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Abstract—Thanks to their scalable parallel processing ca-
pability, GPUs are promising computing resources for graph
processing, in which identical operations are applied to a large
number of edges and vertices. However, the sparsity and skewness
of real-world graphs cause imbalanced workloads across GPU
threads within the same warp, thus impeding efficient processing
on the GPU. To mitigate this workload imbalance problem, exist-
ing works propose workload balancing hardware and software
schemes. However, these solutions often suffer from additional
memory overhead or increased computations and communication
overheads during inter-warp and intra-warp synchronization.

This work proposes a new hardware-software collaborative
graph processing framework, SparseWeaver, that converts sparse
operations in graph processing into dense operations using graph
topology and makes the workloads balanced across GPU threads.
Based on the analysis of common patterns in software schemes,
we propose Weaver, a new lightweight GPU functional unit
microarchitecture that fully leverages the benefits of the GPU
architecture and exploits memory access locality. We prototype
SparseWeaver on the open-source RISC-V Vortex GPU and
demonstrate 2.36 times faster execution time compared to state-
of-the-art schemes while incurring a low area overhead of 0.045%
from increased dedicated logic registers.

I. INTRODUCTION

Graphs are one of the most important and fundamental data

structures for reflecting sparse relationships in the real world.

Diverse analysis applications such as social network analysis,

web search engines, and biological data analysis [5], [7],

[9], [44], [44], [46] utilize graphs to represent their data and

process graphs with various data analysis operations. Thanks

to the identical operations on the large number of edges and

vertices in a graph [13], GPUs have been used widely to

accelerate big graph analytical processing [4], [6], [11], [12],

[16], [21], [24], [30], [33], [34], [37], [38], [49].

Although GPUs offer excellent throughput through data

parallelization, the sparsity and skewness of real-world graphs

lead to sparse operations, which hinder efficient graph pro-

cessing on GPUs. In real-world graphs, a few vertices are

connected to a large number of edges [15], [18], while others

are connected to only a few. Since graph processing applica-

tions gather data of neighbors for each vertex, the sparse and

skewed graph causes workload imbalance across GPU threads

within a warp, which makes the operation sparse. Figure 1

illustrates an example where each GPU thread, mapped to a

vertex, gathers data from its neighbors via the edges connected

to the vertex based on the graph topology information. Since
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Fig. 1: Workload imbalance among threads within warps

during graph processing caused by irregular graph structures.

SparseWeaver addresses the workload imbalance problem by

converting sparse operations into dense operations, resulting

in SIMD-friendly workload distributions.

GPUs execute all threads in a warp in lockstep, the execution

time is determined by the vertex with the largest number of

edges. In the naive mapping example shown in Figure 1, the

warp takes six-time units to gather data from the neighbors

of v0, v1, v2, and v3 because T2 requires six-time units.

Although the other threads have no tasks to execute, they must

wait for T2 to gather the data before proceeding to the next

task, thus wasting their computational resources.

To mitigate the workload imbalance problem on GPU

and make sparse operations like dense operations, existing

works [3], [6], [12], [23], [29], [33], [34], [37], [49], [52]

propose software-based schemes. The schemes adopt data

structures with indirect pointers to densely access sparse graph

edges. Then, the schemes remap edges to GPU threads in a

balanced way, reducing idle execution on GPU threads. How-

ever, software-only schemes still have some limitations. First,

software-only schemes introduce additional overhead to remap

edges across the warp or core, such as memory operation to

store and share indirect pointers and additional computation

to calculate mapping. Second, since the overhead of software-

only schemes varies with the sparsity and skewness of a graph,
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it is hard to ensure that one software-based scheme is fit

for various real-world graphs [6], [21], [33]. Some existing

works [32], [42], [43] propose load-balancing hardware units

for generating an edge list. However, this approach suffers

from additional memory access overhead while collecting edge

information. Moreover, since the special hardware performs

memory reading and writing for edge information itself, the

hardware-based scheme cannot get the full bandwidth of the

GPU architecture designs, such as hiding memory request

stalls through warp-level parallelism, which can be severe for

memory-intensive graph workloads.
Regarding the challenge of balancing workloads while min-

imizing overhead, we observe that workload imbalance can be

addressed by adding a lightweight, low-overhead hardware ac-

celerator. The fundamental reason for the workload imbalance

problem is that the graph workload includes sparse operations

caused by an irregular graph structure, as shown in Figure 1,

but GPUs are not designed for processing sparse operations.

Therefore, by adding small hardware to convert sparse opera-

tions into single instruction multiple data (SIMD)- friendly

dense operations, we can effectively resolve the workload

imbalance problem with minimal overhead. In addition, by

integrating the hardware into the GPU execution pipeline, we

can enable fine-grained and pipelined execution and leverage

the benefits of the GPU architecture.
This work proposes a new hardware-software collabora-

tive graph processing framework, SparseWeaver, that converts

sparse operations in graph processing into dense operations

using Weaver and balances the workloads across GPU threads.

This paper makes the following key contributions:

• We propose a new hardware-software collaborative graph

processing framework, called SparseWeaver, that converts

sparse operations to dense operations using graph topol-

ogy, making workloads balanced across GPU threads.

• Based on the analysis of common patterns in software-

only existing schemes, we propose Weaver, the new

lightweight hardware tightly integrated into the GPU.

• We show an in-depth evaluation of SparseWeaver com-

pared with software and hardware schemes using real-

world graph datasets and benchmarks with small hard-

ware modifications.

II. BACKGROUND AND MOTIVATION

A. Graph Processing on GPU
The graph processing framework on GPU [4], [6], [11],

[16], [21], [24], [30], [33], [38], [49], [50] receives an input

algorithm and produces analytical results of the graph. The

target graph G(V , E) is an abstract data structure with

(vertices, V ) and their pairs (edges, E). The algorithm depicts

how to analyze a target graph G and generate analysis results

called vertex properties. The algorithm can be expressed in

three parts: how to gather and accumulate data from neigh-

boring edges (gather and sum), how to filter active sources

or destinations during edge gathering (source and destination

filter), and how to update vertex properties with the gathered

data (apply) [18], [21], [33], [50].
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(a) Expected warp iteration
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(b) Speedup over Svm

Fig. 2: Expected warp iteration and performance of software-

based scheduling schemes. (a) shows expected warp iteration

using the PageRank (PR) algorithm with three different sched-

ules (Svm, Sem, Swm) on the bio-human graph (Dbh) and graph-

500-scale19 (Dg500). (b) shows speedup over Svm
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Fig. 3: Performance comparison with existing software

scheduling in two Nvidia GPUs (Ampere (A30) and Ada

(RTX4090)) using Dhw and Duk dataset with PageRank and

Auto-tuner [21]. Each graph shows speedups over Svm.

During the gather operation, accessing neighboring edges

can be performed in two steps, which leads to sparse op-

erations. The first step is accessing the graph topology of

a vertex to figure out the neighboring edges. The second

step is accessing the edge information of each neighbor to

perform the gather and sum operations with the information.

The first step is a dense operation on vertices and can be easily

parallelized across threads. However, when threads perform

the second step, they must perform sparse operations for sparse

neighboring edges, leading to workload imbalance and low

warp utilization within warps, as shown in Figure 1.

In particular, performing gather and sum operations with

real-world graphs may lead to a severe workload imbalance

because of the following graph characteristics. First, real-world

graphs often exhibit sparse and skewed characteristics [15],

[18]. Second, a vertex can have unpredictable neighboring

edges [26], [36], [41], causing irregular memory access to

edge information and vertex properties. Third, some real-

world graphs have millions to billions of edges, and certain

vertices have a relatively large number of neighboring edges,

sometimes with thousands of neighbors [1], [10], [27]. Since

real-world graph characteristics exacerbate the workload im-

balance problem, optimizing the performance of gather and

sum operations by balancing the workload is crucial.

B. Motivation

To address the workload imbalance problem, converting

sparse operations in the second step of edge access into dense
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Svm Sem Swm [33] Scm [33] Stwc [34] Stwce [6] Sstrict [12] SparseWeaver
Sharing Granularity Thread Kernel Warp Block T, W, B T, W, B Kernel Block

Imbalance high low mid low low mid low low

Edge Mem. Access 2|V |+ |E| 2|E| 2|V |+ |E| 2|V |+ |E| 2|V |+ |E| 2|V |+ |E| 2|V |+ |E| 2|V |+ |E|
Shared Mem. X X 3|B| 3|B| 3|B| 6|B| 3|B| 4|B|
Global Mem. X X X X 3|V | X 3|V | X

Complexity of computing in registration low low mid mid high high high low

( Sync, add Kernel, #Atom, #Warp sfhl ) 0, 0, 0, 0 0, 0, 0, 0 1, 0, 0, 6 17, 0, 0, 15 1, 0, 3|V |, 6 1, 3, 2|V |, 0 17, 3, 0, 15 1, 0, 0, 0

Complexity of computing in distribution low low high high high high mid low

( #BinarySearch, #atomics, #sync ) 0, 0, 0 0, 0, 0 |E|, 0, 0 |E|, 0, 0 |E|, 0, 0 0, α|E|, α|E| |E|, 0, 0 0, 0, 0

Edge Access Locality low high mid high mid mid high high

TABLE I: Comparison of implementation details among existing scheduling methods [6], [12], [33], [34]. |V |, |E|, |B| means

the number of vertices, number of edges, and thread block size, respectively.
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Fig. 4: Stall breakdown and warp per instruction result of

existing scheduling methods with Nvidia GPU (A30) and

PageRank using Dhw dataset

operations is important, especially by remapping the edge list

across threads in a dense manner. Therefore, software-based

schemes [6], [12], [20], [24], [31], [33], [34], [37] suggest

scheduling methods that remap active edges across threads

within a warp or core to enhance the performance of edge ac-

cess. Table I shows the details of various scheduling schemes.

Even though the first two mapping, Vertex mapping (Naive

scheduling, Svm, mapping each vertex and its neighbor to

threads and Edge mapping (Sem, mapping each edge to thread),

seem simple, they can suffer from workload imbalance and

twice the memory access for edge information. More complex

scheduling schemes (Swm [33], Scm [33], Stwc [34], Stwce [33],

and Sstrict [12]) try to balance workloads by sharing graph

topology across blocks, warps, or threads. These scheduling

methods use additional computation, synchronization, and

shared/global memory access to achieve better performance by

concealing overhead with the benefits gained from resolving

the workload imbalance. We will elaborate in Section III-A.

However, balancing the workload while minimizing over-

head still remains a challenge because the overhead is not

always successfully hidden. Figure 2 shows the expected

number of warp iterations and performance for the edge-

gathering process when executing PageRank application with

Dbh and Dg500 graph dataset [40]. As shown in Figure 2a,

due to workload imbalance, Svm requires 4x and 11x more

warp iterations compared to Swm and Sem for the Dbh and

Dg500. Even though Swm and Sem show similar expected warp

iteration by balancing the workload, the performance can vary

because of different overheads. Sem needs double the memory

reads to get edge data, while Swm uses additional computation

and shared memory. Figure 2b, shows the best performance

with Swm and Sem for the Dbh and Dg500 datasets. Because

Dg500 has relatively more vertices and fewer edges than the

Dbh graph, it incurs relatively more overhead from additional

computations per edge.

The workload imbalance problem also occurs in Nvidia

GPUs. Figure 3 shows that complex software scheduling

methods (Scm, Swm, Stwc, Stwce) often perform better than Svm

in Nvidia GPUs. By changing the scheduling, a maximum of

2.80x speedup can be achieved. However, these scheduling

methods also introduce overhead on Nvidia GPUs, as shown

in Figure 4 1 . Note that PageRank consists of one addition

and a read and write for the edge and vertex. Nevertheless,

some scheduling methods introduce other stalls such as shared

memory stalls (Swm, Scm, and Stwc1), L1 queue waiting stalls

(Svm or Stwc1), or higher warp/instructions. These graphs

show that determining the best scheduling scheme for each

dataset and application is hard , and scheduling methods often

incur some overhead. Some existing works [6], [21], [33] have

suggested an auto-tuner for graph processing on GPUs, but this

approach is time-consuming and incurs abstraction costs.

Thus, the question arises: Can software optimization be con-
sidered a fundamental solution to this problem? We observe

that the fundamental problem of processing graph workloads

on GPU is the difficulty in directly mapping irregular data-

dependent graph tasks onto the one-dimensional parallel units

of GPU. Existing software-based works can be considered to

distribute irregular data-dependent graphs to GPU warps at

runtime (scheduling) or static time (storage format) to achieve

workload balance. However, the software-based works require

additional computations and synchronizations because each

thread must generate and compute the information needed by

itself. Exploring efficient scheduling or storage formats using

DSE (Design Space Exploration) tools [21] helps identify

the best scheduling option among many. Nevertheless, the

workload imbalance problem remains because GPU hardware

1The original stall metric names in Nvidia Nisight Compute are the
following: Memory (long scoreboard), Shared (short scoreboard), Memory
input/output (MIO Throttle), Execution Dependency (Wait), Wait for L1 queue
(LG Throttle), and Warp/Instruction (average warp latency per instruction
issued).
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Fig. 5: Disassembly of graph processing through abstraction

of the software-based scheduling scheme

does not support such data-dependent workload mapping in

its one-dimensional structure.

To fundamentally solve the workload imbalance problem,

the hardware needs to convert sparse operations into dense

operations. Since hardware can generate dense edge mapping

with a smaller overhead compared to the overhead of software

schemes caused by redundant calculations and synchronized

updates while each thread calculates the mapping itself. In

addition, the conversion can be accelerated by implementing

the remapping process through a separate FSM. However, de-

signing conversion hardware has several challenges. First, sim-

ply offloading the entire process of neighboring edge access

can miss possible benefits from the fine-grained pipeline and

microarchitecture of GPU. Second, the conversion hardware

can be a bottleneck when performing edge data access with

memory-intensive graph workloads. Third, the offloading can

cause additional memory usage and access.

Therefore, in this paper, we analyze the existing software-

based schemes and identify the key part of the conversion of

sparse operations into dense operations. Then, we suggest a

new lightweight hardware extension that is tightly integrated

into the GPU execution pipeline, leveraging the benefits of the

GPU architecture.

III. HARDWARE/SOFTWARE CO-DESIGN

A. Software-based Scheduling Abstraction

Existing software-based scheduling schemes [6], [12], [33],

[34] have common patterns during mapping generation. These

schemes collect graph topology and generate edge identifiers

across warps, blocks, or entire kernels. As shown in Figure 5,

the software-based scheduling scheme can be divided into two

stages: (1) the registration stage and (2) the distribution
stage. In the registration stage, each thread registers some data,

such as sparse workload information, to use in the distribution

stage. Each thread prepares the information by filtering the

base vertex ID (source vertex or destination vertex ID), ac-

cessing the graph topology of the base vertex, and computing

additional information. In the distribution stage, each thread

performs the work based on sparse workload information.

Each thread generates an edge ID used in the current lockstep

based on shared data. After finishing lockstep, the thread

updates shared data for the next iteration for itself and other

threads. The thread performs edge information access, gather,

and sum based on the generated indirect pointers.

Table I shows details of the existing scheduling scheme.

Based on the target scheduling granularity, each scheduling

has different additional overheads, such as memory usage

and computations of the registration and distribution stage.

For example, the warp-sharing mapping (Swm) balances the

workload within each warp. In the registration stage, each

thread loads the graph topology to figure out the degree of the

neighbor edge and the edge indicator of the first neighboring

edge. Then, each thread within the warp generates a prefix sum

array of degrees and updates the array in the shared memory. In

the distribution stage, each thread calculates an edge indicator

for itself by performing a binary search on the degree prefix

sum. This process results in O(nlog(n)) time complexity for

shared memory scans.

Software schemes employ various levels of balance gran-

ularity because generating finer-grained mapping not only

brings more balance but also increases overhead. Balancing

across kernels [12] is expensive due to more costly global

memory access overhead or additional kernel launch over-

head. Therefore, other schemes [6], [33], [34] try to achieve

better performance using warp-level and block-level balanc-

ing, recognizing that block-level sharing introduces additional

overhead for synchronization and searching. Unlike software-

based schemes, adding hardware to each core eliminates

concerns about the overhead of block-level sharing. Since the

GPU inherently executes one warp at a time and needs to

dynamically return the edge indicator for the executing warp at

that moment, we aim to design hardware that achieves block-

level workload balancing.

As shown in Figure 5, the core part of existing schedul-

ing methods is using sparse workload information to evenly

distribute edge ID in a dense manner for threads within

warps. Offloading the minimal yet core parts of the scheduling

to lightweight hardware might help reduce overhead and

accelerate the process. With well-designed hardware, GPU

can help reduce additional buffers for scheduling and conceal

scheduling process overhead in the GPU pipeline. Therefore,

we only decide to offload the following part emphasized as

orange boxes in Figure 5: (1) prepare shared data across the

threads, (2) compute the next edge indicator with shared data,

and (3) update shared data.

B. Weaver Logic Design

SparseWeaver generates an edge indicator and maintains

shared data. Therefore, SparseWeaver employs Sparse Work-

load Information Table (ST) and Dense Work ID Table (DT)

to keep shared data from registration and output data for

distribution, respectively. The ST stores shared registration

data such as vertex ID (VID), degree of neighbors, and the start

location of the neighbor edges in the neighbor edge array. In

the registration stage, SparseWeaver collects shared data and

fills the ST. The DT stores Work IDs such as base vertex

ID and generated edge ID (EID) (location in neighbor edge

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on September 15,2025 at 18:03:30 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6: SparseWeaver hardware logic called Weaver

array). In the distribution stage, SparseWeaver returns work

IDs in the DT for edge information access, gather, and sum.

In SparseWeaver, Weaver generates Work IDs for the warp

by scanning the registered ST and decoding its entries. Weaver

loads and maintains the current-looking ST entries in a buffer

called Current Entry Data (CED). Then, Weaver generates the

intermediate Work IDs by decoding CED and maintains the

intermediate data in a buffer called Output Data (OD). Figure 6

shows the Finite State Machine (FSM) and workflow of

Weaver. The logic can fill an OD buffer from multiple low-

degree entries (S3 → S4 → S2) and also can fill multiple

OD buffers from a high-degree entry (S5 → S6 → S2). When

Weaver receives the first decode request for edge ID, Weaver

is initialized with the first entry of the CED buffer (S1), and

Weaver tries to fill out every entry of OD simultaneously with

the CED information (S2). If the degree of the CED is not

enough to fill the OD (C0 == False), Weaver fetches and

updates the next entry of ST (S3, S4), then tries to fill OD

again (S2). If all entries in OD are filled, FSM updates DT (S5)

and waits for the next decode request (S6). This mechanism

can handle high-degree entries by filling multiple OD buffers.

If all ST entries are scanned, the FSM goes to the end states

(S7, S8). When Weaver status is end, SparseWeaver returns

empty Work IDs (such as -1). The Weaver FSM is initialized

to init status when a new registration request is received in the

registration stage.

For example, Figure 6 shows how SparseWeaver generates

Work IDs, assuming that the number of threads within a warp

is 4. First, Weaver reads the first entry in the ST and fills the

CED buffer, which has vertex ID 0, start location 2, and degree

1 in initialization stages (S0 → S1). Then, Weaver fills one

entry of the OD buffer with vertex ID 0 and edge ID 2 because

the degree of the CED entry is 1 and the start location is 2,

in a decoding stage (S2). Because a low degree entry is not

enough to fill the OD buffer, Weaver fetches the next entry of

ST and updates the CED buffer (S3, S4). Since the OD buffer

has three remaining entries, Weaver loads new ST entries (2,

10, 2) and fills two entries of the OD buffer as (2, 10) and (2,

11). Again, Weaver loads the next ST entry (4, 30, 5), fills the

final OD buffer entry with Work ID (4, 30), and finally goes

to S5 in the state machine.

C. SparseWeaver Design

To tightly integrate Weaver into the GPU pipeline, we

design the execution workflow of SparseWeaver with Weaver.

In this subsection, we discuss design decisions to integrate

Weaver into the GPU execution flow.

SparseWeaver Input To achieve our final goal of convert-

ing sparse operations into dense operations, Weaver must re-

ceive shared data such as vertex ID, location, and degree. Since

the storage format inherently has information about incoming

and outgoing edges for a given vertex, SparseWeaver can

gather incoming or outgoing information for a given workload

in the registration step. Whether investigating incoming edges

(pull direction) or outgoing edges (push direction), shared

data—such as the base vertex ID, start location of the neighbor

edge list, and degree—can be collected [21]. SparseWeaver

registers shared data into a ST for distribution stage. Since

the GPU cores perform the graph topology access and the

data is stored in the registers, SparseWeaver requires an ISA

extension to delineate the extraction of gathering data from

the destination registers of certain code sequences.

�Design Decision: Gather workload information from the

GPU core: Base vertex ID, Location, and Degree.

SparseWeaver Output SparseWeaver generates work IDs

for each thread within a warp simultaneously for every de-

code request. To deliver these Work IDs to the GPU core,

SparseWeaver should return Edge IDs by a new ISA. In

addition, SparseWeaver returns the base vertex ID to indicate

one vertex in the edge vertex pair, facilitating fast-edge data

access [21]. This process also needs to deliver work to the

core to enable access to the following instructions, requiring
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another ISA extension to take work IDs from SparseWeaver

to the GPU core.

Additionally, SparseWeaver offers a thread mask to provide

clues about thread activation. Basically, SparseWeaver acti-

vates all the threads within the core and makes them perform

the distribution stage. During mapping, SparseWeaver can

generate a map where some threads may not have assigned

work. For example, there are cases where the total degree

is not evenly divided by the number of threads in a warp.

Although the graph needs to either perform or skip work,

thread divergence can occur and can cause performance issues,

such as leading to the need for divergence control logic like

split and join [48]. Therefore, by returning the thread mask,

SparseWeaver provides a clue for replacing this logic with

hardware-controlled active threads.

�Design Decision: Return workload indicator to GPU

core: EID and VID Return a clue for thread activation.

Out of Order Registration and Ordered Scan
SparseWeaver requires the ST not only to buffer shared data

but also to facilitate entry access ordered by VID. During

the gathering process, the vertex ID ordered edge access can

enhance performance [33]. However, due to the out-of-order

execution of warps, SparseWeaver may receive data in an

unordered manner. Therefore, we use a two-step method to

generate an ordered ST. First, the kernel code generated by

the SparseWeaver compiler includes investigation code that

uses software thread IDs (e.g., CUDA thread ID or global ID

of OpenCL), enabling each thread to investigate a vertex in

order. Second, we use the warp ID and thread ID as keys to

store shared data in the ST.

�Design Decision: Perform ordered decode. For ordered

decode, use software thread ID to investigate the graph

topology in the kernel code and use hardware thread ID

and warp ID to index the workload information table.

Dynamic Work Distribution SparseWeaver dynamically

distributes the work IDs, supporting an out-of-order warp

execution-friendly distribution. More precisely, SparseWeaver

maps and distributes the work according to the order in which

requests are received rather than by warp ID. Dynamic distri-

bution can improve locality by maintaining similar edge IDs

currently in flight, which can aid in optimal warp execution.

�Design Decision: Distribute the workload dynamically

to maximize the benefit from graph locality.

Synchronization between Registration and Distribution
SparseWeaver requires synchronization for three reasons. First,

SparseWeaver needs to ensure that all warps have registered

the data they have to process. The synchronization is necessary

because only then can the ST be completed based on the

workload information data by all warps in the core, and

an ordered scan can be guaranteed. Second, the occurrence

of registration is decided by graph topology, meaning the

number of vertices that warps need to process in each iteration

varies depending on the data. Therefore, Weaver cannot predict

how many warp requests will occur, requiring explicit syn-

chronization points in GPU code. Third, this synchronization

is important for preventing early exits. For example, if a

specific warp exits the registration and distribution stages

before another warp has completed registration, it cannot

maximize the utilization of warp resources to perform the

distribution stage with the remaining workload. For these

reasons, we add synchronization between the registration step

and the distribution step. This process is also necessary for

other complex scheduling algorithms, and we require just

one synchronization per examination. Note that software-based

schemes also have at least one synchronization except for

native schemes.

�Design Decision: Insert synchronization between the

registration stage and the distribution stage in the GPU

code.

Filtering workload Filtering is crucial for performance in

some graph applications [50], so the work IDs distributed

by SparseWeaver must be filtered wherever possible. This

means that we should return a filtered work ID when filtering

for base vertex ID is feasible. However, the main focus of

SparseWeaver is on distributing work IDs, and it aims to

minimize additional structures and logic by not addressing

issues that can be resolved within the GPU pipeline. Con-

sequently, the SparseWeaver compiler should insert filters to

the registration stage when they are associated with the base

vertex ID. Then, SparseWeaver inserts code that changes the

degree to zero when a vertex is filtered, so no related work

IDs are generated during the distribution stage.

Furthermore, there are algorithms like BFS that do not need

to process remaining neighbors during gather processing once

the needed information has been collected. In such cases, there

may be a need for an early exit from the distribution stage

for a specific vertex ID. This is particularly important for

nodes like supernodes that have a high number of neighbors,

where decoding might need to be stopped midway. Therefore,

SparseWeaver requires an ISA to signal to Weaver that specific

vertex ID doesn’t be decoded anymore and can be skipped.

�Design Decision: Integrate a filter into the GPU code at the

appropriate location and send a skip signal when no further

distribution is needed for a specific vertex.

D. Assembling Design Decisions

Figure 7 illustrates the overall workflow of SparseWeaver

based on our design decisions, demonstrating how warps

are executed over time and how tasks can be offloaded to

SparseWeaver. In the GPU core, execution proceeds in the

order of registration, synchronization, and distribution.

In the registration stage, the GPU core investigates shared

data such as vertex ID, location, and degree to deliver that

information to Weaver. Since we assume out-of-order warp

execution, Weaver stores shared data into the Sparse Work

Information Table indexed by warp ID and thread ID. For

example, three warps in Figure 7 are executed in the order of
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Fig. 7: SparseWeaver execution flow. SparseWeaver receives workload information (VID, offset, deg) from the GPU warp

and stores it in a Sparse Workload Information Table indexed by warp ID and thread ID. If SparseWeaver receives a request

to distribute VID from a warp, SparseWeaver scans the buffer in entry ID order and generates vid and eid for that warp.

SparseWeaver first returns VID and stores EID in the Dense Work ID Table. Then, SparseWeaver returns EID loaded from the

Dense Work ID table when receiving a request from warp by indexing warp ID.

Instruction IType Opcode funct Description

WEAVER REG, VID, loc, deg C CUSTOM1 1 Register VID, loc, deg

WEAVER DEC ID, VID R CUSTOM0 7 Return VID of next workload

WEAVER DEC LOC, EID R CUSTOM0 8 Return EID of next workload

WEAVER SKIP, VID C CUSTOM1 2 Send skip signal using VID

TABLE II: SparseWeaver instructions

Warp 0, 2, 1, and the shared data of Warp 2 is stored in the

entries 8, 9, 10, and 11 of the ST. If a vertex is filtered, the

thread that investigates that vertex changes the degree to 0.

After finishing the registration stage, every active warp waits

for other warps in the synchronization point.

In the distribution stage, the GPU core sends decode re-

quests to get work IDs, and Weaver generates work IDs. As

shown in Figure 7, Warp 1 sends the first decode request for

VID to Weaver. Identical to FSM in Figure 6, Weaver reads

ST entries (0, 2, 1), (2, 10, 2), and (4, 30, 5) and generates OD

(0, 2), (2, 10), (2, 11), and (4, 30). Then, Weaver returns VID

(0, 2, 2, 4) to the GPU core and stores EID (2, 10, 11, 30) in

the Dense Work ID table. If Warp 1 makes a decode request

for edge ID, Weaver returns edge ID (2, 10, 11, 30). Warps can

filter opposite vertex ID by accessing that using edge ID. By

assembling design decisions in Section III-C, SparseWeaver

can integrate Weaver into GPU execution flow successfully.

Notably, SparseWeaver supports storage formats where

edges are stored consecutively, and sparse workloads are

indicated in the offset array by neighbor counts such as CSR,

Tigr, or CR2. These formats rely on base vertex IDs to

access the offset array and edge list. In addition, SparseWeaver

can accommodate non-consecutive labeling by splitting ver-

tices and registering split vertices as separate entries. Since

SparseWeaver receives vertex ID, which can support any order

of vertices. SparseWeaver can also handle hybrid formats

like ELL by applying its functionality to the CSR subgraph,

making it versatile for scheduling even in non-consecutive or

tiled storage scenarios.

IV. SPARSEWEAVER FRAMEWORK

Figure 8 shows a system overview of SparseWeaver. The

SparseWeaver system receives input User Defined Functions

(UDFs) for algorithm and graph using a storage format,

storage format interface, and direction. The UDFs consist of

four different methods: init, gather, apply, and filter. A user

breaks down a graph algorithm to implement each method like

other graph processing frameworks [21]. Since the input graph

is stored using a specific storage format, such as Compressed

Sparse Row format (CSR), the user uses the storage format

interface to let SparseWeaver access the storage format. The

storage format interface has two methods [21], getNeighbor
and getEdge, to access graph topology and edge information.

The direction represents whether the gathering process collects

incoming or outgoing edges. The SparseWeaver frontend com-

piler receives the graph algorithm and generates GPU kernel

code. The SparseWeaver backend compiler performs target-

specific code optimization and generates GPU binary. The

SparseWeaver GPU executes the compiled binary with Weaver

support. We implement Weaver on the Open-source RISC-V

GPU called Vortex [14], [47], [48], and use PoCL [22] and

LLVM [28] as the frontend and the backend compiler.

A. SparseWeaver Instruction

Table II shows the SparseWeaver instructions, which serve

as the interface for passing inputs and outputs to and from

the Weaver. The SparseWeaver has a WEAVER REG in-

struction to register the base vertex ID, start edge ID, and
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Fig. 8: SparseWeaver system overview

degree. Additionally, SparseWeaver has two output instruc-

tions to assist in fetching data from SparseWeaver microar-

chitecture: WEAVER DEC ID for returning the vertex ID

and WEAVER DEC LOC for edge ID. The SparseWeaver

also has WEAVER SKIP instruction to skip the vertex if

it is still decoding. Since we implemented our work on

the RISC-V-based open-source GPU, instructions are imple-

mented in RISC-V format. Based on the RISC-V manual [51],

WEAVER DEC ID and WEAVER DEC LOC are imple-

mented as R-type instruction, formed opcode, rd, funct3, rs1,

rs2, func7 and WEAVER REG is implemented as CUSTOM

instruction in the form of opcode, rd, funct3, rs1, rs2, funct2,

r3. We use funct3 and funct2 to distinguish instruction.

The important point is that one of the output instructions

needs to indicate the exit of the work distribution loop.

Although the thread mask can control whether tasks proceed,

1 void SparseWeaverGatherKernel(wset, graph) {
2 tid = get_thread_id() // Get the TID
3 // Registration step
4 for (id = wset.base_id + tid; id < wset.bound;

id += wset.stride) {
5 vid = getFrontier(id)
6 if (dest_filter(vid))
7 continue
8 start, end = getNeighbor(graph, ...)
9 WEAVER_REG(vid, start, end - start)}

10 synchronization()
11 while (true) { // Distribution step
12 vid = WEAVER_DEC_ID()
13 if (vid == -1)
14 break
15 eid = WEAVER_DEC_LOC()
16 src, dest, weight = getEdge(eid...)
17 if (dest_filter(dest))
18 WEAVER_SKIP(dest)
19 if (src_filter(src))
20 continue
21 computeFn(loc, src, dest, weight)
22 }
23 }

Fig. 9: Generated SparseWeaver gather kernel (Pull)

the thread mask cannot represent the exit status because the

deactivation of all threads can cause the termination state.

Thus, the WEAVER DEC ID instruction returns -1 to indicate

the exit of the loop. If all activated threads return -1, then

SparseWeaver can reach the exit the distribution stage.

B. SparseWeaver Compiler

With the updated PoCL and LLVM enabling the adoption

of the Weaver ISA and device-specific runtime libraries,

the compilation flow proceeds through distinct frontend and

backend stages, each responsible for critical optimizations that

tailor the kernel to the target architecture.

The SparseWeaver frontend compiler receives inputs and

generates graph processing kernels like Figure 9. The fron-

tend compiler performs two optimizations. First, the frontend

compiler performs Built-in Library Linking, such as atomic

or math functions, which are linked according to the hardware

target. Secondly, after linking, the compiler performs Graph
Kernel Generation by combining Weaver ISA intrinsic, user-

defined functions and storage format interface. Figure 9 illus-

trates an example of a pull-direction kernel code generated by

the frontend compiler, which traverses incoming edges based

on the destination vertex ID to perform gather processing.

The kernel executes the registration stage first (lines 4–9) and

then the distribution stage (lines 11–22). Kernel code includes

the WEAVER REG intrinsic to deliver shared data to Weaver

in the registration stage (line 9) and the WEAVER DEC ID

and WEAVER DEC LOC intrinsic to decode work IDs in

the distribution stage (line 12 and line 15). Depending on the

direction, the compiler places filters in the registration and

distribution stages. In the case of a pull direction, the compiler

inserts an additional destination filter at the registration stage

to insert the WEAVER SKIP intrinsic (line 18).
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Graph Name Number of Nodes Number of Edges

bio-human-gene1 (Dbh) 22,284 24,691,926

bio-mouse-gene (Dbm) 45,102 29,012,392

roadNet-CA (Drn) 1,971,282 553,321

road-central (Drc) 14,081,817 3,386,682

graph500-scale19 (Dg500) 335,319 15,459,350

COLLAB (Dco) 372,475 49,144,316

hollywood-2011 (Dhw) 2,180,653 228,985,632

web-uk-2005 (Duk) 129,633 23,488,098

web-wikipedia (Dwk) 2,936,414 104,673,033

TABLE III: Graph dataset information [40]

The SparseWeaver backend compiler receives the kernel

IR generated by the frontend compiler and performs Thread
Activate Code Insertion before translating it into a GPU

binary through device kernel translation. Target-specific code

optimization inserts thread mask control logic to activate

all threads within warp during performing distribution and

remaining gather steps. For example, on the Vortex GPU, the

backend compiler inserts code that stores the thread mask of

warp and activates all threads before entering the distribution

loop (line 11 in Figure 9). Then, the backend compiler inserts

code that restores the thread mask right after finishing the

distribution loop. Additionally, the backend compiler expands
the ISA Table to include Table II, supporting kernel transla-

tion. With compiler support, SparseWeaver generates the GPU

code necessary to execute graph code.

C. Weaver Implementation

SparseWeaver is implemented on top of the Vortex GPU by

extending the Special Function Unit (SFU) with Weaver as

shown in Figure 8. When the GPU core decodes and issues

Weaver instructions, the GPU core can send a register request

or decode request to Weaver. The Sparse Work Information Ta-

ble and Dense Work ID Table of Weaver can be implemented

using either registers or shared memory. We implement tables

using shared memory based on the following reasons. The

Vortex GPU has a limited number of registers and fast shared

memory access. In addition, SparseWeaver has a relatively

small number of table accesses (only for one read and write

per graph topology data) while processing a relatively large

number of edges, so table accesses might not cause high

overhead and can be concealed successfully by GPU pipeline

execution. We will discuss this in Section V-D.

V. EVALUATION

In this section, we evaluate the performance of

SparseWeaver with four graph algorithms operators and

GCN on nine graphs, comparing with the four software

scheduling schemes (Svm, Sem, Swm, Scm [33]) and edge-

generating hardware (a similar approach to hardware-based

scheme [32], [42], [43]) on an open-source RISC-V GPU

called Vortex [14], [47], [48]. We model SparseWeaver on

top of the Vortex GPU that provides an open-source software

stack, cycle-level simulator, and register transfer level (RTL)

hardware description. Thanks to its own simulator, Simx,

achieving cycle accuracy within 6% compared to the RTL

model [14], we can test the performance of SparseWeaver.

In addition, we also extended LLVM [28] and PoCL [22] for

Vortex [19] to support Weaver ISA and implement compiler

optimizations. In this evaluation, we use Vortex hardware

configurations such as 2 sockets, 3 cores per socket, 32 warps

per core, and 32 threads per warp. The L1 and L2 cache sizes

are set as 64KB and 1MB, respectively. A penalty is applied

for testing with SparseWeaver, reducing the L1 cache size to

32KB for using 512 entries in the Sparse Work Information

table and the Dense Work ID table per core. To examine the

hardware overhead, we extended Vortex RTL and synthesized

using Quartus Prime Pro 8.1, targeting Intel Stratix 10 FPGA.

The evaluation uses nine graphs in Table III. This evaluation

uses four different algorithms such as PageRank (PR) [8],

Connected Components (CC) [45], Breadth-First-Search

(BFS) [35] and Single Source Shortest Path (SSSP) [35].

A. Comparison with Software-based Schemes

Figure 10 shows that SparseWeaver improves performance

for most algorithms. SparseWeaver achieves 2.36x speedups

for the vertex mapping and 2.63x speedups for the edge

mapping. SparseWeaver achieves 2.73x, 2.64x, 2.71x, and

1.60x speedups over the Svm for BFS, SSSP, PR, and CC.

In detail, SparseWeaver outperforms all other software

scheduling schemes across four benchmarks. It is particularly

notable in the speedup achieved through the BFS and SSSP

benchmarks. These benchmarks have destination and source

filters, which result in higher load imbalances among vertices,

thereby allowing SparseWeaver with BFS and SSSP to demon-

strate superior performance compared with other scheduling

schemes. BFS shows more speedup than SSSP because it does

not use edge weight information. PR and CC perform for

all edges in the gather step, resulting in better opportunities

to benefit from workload balance. In addition, the balanced

workload enables coalesced memory access during edge in-

formation access for the PR algorithm, whereas Svm does not

achieve efficiency from this approach. Therefore, with PR,

all other scheduling schemes show performance improvement

over Svm. The benchmark CC algorithm employs an apply

kernel to rapidly propagate connection IDs among connected

components. The component IDs are composed of nearby IDs

due to the reordering of benchmark graphs to reveal commu-

nity structures. If no updates are required, the CC algorithm

simply checks the IDs of the source and destination, result-

ing in minimal imbalance costs. Consequently, SparseWeaver

exhibits relatively small performance enhancement due to the

concealed benefits of scheduling in the gather kernel and the

proportion of the total time occupied by the gather kernel

B. Skewness Sensitivity

To assess the skewness [54] sensitivity of each scheduling

scheme for given graph data, we compared SparseWeaver and

Svm, Sem scheduling with various skewness patterns with the

PageRank algorithm. Each graph data is generated with a

fixed-sized edge (1.9M) and different vertex numbers (10k,

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on September 15,2025 at 18:03:30 UTC from IEEE Xplore.  Restrictions apply. 



�
�
��
�
�
�

��
�
��

��
�

�

�$�

�

�$�

�

�$�

�

���

�
�

�
� �
	

�



�
�



�
�
�



�

�
�

�
�



�
�

�
�

�
� �
	

�



�
�



�
�
�



�

�
�



�
�

�
�

�
� �
	

�



�
�



�
�
�



�

�
�

�
�



�
�

�
�

�
� �
	

�



�
�



�
�
�



�

�
�

�
�



�
�

��� ���� �� 



�� �� 
� �� ������������

�
�
�

��� ��� � � �!�

�
�
�

�
�"

�
� 

�
#
$

�
%
�
�
�

�
 &

�
�
!

�
!
$

�
�
�

�
�
�

�
�"

�
� 

�
#
$

�
%
�
�
�

�
 &

�
!
$

�
�
�

�
�
�

�
�"

�
� 

�
#
$

�
%
�
�
�

�
 &

�
�
!

�
!
$

�
�
�

�
�"

�
� 

�
#
$

�
%
�
�
�

�
 &

�
�
!

�
!
$

�
�
�

Fig. 10: Performance comparison with the four software scheduling schemes (Svm, Sem, Swm, Scm) and SparseWeaver. Each

graph shows speedups over Svm. Four graph algorithms on nine graphs are used on Vortex GPU
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(b) Speedup over Svm

Fig. 11: Skewness Sensitivity (a) shows the graph degree

distribution of G1 (low skewness) and G6 (high skewness)

(b) shows speedups over Svm when increasing skewness

12k, 16k, 20k, 40k, 80k) by the NetworkX Power-law graph

generator. Figure 11a shows the degree distribution of G1 and

G6 graphs. G1 has a small number of vertices and exhibits

lower skewness, so it has a narrow degree distribution range

and a short edge fraction tail. On the other hand, G6 has

a large number of vertices, high skewness, a wide degree

distribution, and a long edge fraction tail. As the graph index

increases from G1 to G6, skewness also increases, which leads

to progressively worse imbalances. The effect of skewness is

shown in comparison with Sem and Svm in Figure 11b, where

both performances become similar as the workload imbalance

increases even though EM reads double memory for edges

compared to Svm. On the contrary, SparseWeaver shows a

similar increase trend as Sem, implying that workloads are

balanced, leading to tolerance to the data skewness.

C. Effect of Memory Configuration

Figure 12 illustrates that the cycle count increases lin-

early with the ratio of memory and GPU core frequency

from 1 to 6 using Svm, Sem, and SparseWeaver with the

PageRank algorithm. The number n means GPU has n times

higher frequency compared to DRAM frequency. This graph

demonstrates that graph processing is a memory-intensive

application. SparseWeaver shows better performance than Svm

and Sem across all cases because SparseWeaver reduces the
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Fig. 12: Execution cycle comparison by increasing memory

and GPU cycle ratio normalized by Svm − 1 ratio. The number

n means GPU has n times higher frequency compared to

DRAM frequency (n GHz GPU versus 1 GHz DRAM)
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Fig. 13: Execution cycle versus cache read overhead for 10,

20, 40, 80, and 160 cycles.

total cycle count effectively by addressing workload imbalance

with less memory access.

D. Effect of Work Table Access

Figure 13 demonstrates the effect of memory access by the

Sparse Workload Information table and Dense Work ID table

by changing shared memory read overhead from 10, 20, 40,

80, and 160. SparseWeaver demonstrates that shared memory

read latency can be concealed by the GPU pipeline. We tested

shared memory read latency under varying conditions using

an 8-core, 32-warp, and 32-thread Vortex configuration with

the PageRank algorithm. With only one scan required for each

table entry, performance remained consistent despite increases

in latency, indicating that other instructions can effectively

mask the cache read latency.
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Fig. 14: Performance comparison with L1&L2 and

L1&L2&L3 cache with PageRank. Each graph shows

speedups over Svm with L1&L2 cache.
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Fig. 15: Performance comparison by L1 cache size (16KB,

32KB, 64KB) and L2 cache size (0.25MB, 0.5MB, 1MB,

2MB, 4MB, 8MB) using PageRank and two datasets. Each

graph shows speedups over Svm with 16KB L1 and 1MB L2

cache.

E. Cache and Memory Analysis

Figure 14 shows the performance comparison between two

cases ( L1&L2 cache, L1&L2&L3 cache). The graph shows

that the existence of an L2 cache affects performance. The

graph shows that the existence of an L3 cache has no signif-

icant impact when comparing the results of the L1&L2 case

with the L1&L2&L3 case. Figure 15 shows the performance

comparison by increasing the L1 from 16KB, 32KB, 64KB,

and L2 cache size from 0.25MB, 0.5MB, 1MB, 2MB, 4MB,

and 8MB. The graph also shows that cache size has no

significant performance impact.

F. Hardware Overhead

To assess the area overhead incurred in hardware,

SparseWeaver was modeled in RTL for the Vortex GPU.

The RTL was synthesized using Quartus Prime Pro 18.1

and targeted the Intel Stratix 10 FPGA. The Workload Info

Table and Work ID Table logic (Figure 7) required an in-

crease of 678 dedicated logic registers for a single core. The

SparseWeaver FSM and other supporting logic for adding the

new instructions required 3109 more adaptive logic modules

(ALMs) for a single core. The overall per-core increase is

0.045% for dedicated logic registers and 2.96% for ALMs

due to the Sparse Workload info Table, Dense Work ID table,

and FSM. In the 16-core case, the ALM increase is 2.01%

over the default 16-core configuration. This signifies a very

small area overhead in hardware since SparseWeaver does not

increase the usage of block memory, RAM blocks, or DSP

blocks. Table IV gives a summary of the FPGA resources used.

Figure 16 provides a visual representation of the increase in

area for a 1-core and a 16-core GPU.

Vortex GPU configuration
Total

ALMs

ALM %

increase

Block memory

% increase

RAM %

increase

DSP %

increase

1-core default 105,094
2.96% 0% 0% 0%

1-core w/ SparseWeaver 108,203

16-core default 580,332
2.01% 0% 0% 0%

16-core w/ SparseWeaver 591,971

TABLE IV: The area overhead of SparseWeaver in terms of

FPGA resources utilized.

(a) (b) (c) (d)

Fig. 16: Block utilization diagrams for different configurations

of the Vortex GPU synthesized on the Stratix 10 FPGA where

blue indicates a used block and the red box indicates a major

difference in the utilized blocks. (a) A single core of the GPU

(b) A single core of the GPU with SparseWeaver (c) A 16-

core GPU (d) A 16-core GPU with SparseWeaver

As for developmental overhead, the hardware implemen-

tation consists of an additional 251 lines of System Verilog

code. Compared to the original codebase with 184,449 lines

of System Verilog code, this represents a 0.136% increase.

G. Push and Pull Breakdown

Figure 17 shows the performance breakdown with the Push

and Pull direction. For registration, both Push and Pull incur

a similar amount (less than 1% difference) of cycles. The

summation cycles of the Edge schedule and Edge Info access

for Push and Pull are also similar because we use a symmetric

graph dataset. The gather and sum cycle varies by dataset. For

example, Push shows fewer cycles with Dwk, Drc, and Pull

shows fewer cycles with other datasets.

H. Case Study 1: Existing Hardware-based Scheme

In this case study, we compare SparseWeaver with edge-

generating hardware (EGHW) mode similar to existing

hardware-schemes [32], [42], [43]. The edge-generating hard-

ware performs the entire operations in the edge schedule (blue

box) except filtering the vertex in Figure 5, including investi-

gating the graph topology of the vertex and edge information

access. In EGHW mode, the GPU stores the vertex ID in a

buffer in shared memory, and EGHW accesses graph topology

information by reading the vertex ID in the buffer. Then,

EGHW performs remapping and stores edge data, such as

opposite vertex ID and weight, into the buffer. Therefore,

GPU has to wait for edge information from EGHW to perform

gather and sum. By moving graph topology and edge infor-

mation access to Weaver, SparseWeaver can generate edge

information using hardware.
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Fig. 17: Execution cycle breakdown of the gather process with

Push and Pull using PageRank. The breakdown includes five

steps: Init, Registration, Work ID calculation, Edge informa-

tion access, and Gather & Sum.
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Fig. 18: Execution cycle breakdown of gathering process with

EGHW and SparseWeaver using PageRank algorithms. Exe-

cution time is normalized to the total cycle of SparseWeaver.

Figure 18 shows execution time comparsion with EGHW

and Weaver. SparseWeaver achieved a geometric mean

speedup of 3.64 times compared to EGHW. In detail, the

speedup comes from the distribution stage, such as Work

ID calculation, Edge Information Access, and Gathering. The

performance difference comes from the fact that EGHW does

not conceal the overhead of edge information read from

memory and needs more shared memory access to store and

read generated edge information to the buffer. In addition,

the stall caused by Edge Information Access also affected the

Gather because of dependency on edge information load. It is

possible to add a pipeline and more complex logic into EGHW

to improve the performance of Edge Information Access,

but we can achieve efficient memory access using the GPU

pipeline like SparseWeaver design.

I. Case Study 2: Performance with GCN

This case study demonstrates the extensibility of

SparseWeaver by comparing the performance of the

graph convolution network (GCN) operator [25] using vertex

and weight parallelization strategies. The GCN experiment

evaluates three kernels: initialization, sparse matrix-matrix

multiplication (SpMM), and mean aggregation (GraphSum)

across 16 weight dimension sizes. As a baseline, we change

Svm mapping to first parallelize the weight dimension and

the vertex dimension to execute the SpMM and GraphSum

kernels, so each thread gathers a specific weight across the

size of the vertex’s neighbor list and can remove atomic for

weight update. On the other hand, our method continues
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Fig. 19: Performance of GCN operators with three different

scheduleing methods, Svm parallelized by weight.

to parallelize edge updates by iterating through the weight

dimension using atomic operation.

Figure 19 indicates that SparseWeaver achieves a 6.15 times

speedup compared to Svm. SpMM demonstrates improved

performance with Svm due to the benefits of weight paral-

lelization and reduced use of atomic operations, while for

GraphSum, SparseWeaver performs better by reducing the

cost of coefficient calculations, determined by the degree of

the source and destination vertices. Given that GraphSum

requires more processing time, SparseWeaver shows better

performance than Svm.

J. Case Study 3: Comparison with Existing Auto-tuner

Autotuner with A30 SparseWeaver
(108 SM, 64 warps/core, 1200Mhz) (8 cores, 32 warps/core)

Tuning Time (sec) Svm (ms) Best (ms) Speedup Svm (ms) SW (ms) Speedup
Dhw 4502.83 18.92 8.78 2.16 5408.33 1016.67 5.32
Duk 1446.57 1.45 0.69 2.11 400.83 173.33 2.61
Dco 1710.66 2.63 1.40 1.88 916.67 216.67 4.23
Drn 1139.41 0.47 0.32 1.47 453.01 247.68 1.83

TABLE V: Speedup over Svm Comparison using Auto-

tuner [21] and SparseWeaver with PageRank

Table V shows the performance gain compared to Svm with

the existing Autotuner [21] and SparseWeaver. Even though

hardware configurations, such as the number of parallel units,

differ between the tested Nvidia GPU and SparseWeaver setup,

the table shows that SparseWeaver has better performance

compared to Svm, even without requiring the tuning time that

the Autotuner demands.

VI. RELATED WORK

A. Software workload balancing method

Some existing works [6], [12], [20], [21], [24], [31], [33],

[34], [37] suggest software-based schemes to address work-

load imbalance problem. Some software-based scheduling

schemes [6], [12], [33], [34] store the graph topology of the

target vertex range in shared or global memory and employ

binary search or atomic operations with synchronization meth-

ods to determine which edges to process. For example, Warp

Mapping (Swm) and Cooperative Thread Array (CTA) Map-

ping [33] assign a vertex and its neighboring edges to a warp

and a CTA, respectively. Swm and CTA employ shared memory

to save neighbor list information and use a binary search to

find an edge to process. Some works [6], [34] also propose

more complex scheduling, which uses multiple buckets to

classify neighbor lists into small, medium, and large categories

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on September 15,2025 at 18:03:30 UTC from IEEE Xplore.  Restrictions apply. 



to improve reusability and reduce search costs. However,

because of the hardness of convincing which scheduling

performs better for specific graphs, some existing [6], [21],

[33] works suggest auto-tuners to find the optimal solutions.

Other software-based schemes change storage formats [20],

[24], [31], [37], but changing requires static time efforts such

as vertex virtualization [31], [37], subgraphing [20].

B. Hardware workload balancing method

Some hardware-based workload balancing schemes [32],

[42], [43] propose hardware accelerators that generate active

edge information. SCU [42], [43] suggests special hardware

outside of GPU which reads graph topology and edge informa-

tion, filters edges, generates compact edge frontier, and stores

edge frontier in global memory. GraphPEG [32] proposes

a special hardware per core that reads graph topology and

edge information stored in global memory and stores edge

information in shared memory. Both methods need additional

memory usage to store generated edge information, and special

hardware generates load and store requests for edge access

inside special hardware by itself. Both papers aim to enhance

GPGPU efficiency for graph processing by addressing irreg-

ular memory accesses, offering significant performance and

energy benefits despite their limited applicability or scalability.

There are several frameworks [17], [39], [53] that focus on

load balancing strategies on FPGA platforms. [39] addresses

the severe workload imbalance in Graph Attention Networks

(GATs) caused by the power-law distribution of real-world

graph data by selecting only the top-K neighbor nodes with the

highest attention scores for the aggregation phase. [53] focuses

on optimizing the inference of Graph Convolutional Networks

(GCNs) on FPGAs by managing data flow and reducing

redundant memory accesses, thus enhancing performance by

leveraging the parallel processing capabilities of FPGAs while

balancing memory access loads. Meanwhile, [17] tackles the

irregularities in data access and control flow due to the power-

law distribution in graph data by employing dynamic auto-

tuning techniques. Limitations of the techniques are their

applicability and system complexity, where SparseWeaver de-

couples algorithm and load balancing, offering more flexibility

in its application.

VII. DISCUSSION

A. General Usage of SparseWeaver

We believe that SparseWeaver can extend its applicability

to other sparse applications, particularly those originally using

the CSR format, such as GPU hashing, MapReduce, Graph

Neural Networks, or sparse matrix multiplication. These ap-

plications handle sparse data, such as hash tables containing

sparse workload information. For example, Algorithm 1 shows

a possible implementation of GPU hash lookup. The sparse

workload information can store the position of each key-value

pair within hash table buckets [2]. Sparse-Weaver can replace

the second for loop (Line 3, which uses sparse information

in offset array) to distribute hash operations across multiple

threads, as the offset array contains workload information.

Algorithm 1: The GPU hash lookup [2]

Input: keys : Input Hash Keys
offset: offset array pointing to the ranges of bucket

1 foreach key ∈ keys do
2 bucket ← hash(key)
3 for i ∈ range(offset[bucket], offset[bucket+1]) do
4 if hashtable[i] == key then
5 ...
6 end
7 end

B. Integrating SparseWeaver into Auto-tuners

Integrating SparseWeaver into existing auto-tuners can be

achieved by extending hardware options. Auto-tuners often

struggle to incorporate new hardware features, such as tensor

or sparse cores, without modifying code because GPU archi-

tectures, drivers, and programming languages evolve rapidly.

Therefore, supporting these new hardware features requires

extensions in auto-tuners. SparseWeaver represents a new

microarchitectural feature that often outperforms software-

based schedules for diverse graphs. Consequently, if the auto-

tuner can run on GPUs supporting SparseWeaver, it could

be extended with the hardware option SparseWeaver. This

approach may eliminate the need to explore software schedules

for supported GPUs while preserving the use of software

schedules for GPUs that lack SparseWeaver support.

VIII. CONCLUSION

This work proposes a new collaborative hardware

and software graph processing framework SparseWeaver.

SparseWeaver effectively addresses the workload imbalance

in the graph processing on GPU by converting the sparse

operations into dense operations. Based on the analysis of

common patterns in software schemes, we propose a hardware

logic, called Weaver, new lightweight hardware that is tightly

integrated into the GPU pipeline with simple ISA. With

only 0.045% additional dedicated logic registers and 2.96%

additional ALMs in a single core, SparseWeaver achieves a

performance speedup that is 2.36 times faster on real-world

graph datasets compared with the software scheme.
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[32] Y. Lü, H. Guo, L. Huang, Q. Yu, L. Shen, N. Xiao, and Z. Wang,
“Graphpeg: Accelerating graph processing on gpus,” ACM Trans. Archit.
Code Optim., vol. 18, 2021.

[33] K. Meng, J. Li, G. Tan, and N. Sun, “A pattern based algorithmic
autotuner for graph processing on gpus,” in Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, 2019,
pp. 201–213.

[34] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph traver-
sal,” in Proceedings of the 17th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, 2012, pp. 117–128.

[35] D. Merrill, M. Garland, and A. Grimshaw, “High-performance and
scalable gpu graph traversal,” ACM Trans. Parallel Comput., vol. 1,
2015.

[36] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 1–14.

[37] A. H. Nodehi Sabet, J. Qiu, and Z. Zhao, Tigr: Transforming Irregular
Graphs for GPU-Friendly Graph Processing, 2018, pp. 622–636.

[38] S. Pai and K. Pingali, “A compiler for throughput optimization of
graph algorithms on gpus,” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2016, pp. 1–19.

[39] N. Park, D. Ahn, and J.-J. Kim, “Workload-balanced graph attention
network accelerator with top-k aggregation candidates,” in Proceedings
of the 41st IEEE/ACM International Conference on Computer-Aided
Design, 2022, pp. 1–9.

[40] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: https://networkrepository.com

[41] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on September 15,2025 at 18:03:30 UTC from IEEE Xplore.  Restrictions apply. 



Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013,
pp. 472–488.

[42] A. Segura, J.-M. Arnau, and A. González, “Scu: A gpu stream com-
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