optimizations (PGO) [11, 16, 17, 18, 19, 20, 21] that are

efficiently supported by today’s hardware [22, 23, 24, 25, 26]

and software [1, 3, 17, 27, 28] systems.

On the hardware side, FDIP avoids the tight coupling

between branch prediction and instruction fetch, enabling

branch predictor-guided instruction prefetching to avoid fron-

tend stalls. As long as FDIP can run sufficiently ahead, it

can eliminate frontend stalls effectively. Thereby, FDIP’s

performance depends on the accuracy of the branch predictor, as

frequent mispredictions limit FDIP’s effectiveness in mitigating

frontend stalls [29, 30, 31, 32].

Profile-guided code layout optimizations address the large

instruction footprint problem by placing frequently executed

I-cache lines together, thereby improving instruction locality.

These techniques do not require any hardware modifications,

and although these techniques are sensitive to profile qual-

ity [33], they work well in practice. Profiles for data center

applications change slowly over several weeks [17] while

companies like Google and Facebook deploy new binaries every

few days – giving PGO techniques ample opportunity to adapt

to changing profiles [1, 11, 17]. As a result, these techniques

are widely-used in today’s data centers [1, 3, 11, 17, 27]. For

example, half of all CPU cycles in Google data centers execute

instructions from PGO-optimized applications [17]. Unfortu-

nately, existing PGO techniques primarily reduce frontend stalls

and eliminate less than 10% of all branch mispredictions [11].

To quantify the performance implications of branch mis-

predictions, we extensively investigate the behavior of 12

modern data center applications to show that their large code

footprints trigger frequent branch mispredictions, significantly

impeding the efficacy of state-of-the-art techniques. In partic-

ular, we find that even a 64KB TAGE-SC-L [34] predictor

experiences an average branch-MPKI of 3.0 (0.5-7.2) for these

applications primarily due to capacity reasons. Furthermore,

our investigation reveals that state-of-the-art profile-guided

branch prediction mechanisms, BranchNet [35] and Read-Once

19

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-6654-6272-3/22/$31.00 ©2022 IEEE
DOI 10.1109/MICRO56248.2022.00017

20
22

 5
5t

h 
IE

EE
/A

C
M

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
M

ic
ro

ar
ch

ite
ct

ur
e 

(M
IC

R
O

) |
 9

78
-1

-6
65

4-
62

72
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

M
IC

R
O

56
24

8.
20

22
.0

00
17

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on March 06,2023 at 16:47:12 UTC from IEEE Xplore.  Restrictions apply. 



Monotone Boolean Formulas (ROMBF) [36] reduce only 8.9%

of all branch mispredictions that TAGE-SC-L incurs as they

also fail to scale for large code footprints.

In this work, we focus on eliminating branch mispredictions

with Whisper—a profile-guided technique that identifies branch

instructions causing frequent mispredictions, correlates their

direction with many prior branch directions (i.e., history), and

efficiently encodes this correlation using Boolean formulas.

In particular, Whisper introduces three novel techniques to

improve profile-guided branch prediction and reduces 16.8% of

all mispredictions by leveraging (1) hashed history correlation,

(2) randomized Boolean formula testing, and (3) an extension

of ROMBF [36] with Boolean Implication and Converse Non-
Implication operations.

Hashed history correlation. Prior profile-guided techniques

either consider extremely long histories requiring kilobytes

of metadata storage per static branch [35], or utilize short

(typically 4 or 8) fixed-length histories that fail to predict

many branches accurately [36]. To consider long histories

without incurring metadata overhead, we propose hashed history

correlation that correlates branch outcomes with a hash of

variable-length histories in a profile-guided manner. To find the

best history length for predicting a branch, Whisper considers

different lengths from a geometric series and picks the length

that shows the strongest correlation. Whisper converts histories

of that length into a fixed-length (8-bit) hashed history and

efficiently encodes this hashed history using Boolean formulas.

Randomized formula testing. Determining the optimal

boolean formula for predicting the branch outcome based on an

N-bit history, requires exploring a search space of size 22N
. To

address this challenge, Whisper proposes randomized formula

testing, a technique that only considers a random, yet uniform,

subset of all prediction formulas as candidates, selecting the

best formula for predicting branches. Whisper finds near

optimal formulas, comparable to exhaustive exploration (88.3%

on average) while considering only 0.1% of all possible

prediction formulas.

Implication and Converse Non-Implication operations.
Besides reducing the search space of Boolean formulas,

Whisper also improves their prediction accuracy. In particular,

Whisper introduces Implication and Converse Non-Implication

that improve prediction accuracy over ROMBF by 1.5% while

maintaining the low storage cost of ROMBF.

Whisper enables these three contributions with a novel PGO

technique. In particular, it collects the execution profile of

data center applications in production using efficient hardware

support [37, 38] and then performs an offline branch analysis.

The analysis yields optimized ROMBF enabling the injection

of brhint instructions for branches that cause frequent

mispredictions. The brhint instruction efficiently encodes

precise history lengths, a Boolean formula to differentiate taken

histories from not-taken histories (and vice versa), and a pointer

to the corresponding branch instruction. Using the state-of-the-

art profile-guided correlation algorithm [18, 20, 21], Whisper
inserts the brhint instruction in a suitable predecessor of

the branch at link time to ensure hint timeliness. At run time,

Whisper utilizes the hint of a corresponding branch instruction

to compare the hashed dynamic history against the Boolean

formula for predicting the branch outcome. Thus, Whisper
leverages hardware/software co-design to eliminate data center

applications’ branch mispredictions in a profile-guided manner.

We evaluate Whisper for 12 popular data center applications

that suffer from frequent frontend and misprediction stalls

and show that, on average, Whisper eliminates 16.8% of all

branch mispredictions over the 64KB state-of-the-art TAGE-

SC-L [34] baseline. Due to this 1.7%-32.4% reduction in

mispredictions, Whisper achieves an average speedup of 2.8%

(0.4%-4.6%) for data center applications. Compared to state-of-

the-art profile-guided branch prediction mechanisms [35, 36],

Whisper achieves 1.1% greater speedup while reducing 7.9%

more branch mispredictions. By injecting brhint instructions,

Whisper increases the code footprint by 11.4% and executes

9.8% extra dynamic instructions.

We make the following contributions:

• An extensive investigation of branch instructions’ behavior

in data center applications demonstrating that large code

footprints of these applications trigger frequent branch

mispredictions, significantly limiting the overall performance.

• Whisper: a novel profile-guided mechanism to eliminate

branch mispredictions in data center applications. Whisper
correlates a given branch’s direction with many prior branch

directions, efficiently encodes this correlation using Boolean

formulas, and improves the overall efficacy of branch

prediction.

• A comprehensive evaluation of Whisper for 12 data center

applications that shows that Whisper can eliminate costly

branch mispredictions (16.8% on average) and achieve

substantial performance benefits (2.8% on average).

II. BRANCH PREDICTION CHALLENGES FOR DATA CENTER

APPLICATIONS

In this section, we thoroughly investigate the behavior of

branch instructions from 12 real-world data center applications

to show that branch mispredictions significantly limit their

overall performance. Then, we explain why state-of-the-art

branch predictors fail to eliminate these branch mispredictions.

Finally, we provide valuable insights on how to overcome

branch mispredictions for data center applications.

A. Experimental methodology

Data center applications. Recent work from Facebook and

Google reports that their widely-deployed data center applica-

tions exhibit multi-megabyte code footprints [1, 3, 6, 11] and

consequently lose more than 15% of all pipeline slots directly

due to branch mispredictions [4, 5]. Due to large instruction

footprints, these applications also lose more than 29% of all

pipeline slots due to frontend stalls [3, 4, 5, 6]. Accurate and

timely branch predictions can effectively hide a large fraction of

these frontend stalls because of the decoupled nature [12, 13]

of modern processor frontends [22, 23, 24, 25]. Since these

applications and their corresponding workloads are proprietary,

we use open-source applications and workloads used by prior

20

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on March 06,2023 at 16:47:12 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Data center applications and workloads we study.

Applications Workloads
MySQL [43] Different TPC-C queries [44]
PostgreSQL [45] Different pgbench queries [46]
Clang [47] Building LLVM [48]
Python [49] pyperformance benchmarks [50]
Finagle-chirper [51]

Java Renaissance benchmark suite [52]
Finagle-http [51]
Cassandra [53]

Java DaCapo benchmark suite [54]Kafka [55]
Tomcat [56]
Drupal [57]

Facebook’s OSS-performance suite [58]Wordpress [59]
Mediawiki [60]

TABLE II: Simulator parameters

Parameter Value
CPU 3.2GHz, 6-wide OOO, 24-entry FTQ, 224-entry ROB,

97-entry RS
Branch predic-
tion unit

64KB TAGE-SC-L [34] (up to 12-instruction), 8192-
entry 4-way BTB, 32-entry RAS, 4096-entry IBTB

Caches 32KB 8-way L1i, 32KB 8-way L1d, 1MB 16-way
unified L2, 10MB 20-way shared L3 per socket

work [1, 11, 18, 20, 21, 39, 40, 41, 42] with large code footprints

that similarly cause frequent branch mispredictions and frontend

stalls. We describe these data center applications and their

workloads in Table I.

Trace collection and simulation parameters. We collect these

applications’ traces using Intel PT [37] and simulate these

traces using the Scarab [61] simulator. Table II lists different

simulation parameters that resemble a recent state-of-the-art

industry baseline [14, 15].

B. Why is branch prediction important for data center appli-
cations?

To understand the importance of the branch prediction

mechanism for data center applications, we perform a limit

study to measure the maximum performance benefits of an

ideal branch direction predictor over the state-of-the-art 64KB

TAGE-SC-L [34] predictor. For this ideal branch predictor,

only the prediction direction is ideal, i.e., it always predicts

taken and not-taken branches correctly. In Fig. 1, we show

that the ideal branch direction predictor achieves an average

Instructions Per Cycle (IPC) speedup of 12.4% (1.3%-26.4%)

over the state-of-the-art TAGE-SC-L branch predictor.

To understand the reason behind this significant performance

gap, we break down the speedup into two categories: (1)

speedup due to avoiding branch misprediction stalls (i.e.,
pipeline squashes [31]) and (2) speedup due to avoiding

frontend stalls by performing FDIP [12, 13]. For traditional

benchmarks (e.g., SPEC2017), avoiding misprediction stalls is

the primary benefit of ideal branch prediction. However, for

data center applications, eliminating branch mispredictions is

also important as it reduces I-cache misses through FDIP.

As also shown in Fig. 1, among the 12.4% mean IPC speedup

provided by the ideal branch predictor, an average IPC speedup

of 7.9% (0.7%-17.1%) is provided by eliminating all branch

misprediction stalls for these applications. On top of that, the

ideal branch predictor achieves an additional 4.5% speedup on

average (0.5%-11.5%) by eliminating frontend stalls (I-cache
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Fig. 1: Data center application limit study: an ideal branch

predictor achieves an average IPC speedup of 12.4% (1.3%-

26.4%) over the state-of-the-art 64KB TAGE-SC-L baseline.
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Fig. 2: Branch Mispredictions Per Kilo Instructions (branch-

MPKI) for 12 data center applications: 64KB TAGE-SC-L

experiences an average branch-MPKI of 3.0 (0.5-7.2) for these

applications.

misses) for these applications. Therefore, eliminating branch

mispredictions is extremely critical for data center applications.

C. Why does the state-of-the-art TAGE-SC-L branch predictor
fall short?

We now investigate why the state-of-the-art TAGE-SC-L

branch predictor is insufficient for data center applications

with large code footprints.

Fig. 2 shows the branch-MPKI of 64KB TAGE-SC-L

across all 12 data center applications. While measuring the

branch-MPKI, we only consider mispredictions caused by

conditional branch instructions, following the methodology

of 5th Championship Branch Prediction (CBP-5) [62]. As

shown in Fig. 2, TAGE-SC-L exhibits a branch-MPKI in the

range of 0.5-7.2 (3.0 on average) for the analyzed data center

applications. To understand the reason behind these frequent

branch mispredictions, we categorize all branch mispredictions

TAGE-SC-L induces among four different classes: (1) Compul-

sory mispredictions, (2) Capacity mispredictions, (3) Conflict

mispredictions, and (4) Conditional-on-data mispredictions. We

perform this classification by analyzing consecutive accesses of

a branch substream—the combination [63, 64, 65, 66, 67, 68, 69]

of branch instruction’s Program Counter (PC) and history of

different lengths.

Compulsory [70, 71, 72] mispredictions occur when TAGE-

SC-L predicts a branch for the first time and the predicted direc-

tion does not match with the true direction. Capacity [70, 71, 72]

mispredictions occur when the reuse distance [73, 74] of a

branch is too large so that the substream is evicted from

the TAGE-SC-L tables. Conflict [70, 71, 72] mispredictions

occur when the associativity or the replacement mechanism for
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Fig. 3: Breakdown of all branch mispredictions among 4

different classes [70, 71, 72]: data center applications suffer

from frequent branch mispredictions primarily (76.4% of all

mispredictions) due to capacity issues.

TAGE-SC-L tables is not effective enough to retain the branch

substream between two consecutive accesses. Conditional-
on-data mispredictions occur when the branch’s direction

depends on data values and does not correlate with prior history.

Consequently, history-based predictors like TAGE-SC-L cannot

achieve high prediction accuracy for such branches [75].

Fig. 3 shows the breakdown of all branch mispredictions

TAGE-SC-L incurs across different categories. As shown, the

majority of these mispredictions occur due to capacity reasons

(on average 76.4%).

This result reveals that the working set size of branch

substreams for data center applications is significantly larger

than the capacity of even the 64KB state-of-the-art TAGE-

SC-L branch predictor. Furthermore, this characterization

confirms that large instruction footprints of modern data

center applications put extreme pressure on branch predictors

in addition to the instruction cache, instruction translation

lookaside buffer, and branch target buffer as prior works have

observed [1, 2, 3, 4, 5, 6, 7, 9, 11, 17, 18, 20, 21, 39, 40, 41, 42].

D. Why do existing profile-guided techniques fall short?

We now investigate the degree to which prior profile-guided

branch prediction techniques solve the large branch footprint

problem of modern data center applications. We primarily

present the analysis for BranchNet [35], the most recent profile-

guided branch prediction technique, and ROMBF [36], the most

effective profile-guided technique for data center applications

in our study. These techniques are hybrid in nature as they use

profile-guided techniques for hard-to-predict branches and use

TAGE-SC-L for remaining branches.

BranchNet. BranchNet [35] deploys Convolutional Neural

Networks (CNNs) for hard-to-predict branches together with

traditional online branch predictors (e.g., TAGE-SC-L). To train

CNNs for these branches, BranchNet leverages offline profiles

from multiple application inputs. At run time, TAGE-SC-L

makes predictions for the vast majority of branches while CNNs

predict the few hard-to-predict branches. Based on metadata

storage, BranchNet also proposes different variants of CNNs:

(1) 8KB-BranchNet and (2) 32KB-BranchNet. To understand

the potential of CNNs for predicting branches, we also study

BranchNet with no storage restrictions, unlimited-BranchNet.

Read-Once Monotone Boolean Formulas (ROMBF). Prior

work [36] utilizes Boolean formulas to predict branch outcomes
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Fig. 4: Performance of prior profile-guided branch prediction

techniques [35, 36] over the 64KB TAGE-SC-L baseline: these

techniques reduce only 3.4%-8.9% of all branch mispredic-

tions TAGE-SC-L incurs. Even with unlimited storage, this

impractical variant of BranchNet [35] achieves an average

misprediction reduction of only 11.9%.

based on history. In particular, every branch outcome in the

history represents a Boolean variable that is combined using

logical operations (e.g., and, or) to predict a branch’s direction.

Branch prediction using Boolean formulas faces two key

challenges. First, to determine the optimal Boolean formula

that provides the best prediction accuracy for a history length

of N, the approach has to explore 22N
all possible formulas.

Second, to encode the Boolean formula, the approach requires

2N-bit storage. Prior work [36] addresses only the second

challenge by using a subset of Boolean formulas where every

variable appears exactly once and by allowing only two logical

operations and and or. Consequently, prior work [36] encodes

a ROMBF of N variables using only N−1 bits. Using such

a compact encoding, prior work annotates branch instructions

with N-bit hints to make branch predictions based on the

outcome of the last N branches. The study also proposes

different variants of ROMBF (4-bit and 8-bit) for different

values of N. For brevity, we refer to this prior work [36] as

ROMBF.

To assess the potential of these existing profile-guided

branch prediction mechanisms, we evaluate BranchNet and

ROMBF over the 64KB TAGE-SC-L baseline. As shown in

Fig. 4, data center applications do not significantly benefit

from these existing mechanisms. Specifically, the state-of-the-

art profile-guided technique, BranchNet, reduces only 3.4%

and 6.6% of all branch mispredictions with 8KB and 32KB

metadata storage. Even with the unlimited metadata storage,

BranchNet only avoids 11.9% of all branch mispredictions.

On the other hand, ROMBF reduces 8.4% and 8.9% of all

branch mispredictions using 4-bit and 8-bit formulas. Next,

we investigate the performance of these prior profile-guided

techniques to understand why they fail to avoid so many branch

mispredictions.

BranchNet employs CNNs to predict hard-to-predict

branches assuming that only a few static branches dispro-

portionately cause the vast majority of all mispredictions for

an application. For example, as shown in Fig. 5, the top 50

static branches experience more than 60% of all mispredic-

tions for SPEC2017 integer speed benchmarks (e.g., leela,

xz, omnetpp, deepsjeng, and mcf). Consequently, for

these benchmarks, BranchNet can reduce 12.6%-34% of all

22
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Fig. 5: The distribution of all branch mispredictions across

different branch instructions using TAGE-SC-L. In general,

SPEC benchmarks satisfy BranchNet’s [35] assumption as only

a top-few (e.g., 50) branch instructions cause the majority

(e.g., > 60%) of all mispredictions. Data center applications,

however, do not satisfy this assumption as mispredictions are

distributed across thousands of different branches.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpressAvg
0

50

100

%
of

m
is

pr
ed

ic
ti

on
s

History length
1-8 9-16 17-32 33-64 65-128 129-256 257-512 512-1024 1024+

Fig. 6: Distributions of all branch mispredictions among dif-

ferent history lengths. Predicting a branch requires correlating

its direction with even 1024 prior branch outcomes.

mispredictions by allocating 256B-2KB metadata storage for

each of these branches’ CNNs. However, as also shown in

Fig. 5, mispredictions for data center applications and gcc
(from SPEC) are more uniformly distributed across many static

branches. Consequently, for these applications, even unlimited-

BranchNet can only avoid 11.9% of all mispredictions while

using 2KB CNNs for each static branch.

ROMBF predicts a branch by applying an N-bit formula

to the last N branch outcomes. For example, 4-bit and 8-bit

formulas can predict branches based on only the last 4 and

8 branch outcomes. As shown in Fig. 6, most branches in

our data center applications correlate with branch histories of

size 32-1024 and, consequently, 4-bit and 8-bit formulas are

insufficient. As ROMBF requires N-bit hints to consider N-bit

histories, it does not scale well for long branch histories.

Furthermore, ROMBF only considers and and or operators

to compute Boolean formulas along with contradiction (i.e.,
never taken) and tautology (i.e., always taken). This limitation

assumes that these formulas can encode relevant histories

for the large majority of branches without any quantitative

insight. We characterize the implications of this assumption

in Fig. 7 by showing the distribution of all branches among

formulas using contradiction, tautology, and, or, implication,

and converse non-implication. As shown, while formulas using

and (28.9%) and or (5.3%) operations represent histories of

a significant number of branches, formulas using implication

(8.8%) and converse non-implication (9.2%) operations also
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Fig. 7: Distributions of branch executions among different

logical operations used in the Boolean formula to predict a

branch. And (28.9%), always-taken (23.3%), converse non-

implication (9.2%), implication (8.8%), never-taken (5.9%),

and Or (5.3%) operations together can predict more than 80%

of all branch executions.

encode histories of a large number of branches. Consequently,

ROMBF can not avoid mispredictions for these branches.

In §V-B (Fig. 16) we will show that BranchNet requires

orders of magnitude higher training time than ROMBF, while

Whisper outperforms both approaches. Next, we use the insights

from these characterizations to design Whisper, our profile-

guided technique to eliminate branch mispredictions for data

center applications.

III. DESIGN OF WHISPER

Our investigation reveals that ideal branch prediction signifi-

cantly improves the performance of data center applications as

their large branch footprints exhaust 64KB TAGE-SC-L [34].

State-of-the-art profile-guided mechanisms [35, 36] also fail

to eliminate a large majority of branch mispredictions for

these applications. We propose Whisper, a combination of

three novel profile-guided techniques to improve branch predic-

tion. Whisper introduces hashed history correlation to predict

branches that correlate with long variable-length histories.

Furthermore, Whisper proposes randomized formula testing

to reduce the massive offline training time of existing profile-

guided branch prediction techniques [35, 36] without affecting

the prediction accuracy. Finally, Whisper extends ROMBF by

including Implication and Converse Non-Implication operations

to predict branches accurately.

Whisper leverages profile-guided analysis at link time to

correlate branches with previous branch outcomes using effi-

cient hardware-based control flow tracing support such as Intel

PT [37] and LBR [38]. Next, Whisper maps values of variable-

length histories corresponding to different branch outcomes into

fixed-length hashed values and encodes these hashed values

using an extended ROMBF formula. To pick the formula for

any given branch, Whisper considers a randomized subset

of all formulas and selects the formula yielding the fewest

mispredictions for all hashed histories of the branch. Whisper
annotates every hard-to-predict branch with its corresponding

formula to provide the branch predictor in hardware with the

following information: (1) how many prior branches in the

global history are relevant for predicting the current branch,

and (2) how the outcome of these prior branches need to

be combined to compute the direction of the current branch.
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Whisper introduces minor hardware modifications to match

the dynamic history with an annotated formula, predicting

the corresponding branch outcome. We describe Whisper’s

in-depth usage model in §IV. Now, we discuss the novel

techniques Whisper proposes along with its micro-architectural

modifications in greater detail.

A. Hashed history correlation

As shown in §II-D, the computational complexity of learning

optimal ROMBF and their storage overhead increases linearly

with the number of considered variables. In the context

of branch prediction, these variables are previous branch

directions, i.e., the global branch history leading into a branch.

As a result, prior work [36] is limited in accuracy by only

considering short histories. To address this challenge, Whisper
introduces hashed history correlation, providing three key

capabilities: (1) an efficient encoding scheme of large and

variable-length histories, (2) a technique to correlate a subset

of the branch history with a specific branch outcome, and (3)

a mechanism to represent different history values utilizing a

single formula.

History hashing. Whisper introduces history hashing that

converts the history of any arbitrary length into a fixed length.

For example, Whisper transforms the 64-bit history (i.e., the

outcome of the most recent 64 branches) into a 16-bit hashed

history by dividing the 64-bit value into four 16-bit chunks

and applying logical operations (e.g., and, or, xor) to these

16-bit chunks. We empirically study the sensitivity of Whisper’s

hashing mechanism for different hashed lengths and different

logical operations to find that the 8-bit hash and xor operations

provide a good trade-off between instruction footprint overhead

and prediction accuracy. As branch predictors used in today’s

hardware already use a similar hashing mechanism [76],

Whisper does not introduce significant micro-architectural

modifications to perform history hashing.

History correlation. Directions for different branches correlate

with prior histories of different lengths. Some branches correlate

with the outcome of only the most recent branches while other

branches correlate with the outcome of relatively older branches.

Whisper addresses this challenge by considering various history

lengths for each static branch and selecting the length that

provides the highest accuracy for that branch using profile

samples.

Whisper’s hashed history correlation technique requires three

parameters: (1) the minimum history length a, (2) the maximum

history length N, and (3) the number of different history lengths

m. To find the best history length for a branch, Whisper analyzes

all execution samples, referred to as substreams, for that branch

using an application profile collected via efficient hardware

support (Intel PT [37] and LBR [38]). Each substream contains

two components: (1) the actual direction of the branch execution

and (2) the directions of the most recent N branches before that

branch. Using these scenarios, Whisper determines the best

history length and formula for a given branch by evaluating a

list of potential history lengths.

For each branch, Whisper considers different history

lengths that follow a geometric series [77], up to the

m-th term, starting with the minimum history length, a,

i.e., a,ar,ar2, · · · ,arm−1, where r = (N
a )

( 1
m−1 ). At each history

length in the series, Whisper encodes the branch history up

to this length. As described above, to minimize storage costs,

Whisper does not evaluate raw, full-length histories. Instead,

Whisper operates on hashed histories, allowing it to compare

histories of different original lengths. Next, Whisper determines

a Boolean formula that best fits the substream (see §III-B). This

is done by using the total number of taken and not-taken counts

for the hashed partial history across all samples for that branch.

Then, Whisper counts the total number of mispredictions that

the current history length and formula incur. If there is a

history length that results in the fewest mispredictions for that

branch, then that history length is considered the best and used

later at run time. If none of these history lengths improve

accuracy when compared to the profiled results, then Whisper
indicates that the given branch should be predicted in a purely

dynamic manner (i.e., using the underlying branch predictor).

Additionally, we empirically study Whisper’s sensitivity to

different parameters (a, N, and m) and observe that the values

a = 8, N = 1024, and m = 16 work well.

History representation. The primary goal of Whisper’s profile-

guided analysis is to annotate a static branch with a Boolean

formula that efficiently encodes relevant historical branch

outcomes to predict the directions of the branch accurately. As

we describe in §II-D, in an N-bit history, where each branch

can be either taken or not-taken, there exist 2N potential branch

scenarios. Whisper needs to partition these 2N branch scenarios

into two groups using a Boolean formula, where one group

reflects the scenarios in which the branch is taken and the

other group where the branch is not taken. To achieve this

goal, Whisper considers several Boolean formulas for each

static branch and selects the Boolean formula that can predict

the branch with the highest accuracy based on the collected

profile. Algorithm 1 shows a simplified version of the technique

Whisper utilizes to find the best formula for representing each

branch’s history.

Algorithm 1 takes two hash tables, T and NT as inputs.

They contain the hashed history as keys and the number of

profile samples as values. T and NT denote taken and not-

taken samples respectively. As output, Algorithm 1 generates

the Boolean formula, f , that incurs the minimum number of

mispredictions, m′.

As shown in Algorithm 1, Whisper initializes the minimum

number of mispredictions, m′, with the value ∞ (Line 1)

and the best Boolean formula, f , with a default value of

/0 (Line 2). Next, Whisper generates the list of all Boolean

formulas that will be considered as candidates for predicting

the branch (Line 3). We will later (§III-B and §III-C) describe

how Whisper finds only a subset of Boolean formulas that

approximates the full potential of all Boolean formulas with

high accuracy and efficiency.
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Algorithm 1 Finding the best Boolean formula to differentiate

taken histories from not-taken histories.
FIND-BOOLEAN-FORMULA (T,NT )

Input: T and NT contain different hashed history as keys and

the number of profile samples as values. T and NT denote

taken and not-taken samples respectively.

Output: The Boolean formula, f which incurs the minimum

number of mispredictions, m′
1: m′ ← ∞
2: f ← /0

3: F ← List-of-Considered-Formulas ()

4: for each f ′ ∈ F do
5: t ← 0

6: for each k ∈ T.keys do
7: if satisfy (k, f ′) �= 1 then
8: t ← t +T [k]
9: for each k ∈ NT.keys do

10: if satisfy (k, f ′) = 1 then
11: t ← t +NT [k]
12: if t < m′ then
13: f ← f ′
14: m′ ← t
15: return ( f , m′)

For each formula f ′, Whisper initializes the total number

of mispredictions the formula sustains, t, as 0 (Line 5). Next,

Whisper iterates over each key-value pair of T (Lines 6-8) and

NT (Lines 9-11) to calculate the value of t. Since each key k
denotes the hashed history, Whisper first determines whether

k satisfies the Boolean formula f ′ (Line 7 and 10 for T and

NT respectively). For taken samples (T ), if k does not satisfy

f ′, predicting the branch using f ′ will result in mispredictions.

Therefore, Whisper adds the corresponding number of profile

samples, T [k], to t (Line 8). Similarly, for not-taken samples

(NT ), if k satisfies f ′, predicting the branch using f ′ will also

result in mispredictions, so Whisper also adds the corresponding

number of profile samples, NT [k], to t (Line 11). Thus, Whisper
counts the total number of mispredictions f ′ incurred for all

profile samples.

Finally, Whisper compares t with m′ to decide whether the

current formula, f ′ causes the minimum number of mispre-

dictions (Line 12). If t is smaller than m′, Whisper updates

f and m′ with the values f ′ and t correspondingly (Lines 13-

14). Whisper produces the final values of f and m′ as output

after iterating over all formulas from the subset of considered

Boolean formulas (Line 15). Next, we explain how Whisper
efficiently generates only a subset of all Boolean formulas

that effectively achieves the high accuracy of considering all

Boolean formulas.

B. Randomized formula testing

As we discuss in §II-D, any N-bit variable can take 2N

different values. Therefore, finding the best formula that

predicts a branch with the least number of mispredictions

requires exhaustively searching the search space of all 22N

different formulas. For example, predicting a branch based on

the outcome of the last 4 branches will require testing 65536

(= 224
) different possible formulas. While testing one formula

does not depend on the outcome of a different formula, i.e.,
checking all formulas is embarrassingly parallelizable, it still

requires a large amount of computational operations. Whisper
leverages randomized formula testing to reduce this exponential

search space.

To perform randomized formula testing, Whisper first

generates a random permutation of all formulas using the

Fisher-Yates shuffle algorithm [78, 79]. The Fisher-Yates shuffle

algorithm ensures that Whisper generates the random order

only once and reuses this order for all different branches. For

each branch, Whisper selects only a fraction of all formulas

to consider as potential candidates to predict the branch.

Among these selected candidates, Whisper picks the best

formula using Algorithm 1. We investigate the implications of

randomized formula testing to the fraction of all formulas tested

in §V-B (Fig. 15) and show that Whisper achieves comparable

performance to exhaustive search (88.3%) even after checking

only 0.1% of all Boolean formulas.

C. Implication and Converse Non-Implication

As discussed in §II-D, when considering arbitrary Boolean

formulas for N-bit variables, we need to evaluate 22N
formulas

and also need 2N-bits of storage for tagging each hard-to-

predict branch. As accurate branch prediction often requires

significantly larger histories, prior work [36] proposed ROMBF

to reduce the storage overheads of these formulas to N-

bits. Unfortunately, considering every variable only once

leads to sub-optimal Boolean formulas as it is impossible

to represent formulas where variables appear twice (e.g.,
(a&&b)||(!a&&c)). Whisper addresses the reduced accuracy

provided by ROMBF by introducing additional operations

such as contradiction, tautology, and, or, implication, and

converse non-implication. This approach enables more powerful

Boolean formulas, improving branch prediction accuracy while

increasing storage only linearly.In particular, Whisper requires

log2(op)∗hash(n)-bits for each formula, where op represents

the number of supported operations and n denotes the number

of branches considered in the history. As discussed in §III-A,

Whisper also utilizes hashing to represent longer histories of

size n because fewer bits are produced by the hash function.

Micro-architectural implementation. Adding Implication and

Converse Non-Implication requires minor micro-architectural

modifications to the original hardware implementation of

ROMBF [36]. Fig. 8 shows an implementation for predicting

the branch direction based on the outcome of the last two

branches (N = 2). For two data inputs (b0 and b1), Whisper
requires three control inputs ( O0 , O1 , and I ). As a single unit,

Whisper produces the outcome of all four logical operations

using b0 and b1. Then, Whisper selects the output based on

the two control inputs ( O0 and O1 ) using a 4×1 multiplexer.

Finally, Whisper selects either the output of the multiplexer

or its inverted value based on the remaining control input,

I using another 2× 1 multiplexer. Next, we describe how

Whisper combines multiple single units in general (N > 2).
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Fig. 8: Micro-architecture of the Read-Once Monotone Boolean

Formulas Whisper extends with Implication and Converse Non-

Implication. It shows the single unit to predict a branch based

on the outcome of the last 2 branches.

Fig. 9 shows the micro-architectural requirements of Whis-
per’s mechanism to predict a branch based on the direction

of the last 8 branches. Whisper uses four single units that

operate on the outcomes of prior branches, b0,b1, · · · ,b7. Then,

Whisper uses outputs of these single units as inputs to two

single units in the next layer. Next, Whisper uses the output

of these two single units as inputs to a single unit in the last

layer. All of these single units at different layers require 14

(2× (8−1)=2×7) control inputs, O0 to O13 . Finally, Whisper
uses a 2×1 multiplexer to select either the last layer’s output

or its inverted value based on I .

As shown in Fig. 9, Whisper performs most of the Boolean

operations at a single layer in parallel. The longest delay

Whisper incurs is due to 3 sequential single units at different

layers following the final step that uses the 2×1 multiplexer.

Every single unit has a maximum delay of 5 logic gates: Not

gate, And/Or gate, and three gates for the 4×1 multiplexer.

The final step’s maximum delay is 4 logic gates: Not gate and

three gates for the 2× 1 multiplexer. The hashing operation

does not incur any extra overhead as existing processors already

perform similar hashing operations [76]. Thus, Whisper incurs

a maximum delay of only 19 logic gates. Even if Whisper can

not compute this entire logic in a single cycle, Whisper can

easily pipeline these operations, e.g., by registering the results

of the first ten operations in one cycle and performing the

last nine operations in the next cycle. In any event, Whisper
generates its prediction in parallel with TAGE-SC-L, whose

logical depth and complexity with hashed SRAM table lookups,

tag comparisons, and adder tree for the SC component exceed

Whisper’s complexity.

IV. USAGE MODEL

We show the high-level usage model of Whisper in Fig. 10.

Whisper collects data center applications’ execution profiles in

production and analyzes these profiles offline to inject branch

hint instructions.

Run-time profiling. First, Whisper collects the execution

trace of branch instructions for data center applications in

production (step 1 ) using Intel PT [37] and LBR [38]. Similar
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Fig. 9: Micro-architecture showing how Whisper combines

multiple single units in general. This shows how Whisper
predicts a branch based on the outcome of the last 8 branches.
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Fig. 10: Whisper’s usage model.

to recent work [3, 18, 20, 21], Whisper leverages Intel PT

and LBR as they are widely adopted in today’s data cen-

ters [1, 11, 17, 80, 81]. Intel PT captures the trace of dynamically

executed branch instructions with low overhead (only up to

1% [82, 83, 84, 85]). As shown in Fig. 10, this trace contains a

branch direction (taken, T or not-taken, NT ) for each branch

instruction along with the next instruction’s address when an

indirect branch is taken. Intel LBR provides Whisper with

the prediction accuracy of each dynamically executed branch

instruction for the underlying branch predictor. Similar to PT,

LBR also incurs minimal overhead [19, 86].

Branch analysis. Next, in step 2 , Whisper analyzes the

in-production execution trace of branch instructions. For a

static branch instruction, Whisper considers all of its dynamic

executions and the profiled processor’s prediction accuracy

of the branch to find the best history length using the

hashed history correlation technique (§III-A). Also, Whisper
determines the best history length for a branch only if Boolean

formula-based prediction achieves better accuracy than the

profiled processor’s predictor for the branch. For such branches,

Whisper injects an extra instruction per branch in the binary

specifying hint to predict the branch.
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Fig. 11: Different components of the brhint instruction

Whisper proposes.

Hint injection. Whisper’s offline analysis identifies branches

for which history-based Boolean formulas achieve better

prediction accuracy than the profiled processor’s predictor.

Whisper injects a hint instruction, brhint, for each of

these branches. A brhint instruction includes 4 specific

components as we show in Fig. 11.

The first component specifies the History length from

a geometric series. As described in §III-A, Whisper uses the

geometric series (i.e., 8,11,15, · · · ,1024) with parameter values

a = 8, N = 1024, and m = 16 based on empirical results. The

4-bit History specifies which of these 16 history lengths

Whisper should use to predict the corresponding branch.

The second component specifies the 15-bit Boolean
formula that Whisper uses to predict the branch. As described

in §III-C, Whisper needs 2N − 1 bits to encode a Boolean

formula that predicts a branch based on the outcome of

the last N branches. Consequently, the 15-bit Boolean
formula can directly predict a branch with a history length

of 8. To predict a branch with longer history lengths (i.e.,
11,15, · · ·1024), Whisper transforms the long histories into

8-bit histories via hashing as we describe in §III-A.

The third component specifies the 2-bit Bias for always-

taken and never-taken branches. The fourth component, PC
pointer, specifies the branch instruction’s program counter

(PC). Whisper uses a 12-bit offset to represent branch instruc-

tion pointers as such an offset is enough to cover the vast

majority (> 80%) of all branch instructions [21, 87].

Instead of directly encoding the hint in the branch instruction,

Whisper injects a separate brhint instruction for mainly two

reasons. First, it avoids the instruction footprint growth for

branch instructions for which Whisper does not inject any hint

as these branches are predicted dynamically. Second, it also

ensures hint timeliness by avoiding the requirement of pre-

decoding the branch instruction. Conditional branch instructions

in x86 format already support similar prefix opcodes for biased

branches [88]. We extend these opcodes with additional bytes

to implement the brhint instruction.

For a given branch, Whisper injects the corresponding

brhint instruction in one of the predecessor basic blocks for

the branch. To find the appropriate predecessor, Whisper lever-

ages the execution trace collected in production and applies a

conditional probability-based correlation algorithm [18, 20, 21].

Run-time hint usage. Whisper produces an updated binary

for an application after injecting the brhint instructions.

This updated binary is deployed in production during the next

build and deployment cycle. When a data center application

executes a brhint instruction at run time, Whisper places

the corresponding four parameters in a small hint buffer. We

empirically study Whisper’s sensitivity to the size of this hint

buffer and observe that Whisper provides high performance

even with a 32-entry hint buffer.

At run time, while predicting a branch, Whisper simultane-

ously queries the branch predictor (e.g., TAGE-SC-L) and the

hint buffer. For branch PCs currently not in the hint buffer,

Whisper uses the branch predictor to predict the branch. If

the hint buffer includes the branch PC, Whisper uses the

hint information and the micro-architectural implementation

described in §III-C to predict the branch. Furthermore, Whisper
ensures that the branch predictor does not allocate new entries

for these branches. Thus, Whisper allows the branch predictor

to allocate its storage for the remaining branches and provide

better prediction accuracy.

V. EVALUATION

A. Methodology

Data center applications and their workloads/inputs. We

evaluate Whisper using 12 widely-used data center appli-

cations (as described in §II-A). We vary workloads/inputs

for these applications by changing different database queries

(e.g., oltp_read_only vs oltp_write_only), different

database scaling factors (e.g., 100 vs 8000), different input

data and file sizes (e.g., large vs small), different query

mapping styles (e.g., imperative vs declarative), dif-

ferent webpages client requests (e.g., feed=rss2 vs p=37),

different numbers of concurrent clients (e.g., 2 vs 10), and

different random number seeds (e.g., 1 vs 10). We optimize

each of these applications with Whisper using the profile from

one workload/input and test the performance of Whisper’s

optimization on a different workload/input.

Profile collection. We collect data center applications’ profile

using Intel LBR [38] and PT [37], and use the hardware

performance event, “br_misp_retired.conditional”

to identify branch mispredictions.

Simulation setup. We evaluate Whisper using Scarab [61]

where we implement support for the brhint instruction

and micro-architectural modifications Whisper proposes. We

also modify Scarab to simulate instruction traces collected

via Intel PT and evaluate Whisper by simulating 100 million

representative, steady-state instructions for each application

using simulation parameters listed in Table II.

B. Performance analysis

Speedup. We show Whisper’s speedup for 12 data center

applications in Fig. 12. For comparison, we also show speedups

that recent techniques (different variants of ROMBF [36] and

BranchNet [35]) offer. To understand the limit, we also show

speedups provided by the ideal branch predictor and MTAGE-

SC, the best predictor in the unlimited storage category of

CBP-5 [62]. As shown, Whisper provides an average speedup

of 2.8% (0.4%-4.6%) that is 44.1% of the average speedup

(6.3%) MTAGE-SC achieves with unlimited storage.

The speedup gap between Whisper and MTAGE-SC origi-

nates from several reasons. Whisper can not eliminate some

mispredictions for previously unobserved branch instructions as

Whisper optimizes applications using only one different input
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Fig. 12: Speedup over 64KB TAGE-SC-L: Whisper achieves an average speedup of 2.8% (0.4%-4.6%) and outperforms state-

of-the-art profile-guided prediction techniques [35, 36]. Whisper’s speedup corresponds to 44.1% of the speedup MTAGE-SC

offers with unlimited storage [89].

profile in this case. We quantify the performance implications

of this input sensitivity later in this section. Furthermore,

the brhint instructions Whisper injects incur static and

dynamic instruction increases which we also quantify later

in the section. Nevertheless, Whisper achieves greater speedup

than prior works, ROMBF and BranchNet, as they only

provide 1.7% and 0.8% on average. Furthermore, on average,

Whisper provides greater speedup than BranchNet even when

it leverages unlimited metadata storage. Next, we investigate

how Whisper achieves this speedup by reducing a substantial

amount of branch mispredictions.

Misprediction reduction. We evaluate how well Whisper
reduces branch mispredictions compared to prior techniques

and show the results in Fig. 13. As shown, on average, Whisper
reduces 16.8% of all branch mispredictions (1.7%-32.4%) the

TAGE-SC-L baseline incurs for these data center applications

and significantly outperforms all prior mechanisms. Specifically,

Whisper reduces 7.9% more mispredictions than the best

performing prior technique that can be used in a practical

scenario. Furthermore, Whisper outperforms the state-of-the-

art, BranchNet, by 4.9% even when BranchNet uses unlimited

metadata storage. This unlimited-BranchNet outperforms Whis-
per only for three applications (mediawiki, python, and

wordpress) that exhibit the behavior BranchNet assumes,

i.e., the top-few branch instructions cause the majority of

all mispredictions, as shown in Fig. 5. Nevertheless, Whisper
eliminates more mispredictions than the practical variants (8KB

and 32KB) of BranchNet even for these three applications

as shown in Fig. 13. Next, we provide a breakdown of

mispredictions Whisper eliminates among different sources

of optimizations.

Breakdown of misprediction reduction. In Fig. 14, we show

the contributions of hashed history correlation and Implication

and Converse Non-Implication to Whisper’s overall perfor-

mance. We quantify the reduction in branch mispredictions

these two novel techniques offer over 8-bit ROMBF. As shown,

hashed history correlation achieves an average misprediction

reduction of 6.4% while Implication and Converse Non-

Implication eliminate 1.5% of all mispredictions.

Implications of randomized formula testing and training
time. Whisper’s randomized formula testing does not eliminate

any new mispredictions. Instead, randomized formula testing

reduces Whisper’s offline training time (i.e., time to find the

best Boolean formula to predict a branch) without sacrificing

prediction accuracy. Fig. 15 shows this tradeoff between

Whisper’s average misprediction reduction and average training

time with an increase in the percentage of formulas Whisper
explores via randomized formula testing. As shown, Whisper
eliminates 16.8% of all mispredictions even after exploring

only 0.1% of all formulas. This reduction is comparable (88.3%

on average) to the reduction Whisper achieves after considering

100% of all formulas. In terms of training time, randomized

formula testing is also efficient as it reduces the exploration time

by an order of magnitude (Fig. 15). Consequently, Whisper’s

training time is lower than training times for 8-bit ROMBF

and BranchNet (Fig. 16).

Performance across different workloads/inputs. As we

mention in §V-A, we optimize data center applications with

Whisper using the profile from one input and test the per-

formance of Whisper’s optimization on a different input.

Now, we investigate Whisper’s performance across three

separate input configurations (‘#1’ to ‘#3’). We optimize

each application using the training input’s profile ‘#0’ and

measure mispredictions Whisper eliminates for different test

inputs ‘#1, #2, #3’. For each input, we also measure the

performance when Whisper optimizes the application with the

same input’s profile. As shown in Fig. 17, Whisper avoids 6.6%

more mispredictions with input-specific profiles compared to

profiles that are not input-specific.

To address this input sensitivity, prior work [35] recom-

mended merging profiles from multiple inputs. We study the

impact of merging profiles on Whisper’s performance in Fig. 18.

We compare Whisper’s performance against prior works after

merging profiles from different application inputs. As shown,

Whisper outperforms prior techniques even for merged profiles.

Furthermore, Whisper’s effectiveness increases as profiles from

multiple inputs are merged.
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Fig. 13: Whisper’s reduction in branch mispredictions compared with BranchNet and ROMBF: Whisper eliminates 7.9%

more mispredictions than the best performing realistic prior work. Whisper even removes 4.9% more mispredictions than the

unlimited-BranchNet.
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Fig. 14: Misprediction reduction (%) achieved by hashed history

correlation and Implication and Converse Non-Implication over

8-bit ROMBF: hashed history correlation reduces more branch

mispredictions than Implication and Converse Non-Implication.
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Fig. 15: Thanks to randomized formula testing, Whisper
achieves high misprediction reduction even after exploring

only 0.1% of all formulas (left) while significantly reducing

the training time (right, the y-axis is log-10 scale).

Hint overhead. Unlike BranchNet, Whisper does not incur any

extra metadata overhead. Hence, Whisper’s only overhead is

brhint instructions added in the program binary and executed

at run time. We estimate the static and dynamic overhead

of these brhint instructions in Fig. 19. As shown, on

average, Whisper increases these applications’ static footprint

by 11.4% (9.8%-13%) while introducing 9.8% (5.3%-14.7%)

extra dynamic instructions.

Sensitivity analysis. As we describe in §III, Whisper’s design

includes several parameters including a minimum, maximum,

and different history lengths, hashed history length, different
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Fig. 16: Average training time for Whisper compared to prior

techniques (the y-axis is log-10 scale): BranchNet requires

training times of more than thousands of seconds, even when

trained on an NVIDIA Tesla V100 GPU. The training time

for ROMBF grows exponentially with an increase in history

length. The training time for Whisper is significantly lower

than training times for 8-bit ROMBF and BranchNet.

TABLE III: Different design parameters’ values.

Design parameter Value Design parameter Value
Minimum history length 8 Length of the hashed history 8
Maximum history length 1024 Logical operations used 4
Different history lengths 16 Hint buffer's size 32

logical operations used, and hint buffer’s size. We determine

these parameters’ values empirically via sensitivity studies. For

brevity, we do not present detailed results corresponding to

these studies. As a summary, Table III shows these parameters’

values we use to evaluate Whisper.

128KB TAGE-SC-L as baseline. We evaluate Whisper’s

effectiveness for a much larger, 128KB TAGE-SC-L baseline

and show the results in Fig. 20. The 128KB TAGE-SC-L

exhibits a branch-MPKI in the range of 0.4-5.4 (2.4 on average)

for 12 data center applications. As shown, Whisper achieves

an average misprediction reduction of 13.4% over the 128KB

TAGE-SC-L baseline highlighting Whisper’s effectiveness even

for a larger TAGE-SC-L branch predictor.

Predictor size. We evaluate Whisper’s sensitivity to the baseline

branch predictor’s size by varying TAGE-SC-L’s capacity from

8KB to 1MB. Fig. 21 shows the results. As shown, Whisper
consistently reduces more than 10% of all mispredictions
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Fig. 17: Whisper’s performance for various application inputs: On average Whisper reduces 6.6% more branch mispredictions

with input-specific profiles compared to profiles from different inputs.
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Fig. 18: Whisper eliminates more branch mispredictions after

merging profiles from various inputs.
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Fig. 19: Whisper’s overhead in static and dynamic instruction

increase: on average, Whisper incurs a static overhead of 11.4%

(9.8%-13%) and executes 9.8% (5.3%-14.7%) extra dynamic

instructions due to brhint instructions.

irrespective of the predictor’s capacity. Even the 1MB TAGE-

SC-L incurs an average branch-MPKI of 1.9 compared to

MTAGE-SC’s branch-MPKI of 1.4. As even the 1MB TAGE-

SC-L suffers from capacity and conflict mispredictions, Whisper
still has the potential to reduce a significant number of

mispredictions. Consequently, Whisper reduces mispredictions

by 11.2% for the 1MB TAGE-SC-L.

Predictor warm-up. We evaluate Whisper’s sensitivity to

baseline branch predictor’s (TAGE-SC-L) state by varying

% of warm-up instructions from 0% to 90%. Fig. 22 shows

the results. As shown, Whisper reduces all mispredictions

TAGE-SC-L incurs by 17.5% without any warm-up. As TAGE-

SC-L’s warm-up period increases and TAGE-SC-L incurs fewer

mispredictions, Whisper’s average misprediction reduction (%)

over to TAGE-SC-L drops slightly. Nevertheless, Whisper still

avoids a large number of mispredictions as it reduces TAGE-SC-
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Fig. 20: Whisper’s reduction in branch mispredictions over the

128KB TAGE-SC-L baseline: Whisper reduces 13.4% of all

mispredictions the 128KB TAGE-SC-L incurs.

8KB
16KB

32KB
64KB

128KB
256KB

512KB

1024KB

Baseline branch predictor’s size

0

10

20

A
ve

ra
ge

m
is

pr
ed

ic
ti

on
re

du
ct

io
n

(%
)

Fig. 21: Whisper’s performance for various baseline branch

predictor’s sizes: Whisper reduces even 1MB TAGE-SC-L’s

mispredictions by 11.2%.

L’s mispredictions by 16.8% even when warm-up instructions

account for 50% of all instructions.

Simulated instructions. We evaluate Whisper’s sensitivity

to the total number of instructions simulated by varying the

number of instructions from 100 million to 1 billion. Fig. 23

shows the results. As shown, Whisper reduces 14.7% of all

mispredictions even when one billion instructions are simulated.

VI. RELATED WORK

PGO for data center applications. The large instruction

footprint and software complexity of modern data center

applications make them a prime target for PGO [3, 4, 5, 6,

7, 90, 91]. Prior PGO techniques include code layout opti-

mizations [1, 11, 17, 27, 33, 92, 93, 94, 95, 96, 97, 98], I-cache

prefetching [3, 18] and replacement [20], and BTB prefetch-

ing [21] and replacement [99]. These techniques primarily
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Fig. 22: Whisper’s performance for various TAGE-SC-L

warm-up periods: Whisper reduces 16.8% of TAGE-SC-L’s

mispredictions with 50% of instructions considered as warm-up.

On the other hand, Whisper avoids 17.5% of TAGE-SC-L’s

mispredictions without any warm-up.
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Fig. 23: Whisper’s performance for various numbers of sim-

ulated instructions: on average, Whisper avoids 14.7% of all

mispredictions after simulating one billion instructions.

focus on reducing frontend stalls while Whisper focuses on

reducing branch mispredictions. Consequently, Whisper should

be equally effective even in the presence of these techniques.

Online branch predictors. Most state-of-the-art online branch

predictors are variants of TAGE [100] and Perceptron [101].

TAGE hashes global branch and path histories of different

lengths to index into various tables composed of tagged

saturating counters. TAGE-SC-L [34, 102], which won CBP-

5 [62], is a popular TAGE variant that uses additional loop

predictor and statistical corrector components to improve

accuracy. Perceptron-based predictors, such as the Multi-

perspective Perceptron [103, 104], use a single-layer neural

network to compute a sum of weights that represent a learned

correlation in branch history. A fundamental limitation of

TAGE and Perceptron-based predictors is their inability to

learn increasingly complex branch histories due to storage and

run-time constraints. Other work in online branch prediction

includes domain-specific branch predictors and predictors

targeting data-dependent branches [105, 106, 107, 108].

Considering prior limitations, Whisper still leverages online

branch predictors in the common case. Offline profiling and

hardware support for ROMBF are then used to predict branches

that online predictors struggle to predict accurately. This

approach allows Whisper to reduce the resource burden placed

on traditional online predictors from applications with noisy

branch histories. Also, Whisper does not attempt to alter

existing online branch predictors in hardware, which simplifies

its implementation in modern processors.

Offline methods for branch prediction. Offline techniques,

such as profiling and compiler-based optimizations, have

been used extensively to improve accuracy for branch pre-

diction [36, 75, 109, 110, 111, 112, 112, 113, 114, 115, 116, 117,

118, 119, 120, 121, 122, 123, 124, 125]. BranchNet [35] is a

recent offline method for reducing branch mispredictions. It

uses CNNs, with a hardware-based inference component, to han-

dle branches that online predictors struggle to predict accurately.

The main limitation of BranchNet is its resource requirements

(i.e., multiple GPUs for efficient training, one CNN model

per static branch) and implementation complexity in hardware.

Whereas for Whisper, ”training” or analyzing execution profiles

can be done relatively cheaply using commodity CPUs and

the hardware implementation is less demanding than hardware

inference for deep learning. Additionally, BranchNet struggles

to cover mispredictions spread out across many unique static

branches. Whisper has less overhead per static branch due to

the lightweight design of ROMBF compared to a CNN model

in BranchNet.

VII. CONCLUSION

The state-of-the-art branch predictor, TAGE-SC-L, suffers

frequent branch mispredictions for data center applications

as their large branch footprints overwhelm TAGE-SC-L’s

64KB capacity. We propose, Whisper, a profile-guided hard-

ware/software mechanism to efficiently reduce branch mispre-

dictions in these data center applications through extended

Read-Once Monotone Boolean Formulas that encode hard-

to-predict correlations in branch history. Whisper inserts

lightweight formulas in application code at link time using

a new brhint instruction that is complemented by micro-

architectural support for ROMBF. Through efficient offline

analysis of application profiles, only select branches use these

new micro-architectural changes; the remaining are predicted

using the underlying branch predictor – requiring no changes to

the predictor itself. On average, Whisper reduces 16.8% (1.7%-

32.4%) of branch mispredictions over TAGE-SC-L for 12

widely-used data center applications, with an average speedup

of 2.8% (0.4%-4.6%), and outperforms existing profile-guided

branch prediction mechanisms, such as BranchNet, by 7.9%.
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[101] D. A. Jiménez and C. Lin, “Dynamic branch prediction with
perceptrons,” in Proceedings of the Seventh International Symposium
on High-Performance Computer Architecture (HPCA’01), Nuevo Leone,
Mexico, January 20-24, 2001. IEEE Computer Society, 2001, pp. 197–
206. [Online]. Available: https://doi.org/10.1109/HPCA.2001.903263

[102] A. Seznec, “TAGE-SC-L Branch Predictors Again,” in 5th JILP Work-
shop on Computer Architecture Competitions (JWAC-5): Championship
Branch Prediction (CBP-5), Seoul, South Korea, Jun. 2016.

[103] D. A. Jiménez, “Multiperspective perceptron predictor,” in 5th JILP
Workshop on Computer Architecture Competitions (JWAC-5): Champi-
onship Branch Prediction (CBP-5), Seoul, South Korea, Jun. 2016.

[104] ——, “Multiperspective perceptron predictor with tage,” in 5th JILP
Workshop on Computer Architecture Competitions (JWAC-5): Champi-
onship Branch Prediction (CBP-5), Seoul, South Korea, Jun. 2016.

[105] S. Pruett and Y. Patt, “Branch runahead: An alternative to branch
prediction for impossible to predict branches,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 804–815. [Online]. Available: https://doi.org/10.
1145/3466752.3480053

[106] S. Gupta, N. Soundararajan, R. Natarajan, and S. Subramoney,
“Opportunistic early pipeline re-steering for data-dependent branches,”
in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 305–316.
[Online]. Available: https://doi.org/10.1145/3410463.3414628

[107] A. Samara and J. Tuck, “The case for domain-specialized branch
predictors for graph-processing,” IEEE Computer Architecture Letters,

[114] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer,
and B. Zorn, “Evidence-based static branch prediction using machine
learning,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 19, no. 1, pp. 188–222, 1997.

vol. 19, no. 2, pp. 101–104, 2020.

[108] A. Sridhar, N. Kabylkas, and J. Renau, “Load driven branch predictor
(LDBP),” CoRR, vol. abs/2009.09064, 2020. [Online]. Available:
https://arxiv.org/abs/2009.09064

[109] J. A. Fisher and S. M. Freudenberger, “Predicting conditional branch
directions from previous runs of a program,” ACM SIGPLAN Notices,
vol. 27, no. 9, pp. 85–95, 1992.

[110] T. Ball and J. R. Larus, “Branch prediction for free,” ACM SIGPLAN
Notices, vol. 28, no. 6, pp. 300–313, 1993.

[111] Y. Wu and J. R. Larus, “Static branch frequency and program profile
analysis,” in Proceedings of the 27th annual international symposium
on Microarchitecture, 1994, pp. 1–11.

[112] C. Young and M. D. Smith, “Improving the accuracy of static branch
prediction using branch correlation,” ACM SIGOPS Operating Systems
Review, vol. 28, no. 5, pp. 232–241, 1994.

[113] A. Krall, “Improving semi-static branch prediction by code replication,”
ACM SIGPLAN Notices, vol. 29, no. 6, pp. 97–106, 1994.

[115] J. R. Patterson, “Accurate static branch prediction by value range
propagation,” in Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, 1995, pp. 67–78.
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