
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–19
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

SafeType: Detecting Type Violations for Type-Based Alias
Analysis of C

Iain Ireland2, José Nelson Amaral1∗, Raúl Silvera3, Shimin Cui2

1University of Alberta
2IBM Canada Software Laboratory

3Google Inc.

SUMMARY

To improve the ability of compilers to determine alias relations in a program, the C standard
restricts the types of expressions that may access objects in memory. In practice, however, many
existing C programs do not conform to these restrictions, making type-based alias analysis unsound
for those programs. As a result, type-based alias analysis is frequently disabled.
Existing approaches for verifying type safety exist within larger frameworks designed to verify
overall memory safety, requiring both static analysis and runtime checks. This paper describes the
motivation for analyzing the safety of type-based alias analysis independently; presents SafeType,
a purely static approach to detection of violations of the C standard’s restrictions on memory
accesses; describes an implementation of SafeType in the IBM XL C compiler, with flow- and
context-sensitive queries to handle variables with type void *; evaluates that implementation,
showing that it scales to programs with hundreds of thousands of lines of code; and uses SafeType
to identify a previously unreported violation in the 470.lbm benchmark in SPEC CPU2006.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

An alias analysis is a static program analysis that is used at compile time to determine
whether expressions may refer, at runtime, to the same memory location. One form of alias
analysis is type-based alias analysis. Type-based alias analysis relies on the idea that memory
references with different types should generally not alias. To formalize this intuition, the
C standard imposes type-based restrictions on memory access [1]. Objects in memory have
types; if an object is accessed using an expression with a type that does not conform to the
restrictions, the behaviour of the program is undefined. An optimizing compiler is therefore
permitted to assume that accesses to memory that violate these type-based restrictions
do not exist, and conclude that memory references of different types do not alias. This
information can be used to enable more aggressive code transformations to improve the
performance of the compiled code.

When applied to programs that violate the C standard’s type-based restrictions, type-
based alias analysis is unsafe. Its use may unintentionally alter program semantics, leading
to the introduction of difficult-to-diagnose bugs. One example comes from the 176.gcc

∗Correspondence to: E-mail: jamaral@ualberta.ca

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2

benchmark in SPEC CPU1995. In one function, 176.gcc clears the contents of a structure
by casting the structure to an array of int and assigning 0 to each element of the array.
Because an array of int cannot be legally aliased to an arbitrary structure, a series of
seemingly valid transformations may leave uninitialized data in the structure[2].

Unfortunately, in practice, many C programs do not conform to the C standard’s type-
based restrictions on memory access, and their users still expect a compiler to generate
functional code. In some cases, the existence and identity of violations is known. For
example, in the SPEC CPU2006 benchmark suite, the list of known portability issues for
the 400.perlbench benchmark includes a warning about violations of ANSI aliasing rules.
Similarly, prior to Python 3, the reference implementation of Python used a representation
of Python objects that violated ANSI aliasing rules [3]. In both of these cases, the existence
of violations was known. However, there are other cases in which the presence of violations
is uncertain. Violations may occur due to programmer error, or ignorance of the restrictions.
Violations may also occur in legacy programs written prior to the creation of the C standard.
In many cases, the effort required to identify non-compliant code and rewrite those programs
to be compliant is prohibitive. This obstacle is particularly relevant for the largest and most
important code-bases.

Bugs introduced by unsafe type-based alias analysis can be difficult to diagnose and
correct. As a result, type-based alias analysis is frequently turned off. This situation is
unfortunate. Even in non-standard-compliant programs where type-based alias analysis is
unsafe, there remain many aliasing situations where type-based alias could provide useful
information. Furthermore, SafeType assists in the creation of in the creation of standard-
compliant code, which is more portable and easier to maintain an debug. It is therefore
useful to be able to automatically identify code that may violate the C standard’s type-
based restrictions. If code that violates the standard can be isolated, it becomes possible to
make informed decisions about when to use type-based alias analysis. Furthermore, it also
becomes possible to identify the code changes that must be made to ensure that type-based
alias analysis can be safely applied to a program.

Approaches to this problem exist that guarantee the overall memory safety of C, including
as one component of this guarantee the absence of run-time type violations[4][5]. However,
these approaches impose overhead on execution by requiring the insertion of runtime checks.
For some use cases, this trade-off of performance for safety is acceptable. However, for type-
based alias analysis in particular, this trade-off is unsatisfying. The purpose of aliasing
information is to give an optimizing compiler the information it requires to make more
aggressive transformations and improve performance. Verifying the safety of type-based
alias analysis through the use of runtime checks, therefore, exchanges performance for less
performance. It is therefore desirable to have a purely static analysis for verifying the safety
of type-based alias analysis that imposes no runtime overhead.

Surprisingly, no such analysis is explored in the literature. We therefore present SafeType,
a purely static approach to detection of violations of the C standard’s restrictions on memory
accesses. SafeType attempts to preserve the invariant that each pointer in memory is either
a null pointer or points to an object of a type that the pointer is permitted to access. In cases
where SafeType cannot prove that the invariant is preserved, instead of inserting runtime
checks, SafeType emits a warning to the programmer. Programs without warnings can be
safely compiled using type-based alias analysis, while programs with warnings require the
programmer to manually examine some cases. SafeType can also be used as a diagnostic
tool to speed the process of debugging in cases where the programmer suspects type-based
alias analysis may be at fault. To minimize the number of warnings, SafeType includes a
fully flow- and context-sensitive analysis of variables with type void *.

Section 2 gives background information on type-based alias analysis. Section 3 presents a
formal definition of the problem of identifying violations, and introduces a static analysis,
SafeType, that soundly identifies such violations. Section 4 completes the presentation
of SafeType, describing its handling of void pointers. Section 5 evaluates a prototype

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

3

implementation of SafeType, demonstrates that it scales to programs with hundreds of
thousands of lines of code, and identifies a previously unreported violation of the C
standard’s type-based restrictions on memory access in the 470.lbm benchmark from SPEC
CPU2006. Section 6 describes related work on points-to analysis and safety analysis for C.
Section 7 concludes the paper.

2. BACKGROUND

Although the idea of type-based alias analysis has been mentioned in passing for decades [6],
the first publication to present an algorithm or evaluate the benefits of type-based alias
analysis was an implementation for Modula-3 by Diwan et al. [7]. They present three versions
of the analysis. The first version is purely type-based: two memory references may alias if
and only if they have the same declared type, or if the declared type of one is a subtype
of the declared type of the other. The second version improves the precision of the analysis
using additional high-level information. The third version uses a flow-insensitive algorithm
to exclude aliases between a type T and a subtype S of T unless a statement assigns a
reference of subtype S to a reference of type T . Each of the three versions is evaluated as
the only alias analysis in a Modula-3 compiler.

The first implementation of type-based alias analysis for C to be described in the literature
is by Reinig for the DEC C and DIGITAL C++ compilers [2], The DEC implementation
operates on each function independently and creates a set of effects classes and
associated effects signatures that allow the compiler to efficiently represent both type-
based alias analysis and structural aliasing. Like Diwan’s analysis, this analysis is flow-
insensitive, context-insensitive, and field-sensitive.

Although no paper was published, gcc introduced type-based alias analysis in the same
time period as the DEC compiler [8]. In gcc’s implementation, alias information produced by
the C front end based on the type assigned to an object by the programmer was propagated
into the optimization passes. This information was used in conjunction with a pre-existing
“base address” alias analysis, which eliminated a different set of impossible alias pairs. The
combination of the two analyses was more precise than either analysis independently.

Type-based alias analysis has gone on to become a common and important feature of
production C compilers. For example, it is present in IBM’s XL C compiler, the Intel
Itanium compiler [9], and, as of April 2011, LLVM’s Clang compiler [10].

Type-based alias analysis is also used for other languages, such as Java [11][12] and
C++ [13]. Lhoták shows that type-based alias analysis improves both the precision and the
efficiency of points-to analysis in Java [14]. The type safety guarantees of some of these
languages, including Java, ensure that type-based alias analysis is always sound.

The most important evaluation of the benefits of type-based alias analysis comes
from Ghiya [9]. In the context of the Intel Itanium compiler, Ghiya evaluates seven
complementary strategies for memory disambiguation: disambiguation of direct references;
a simple base-offset analysis; an array data-dependence analysis; an intraprocedural version
of Andersen’s points-to analysis modified to be field-based; a global address-taken analysis;
an interprocedural version of Andersen’s analysis; and a type-based alias analysis. Each of
these techniques is applied to the twelve C/C++ benchmarks from the SPEC CINT2000
benchmark suite. Ghiya determines that type-based alias analysis “pays off” for five of the
twelve benchmarks, eliminating alias pairs that no combination of the other six methods
can disambiguate. In particular, type-based alias analysis is important for disambiguating
pointers against scalar objects. While acknowledging that type-based alias analysis is
potentially unsafe, Ghiya concludes that a suite of disambiguation techniques – including
type-based alias analysis – is the optimal approach.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4

3. SAFETYPE: AN ANALYSIS TO ENABLE TYPE-BASED ALIAS ANALYSIS

SafeType is a static analysis that examines each statement in a program to identify code
that makes type-based alias analysis unsafe. At each statement, SafeType generates a set
of constraints. In the general case, these constraints can be evaluated immediately. When
dealing with variables of type void *, a flow-sensitive approach is required. SafeType uses
on-demand queries to attain flow sensitivity, and uses summary functions to attain context-
sensitivity. This section introduces the underlying principles of SafeType, and describes the
flow-insensitive component of SafeType.

3.1. Assumptions

The goal of SafeType is to statically detect violations of the C standard’s restrictions on
memory accesses that might make type-based alias analysis unsafe. To this end, SafeType
assumes the absence of three types of illegal memory operations: dereferences of undefined
pointers, dereferences of freed memory, and array-bounds violations. In the presence of
these errors, SafeType may inaccurately conclude that two memory references do not alias.
We make this decision for three reasons. First: in the presence of these illegal memory
operations, almost any memory references may potentially alias. It is therefore impossible
in the general case to prove the absence of illegal memory operations in unmodified C
programs without introducing runtime overhead, which contradicts the purpose of type-
based alias analysis. Second, the C standard categorizes these illegal memory operations as
undefined behaviour, giving explicit permission to make precisely the required assumption.
Third, a large number of tools exist to detect illegal memory operations, and programmers
have experience in detecting and correcting them. No tools exist to detect the violations that
SafeType targets, and programmers have much less experience identifying and correcting
bugs introduced by unsafe type-based alias analysis. Thus, by assuming the absence of illegal
memory operations, SafeType is more effective, more tractable, and more precisely focused
on the problem it aims to solve.

3.2. Preliminaries

In what follows, τ ranges over types, P ranges over programs, f ranges over functions, v
ranges over variables, e ranges over expressions, l ranges over lvalues, o ranges over objects,
s ranges over statements, and S ranges over program states.

The C standard defines an object as a region of data storage in the execution environment.
The contents of an object represent a value when interpreted as having a particular type.
An lvalue is an expression that refers to such an object. An access is an execution-time
action reading or modifying the value of an object in memory. A modification is an access
that assigns a new value to an object (including cases where the new value being stored is
the same as the old value). A read is an access that uses the current value of an object.

An expression in a program is a memory reference if its execution accesses memory. In
an assignment v1 = v2, there are two memory references: one that reads v2, and one that
modifies v1. Two memory references are aliased if they may refer to the same memory
location.

The C standard defines the effective type of an object in memory as the declared type
of that object, if it exists. Objects allocated on the heap have no declared type. For such
objects, the effective type is set when a value is stored into that object through an lvalue
with a type that is not a character type.

The C standard imposes restrictions on the types of lvalue expressions that may access
objects in memory. These restrictions, found in paragraph 7 of section 6.5 of the standard [1],
can be characterized as follows:

Definition 1 • Except where noted below, an lvalue expression of type τ may only access
an object in memory with the same type τ .

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

5

• Type qualifiers (volatile, const) are ignored when determining whether two types
τ1 and τ2 are the same.
• The signedness of integer types is ignored when determining whether two types τ1 and
τ2 are the same.
• By definition, an access to an lvalue with an aggregate type (an array, a struct,

or a union) accesses the memory of the members of that aggregate. This is known
as structural aliasing. Thus, an access to an lvalue with an aggregate type τaggr is
permitted to access an object in memory with a type τmember if τaggr includes a
member of type τmember, either directly or recursively as a member of a subaggregate.
• To allow for bytewise manipulations of memory, an lvalue expression with type char

is permitted to access memory of any type.
Definition 2
Define the can-access relation . such that τl . τo iff an lvalue l of type τl is permitted to
access an object in memory o of type τo according to these restrictions.
Definition 3
Define safe(l) to be true for an lvalue l if l is permitted to access the value of the object to
which it refers.

These restrictions provide the foundation for existing implementations of type-based alias
analysis. Any lvalue of type τl can be assumed not to alias any object of type τo unless τl . τo.

3.3. Inputs

In addition to the abstract syntax tree of a program P , SafeType requires data-flow
information for each function in P . For a function f , let S(f) be the set of statements
in f , augmented with a dummy statement s0 representing the entry point of f . For a use of
a variable v in a statement s ∈ S(f), the use-def function D(v, s) is the subset of statements
in S(f) that define a value for v such that this value may reach s without an intervening
assignment to v. These definitions may occur as the result of an explicit assignment, or as
the result of a side-effect of a function call. They may also represent the pre-existing value
of v at the entry point of the function. The implementation of SafeType takes advantage of
the factored single static assignment (SSA) representation generated by the XL compiler.
In principle, the use of factored SSA is not necessary. The required information could be
obtained from another form of SSA, from def-use and use-def chains, or by traversals of the
abstract syntax tree.

SafeType also requires the construction of the static call graph of P . The call graph for
a program P is a directed multi-graph CP = (V,E,Call), where V is the set of functions,
E is the set of call edges, and Call is the set of call sites within those functions. Each edge
(f, c, g) ∈ E represents a possible call from a function call statement c ∈ Call in function f
to function g, where f, g ∈ V . Cycles in the call graph represent function recursion; a self-
recursive function will be represented by an edge (f, c, f). Multiple edges may exist from a
function f to a function g if f calls g from multiple distinct call sites. Multiple edges may
also exist from a call site c in a function f if the call site may call more than one function
(due to the use of function pointers).

Let TC be the set of C types present in a program. Let TPf
be the set of placeholder

types present in a function f , as defined in Section 4.2. For a function f , let Tf = TC ∪ TPf

be the set of types present in f . Let the power set of Tf be ordered such that for two sets
A,B ∈ 2Tf , A ≤ B iff A ⊃ B. The result is a lattice L(f) bounded by the null set (>) and
by Tf itself (⊥). Each element of this lattice represents a subset of Tf . The lattice for a
program with two C types τ1 and τ2 and a placeholder type π can be seen in Figure 1.

3.4. Intuition

Type based alias analysis is safe so long as the restrictions in Definition 1 are respected
for each memory access. Memory accesses in C are represented by lvalues; thus, type-based

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6

>

{τ2}{τ1} {π}

{τ1, π}{τ1, τ2} {τ2, π}

⊥

Figure 1. Type Lattice

lval ::= id
| lval.id
| * lval

Figure 2. Syntax of lvalues

alias analysis is safe for a program P if safe(l) is true for every lvalue l accessed by P .
The syntax of lvalues is shown in Figure 2. There are three cases: identifiers, field accesses,
and pointer dereferences. (Language constructs such as array accesses and the -> operator
are syntactic sugar for these basic operations.) For identifiers, safe(l) is trivially true. The
object in memory accessed by the expression v will always have the same effective type as
the declared type of v, by definition.† By the same token, for field accesses, safe(v.f) is true
iff safe(v) is true.

The possibility of type mismatches comes from pointer dereferences. Although the
expression v is safe for every variable v, the expression *v is only safe if v currently points
to an object it is permitted to access. Thus, a program is safe unless it dereferences a
pointer pointing to an object of an incompatible type. To determine whether or not a
program violates the C standard’s type-based restrictions on memory, it is sufficient to
determine whether such a pointer is ever dereferenced. In turn, the presence or absence of
such violations in a program is sufficient to determine whether the application of type-based
alias analysis is sound.

It is infeasible at compile time to determine every possible value that may be taken on by
a dereferenced pointer in a program. SafeType approaches the problem from the opposite
direction; it attempts to verify that no unsafe pointers are created in the first place. Consider
an expression *e in a program P . If the dereference of e is unsafe, then e must fall into one
of two cases:

1. e contains a type-cast expression that creates an unsafe pointer. For example, if i is a
variable with type int, the expression (double *) &i creates a pointer that cannot
be legally dereferenced.

2. e loads a pointer value from memory that points to an object of an incompatible type.

The underlying principle of these cases is that unsafe pointers do not appear out of
nowhere. They must be created at some point. If no unsafe pointer is ever created, then no
unsafe pointer can ever be dereferenced. Thus, if SafeType can verify that each individual
statement in a program preserves the invariant that each non-null, non-void pointer can be

†Although it may not be safe to dereference a pointer v, it is always safe to load the value of that pointer.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

7

safely dereferenced, then it can conclude that at each dereference *e in P , safe(*e) is true.
More formally:

Definition 4
Given a state of program execution S, the safe-memory property safe-mem(S) is true if
and only if for every live pointer variable v, safe(*v) is true – that is, for every object o in
memory whose effective type is a pointer type *τptr, either o is a null pointer, or o is a void
pointer, or the value of o is the address of an object in memory with effective type τobj such
that τptr . τobj. By definition, safe-mem(S0) is true for the initial state of a program S0.

For a statement s, let Ss and S ′
s be the program state immediately prior to and

immediately following the execution of s, respectively. SafeType attempts to verify for all
s that safe-mem(Ss) =⇒ safe-mem(S ′

s). This verification takes the form of an analysis
of assignment statements, and is described in Section 3.5. Each assignment statement
can be examined independently to determine whether or not it preserves the safe-mem
invariant, making the bulk of this analysis flow- and context-insensitive. However, precisely
determining the effective type of an expression containing variables of type void * requires
flow- and context-sensitive queries, which are described in Section 4.

One additional benefit of this focus on the creation rather than the dereference of unsafe
pointers is that, in the presence of violations, it more accurately identifies the responsible
statements in the source code. When a bug causes a program to unexpectedly dereference
a null pointer, the dereference itself is rarely the source of the bug. It is more useful to
identify the statement that caused the pointer to be null. The same is true when detecting
violations of the C standard’s restrictions on memory access.

3.5. The SafeType Analysis

Section 3.4 justifies an approach in which each assignment statement is inspected to
determine whether it may create a pointer in memory that cannot be legally dereferenced.
SafeType examines four types of assignment statements. Each statement generates one or
more constraints.

• Explicit assignments: for an lvalue l of type τl and an expression e of type τe, an
assignment of the form l = e generates the constraint τl . τe.
• Function calls: for a function f with return type τR and parameter types
{τf1 , . . . , τfn

} and a set of expressions {e1, . . . , en} of types {τe1 , . . . , τen
}, a function

call of the form f(e1 , . . . , en) generates the set of constraints {τfi
. τei

| 1 ≤ i ≤ n}.
• Return statements: for an expression e of type τe evaluated in a function f with

return type τR, a return statement of the form return e generates the constraint
τR . τe.
• Type casts: for a type τc and an expression e of type τe, a typecast of the form (τc)

e generates the constraint τc . τe.

Each constraint is evaluated according to the definition of . in Section 3.2. When a
void pointer exists on the right-hand side of an assignment, the effective type of the value
being assigned requires flow-sensitive analysis to determine, and its type in the constraint is
represented by a placeholder type. Constraints involving only regular C types are evaluated
immediately. The evaluation of constraints involving placeholder types must be delayed, as
described in Section 4.2. For any constraint that is not satisfied, a warning is produced to
indicate that the assignment may make type-based alias analysis unsound. This warning
includes the location of the statement in the source code, and the two types being compared.

These warnings can then be used by the programmer to correct the source code. In many
cases, this can be accomplished with little effort by changing the type of a variable to char or
by declaring a union. By making use of the exceptions that are provided by the C standard,
these simple changes can convey the necessary information to a standard-compliant type-
based alias analysis without requiring a complete overhaul of the program.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8

Listing 1. Non-compliant
1 void ∗vp ;
2 i n t i ;
3 double ∗dp ;
4
5 vp = &i ;
6 dp = (double ∗) vp ;
7 ∗dp = 1 . 0 ;

Listing 2. Compliant
1 void ∗vp ;
2 double d ;
3 double ∗dp ;
4
5 vp = &d ;
6 dp = (double ∗) vp ;
7 ∗dp = 1 . 0 ;

Figure 3. Void Pointers

4. DEALING WITH VOID POINTERS

This section explains the need for a flow-sensitive analysis to correctly handle void pointers,
and describes that analysis. Section 4.2 extends that analysis to be fully context-sensitive.

4.1. Flow-Sensitive Analysis

The preceding discussion implicitly assumes that it is possible to assign an effective type to
each expression. However, this assumption is not true for variables of type void *. A void
pointer can never be dereferenced without casting it to a non-void type, but is permitted
to point to any object in memory. This flexibility creates a problem. Consider the example
in Listing 1. The code includes three assignments: the assignment of &i to vp, the cast of
vp to double *, and the assignment of the cast expression to dp. This code violates the
C standard. After line 6, dp points to i. When dp is dereferenced on line 7, an object of
type int is accessed through an lvalue of type double, which violates the rules laid out in
Definition 1. Conversely, in Listing 2, dp points to d, with type double, and the dereference
in line 7 complies with the C standard.

As described above, the safe-mem invariant is maintained by ensuring that each pointer
always points to an object that it is permitted to access. On its own, this approach is
insufficient for void pointers, because they can point to any address and can never be
dereferenced. As can be seen in Listings 1 and 2, the type of a void pointer, at the
point at which it is cast to a non-void pointer, is a flow-sensitive property depending on
previous assignments. It is therefore necessary, in the specific case of void pointers, to extend
SafeType to make it flow-sensitive. This accurate treatment of void pointers is particularly
important when dealing with custom memory management routines.

Flow-sensitivity is attained in SafeType using on-demand flow-sensitive queries. Consider
an expression e that uses a variable v with declared type τ . If τ = void *, then a flow-
sensitive query is necessary to determine the actual type of the object to which v points.

Definition 5
Given a variable v and a definition d of that variable (such that d ∈ D(v, s) for some
statement s), the types function T is defined such that T (v, d) is a lattice element
representing the possible types of the value assigned to v by definition d.

This section describes the implementation of T in the case where d is an assignment
statement. Section 4.2 describes the implementation of T in the case where d is a function
call statement or a function entry point.

Definition 6
Given a variable v and a statement s, the flow-sensitive query function F(v, s) is defined as
follows:

F(v, s) =
∨

d∈D(v,s)

T (v, d)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

9

The definition of T (v, d) is straightforward for assignment statements. Given a statement
v = e, if e has type τe, then T (v, v = e) = {τe}. If e also uses a void pointer, additional
flow-sensitive queries may be necessary to determine τe. SafeType uses a worklist algorithm
and caches results to enable flow-sensitive queries to be performed efficiently.

4.2. Context-Sensitive Analysis

The definition of T in Section 4.1 is sufficient for void pointers that are defined and used
entirely within a single function. A flow-sensitive query F(v, s) for a variable v of type
void * used in a statement s may require interprocedural data-flow in two situations:

1. A call site defines v, and that definition reaches s.
2. v is live upon entry to the function, and the entry definition reaches s.
To handle these cases, SafeType uses two ideas: placeholder types, and summary

functions. Placeholder types are used to represent the unknown types of void pointer
variables which are live upon function entry. Each placeholder type is defined in the context
of a single function. For a function f , placeholder types are used in two cases:

1. A formal parameter vp has type void *. For any call to f , the type of the object to
which vp points depends on the expression assigned to that parameter at the call site.

2. A global variable vg used in a function has type void *. For any call to f , the type
of the object to which vg points depends on the value of that global variable at the
point immediately preceding the call site.

Each function f has a set of placeholder types TPf
. Let Vp be the set of formal parameters

of f with type void *. Let Vg be the set of global variables with type void * that are used
or defined in f , or in a function called by f . For each variable v ∈ Vg ∪ Vp, the placeholder
type πv ∈ TPf

represents the type of v for an arbitrary call to f .
Summary functions represent the effects of a function call at a call site. These effects

include changes to the effective type of global variables, which may be necessary for flow-
sensitive queries. Summary functions also contain delayed constraints that must be verified
but cannot be evaluated without information from the calling context. Unlike points-to
analysis, which depends on the value of each pointer and is not amenable to succinct
summarization [15], SafeType concerns itself with types. As a result, it can represent each
function in a compact form, and use that summary at each individual call site to efficiently
achieve full context-sensitivity. For a function f , the summary function T (f) is a function
A→ (τR, C,E), where:
• A is an assignment of types to the placeholder types in f , such that for each input

variable v ∈ Vg ∪ Vp, A(v) is a type τinv
.

• τR is the return type of F .
• C is a set of delayed constraints of the form τ1 . τ2, where τ2 includes at least one

placeholder type π ∈ TPf
.

• E is a map representing the exit types of each global variable used or defined in f ,
such that for each input variable v ∈ Vg, E(v) is a type τoutv

.
For a function f , the summary function T (f) is constructed while performing the analysis

of f :
• Return type: If SR = {return e1, . . . , return en} is the set of return statements in
f , and the type of each ei is τi, then

τR =
∨

s∈SR

τi

• Delayed Constraints: If a constraint τ1 . τ2 is generated such that τ2 is a placeholder
type, it cannot be evaluated outside a particular calling context. Instead, the constraint
is added to C. It is subsequently evaluated at each call site of f independently.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10

• Exit types: For each variable v in Vg, E(v) = F(v, sexit), where sexit is a dummy
node representing the exit of f .

Each of the three outputs of a summary function may include one or more placeholder
types. Where this is the case, each placeholder type is replaced with the actual type of the
corresponding input argument at the call site. The type of a formal parameter is available
directly from the call statement. When the type of a global variable is required, a flow-
sensitive query is performed for that variable, starting at the call site. This enables delayed
comparisons to be correctly evaluated, and also allows for the return type or exit types of
a called function to depend on the inputs to that function at the call site.

The use of summary functions makes it possible to define the types function T for function
call statements and function entry points. Given a statement f(e1, . . . , en) which defines a
variable v, if the type of each ei is τi and T (f) = (τR, C,E), then T (v, f(e1, . . . , en)) = E(v).
For a function entry point d that defines v, T (v, d) = πv.

To ensure that the summary function for a called function f is available at its call site in
each calling function g, SafeType uses a post-order traversal of the call graph to generate
the order in which each function is analyzed. However, self-recursive or mutually recursive
functions create cycles in the call graph and make a post-order traversal impossible. To solve
this problem, SafeType collapses strongly connected components of the call graph into a
single node, and uses a post-order traversal on the modified call graph (which is cycle-free).

Within strongly connected components, summary functions may have cyclic dependencies.
SafeType therefore uses a worklist algorithm to find a fixed point for the summary functions.
This algorithm works as follows. Initially, each summary function is initialized to be blank:
τR = >, C = ∅, and for all v ∈ Vg, E(v) = >. Each function in the strongly connected
component is analyzed. Whenever the analysis of a function causes its summary function
to change, the callers of that function are inserted into the worklist for reanalysis. This
continues until the worklist is empty, meaning that a fixed point has been reached.

Termination is addressed in three ways. First: define the size of a summary function
T (f) as the sum of the number of possible return types in τR, the number of delayed
comparisons in C, and the total number of possible exit types in E. The size of a summary
function is monotically increasing over the course of the analysis: return types and exit
types may increase in size, and new delayed comparisons may be added, but existing types
and comparisons are never removed. If Tf is the (finite) set of types present in f and TPf

is the (finite) set of placeholder types present in f , then the maximum size of a summary
function T (f) is reached when the return type τR = ⊥, E(v) = ⊥ for all v ∈ Vg, and a
delayed constraint τ1 . τ2 exists for each τ1 ∈ Tf , τ2 ∈ TPf

. Because the size of each summary
function monotonically increases towards a finite maximum, termination is guaranteed.
Second: to ensure termination in practice, an iteration count is maintained. If the analysis
of a strongly connected component exceeds a set number of iterations (which scales with the
size of the strongly connected component), a warning is produced. Each summary function in
the strongly connected component is then conservatively approximated such that τR = ⊥,
E(v) = ⊥ for all v ∈ Vg, and C = ∅. Third: as described in Section 5.3, it is empirically
rare that this algorithm causes a function to be analyzed more than twice. Although the
conservative approximation described above could cause spurious warnings to appear at each
call site of an approximated function, in practice the iteration limit is simply precautionary
and has no impact on the results of the analysis.

4.3. Complexity

The complexity of the non-flow-sensitive, non-context-sensitive component of SafeType is
linear in the size of the program. It examines each statement once and performs an amount
of work proportional to the size of the abstract syntax tree for that statement.

The complexity of the flow-sensitive component of SafeType is implementation-
dependent. It is dominated by the time spent finding the definitions for each query variable.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

11

The complexity of the context-sensitive component is more complicated to characterize.
As described in Section 4.2, recursive functions must be analyzed until their summary
functions reach a fixed point. Each function must be analyzed at least once. If the analysis
of a function F updates the summary function for F , then the callers of F must be
reanalyzed using the more precise summary function. Thus, after the first analysis of F ,
F will be reanalyzed only if the previous analysis of F updated the summary function for
F and (directly or indirectly) caused an update to a callee of F . For a strongly connected
component of the call graph containing O(n) functions, each of which has O(m) arguments,
the pathological worst-case behaviour of the fixed point computation is O(nmt) reanalyses
of each function, where t is the number of types in the program. This pathological behaviour
is, however, not present in real-world programs.

SafeType is most effective when performed as a whole-program analysis. The prototype
implementation of SafeType discussed in Section 5 uses a whole-program analysis.
When whole-program analysis is not possible or desirable, a single-compilation-unit
implementation of SafeType must use summary functions that make conservative
approximations about the effect functions of called functions in other compilation units.

4.4. Example

Consider the following (highly contrived) code:

Listing 3: Context-sensitive Example
1 void ∗ g in , ∗ g out ;
2
3 void ∗ f oo (void ∗p in , void ∗cond) {
4 g out = p in ;
5 i n t i = ∗(i n t ∗) cond ;
6 i f (i)
7 re turn p in ;
8 e l s e
9 re turn g i n ;

10 }

• foo may return either p in or g in. The return type of foo is therefore the lattice
element πp in ∨ πg in. The values of these placeholder types will vary between call sites
of foo.
• The only global variable defined in foo is g out. The exit type of g out is E(g out) =
πp in. The global variable g in is used, but not defined, in foo. Its exit type is
E(g in) = πg in.
• There is one delayed constraint in foo, arising in line 5: int * . πcond. At each call

site of foo, that constraint must be evaluated to verify the safety of casting cond to
an int *.

The combination of the return type, the exit types, and the delayed constraints of foo
are sufficient to create a summary function that precisely characterizes the behaviour of
foo. Using that summary function, the effects of a call to foo can be determined for any
number of call sites without requiring any further analysis of foo.

5. EXPERIMENTAL EVALUATION

This experimental evaluation uses a 64-bit, 32-processor, 2.3 GHz POWER 5 machine with
640 GB of memory running AIX 6.1.7.15. SafeType is evaluated on each of the C benchmarks
from SPEC CPU2006. Additionally, SafeType is evaluated on Python 2.7.5 and GNU Emacs
24.3 to increase the number of large programs in the test set. Other large programs were
considered, but were incompatible either with the XL compiler (for example, the Linux

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12

Listing 4. Violation in 470.lbm
1 double g r id [N] ;
2 i n t f l a g = 1 << M;
3 {
4 i n t ∗ const aux =
5 ((i n t ∗) ((void ∗) (&(g r id [. . .])))) ;
6 (∗ aux) |= f l a g ;
7 }

kernel) or with the POWER architecture (for example, WINE). Lines of code are counted
using the open-source tool CLOC. For emacs and python, lines of code written in Emacs Lisp
and Python, respectively, are subtracted from the overall total, because SafeType is only
applicable to the portion of a program written in C. Although the principles of SafeType
should apply to C++ programs, an extension would be required to deal with the entire
C++ type system. In particular, SafeType is not equipped to verify the safety of downcasts
from a base type to a derived type.

During compilation, compiler flags are chosen to disable other optimizations and minimize
the amount of work done outside SafeType. Although this affects the reported results
by increasing the relative percentage of compilation time spent performing the SafeType
analysis, the disabling of other optimizations better reflects the expected use case of
SafeType. To speed development, programs are typically compiled and tested with a
minimal set of optimizations. After a program has been written and tested, higher levels
of optimization are used to create a production version of the program. SafeType is best
used during the transition from development to optimization, to verify that it is safe to use
type-based alias analysis to enable the transformations that are turned on at higher levels
of optimization. The actual compilation of the optimized version of a program should not
use SafeType. Instead, the optimized compilation will benefit from being able to safely use
a type-based alias analysis to enable other optimizations.

5.1. Results

This section discusses a selection of the possible violations identified by SafeType, including
both true and false positives. True positives are statements reported as potential violations
that actually violate the C standard’s type-based restrictions on memory access. These are
the statements that SafeType is designed to detect. If a program does not have any true
positives, it is safe to use a type-based alias analysis while compiling that program. False
positives are assignments that are flagged as potentially unsafe, but that are actually safe.

lbm: SafeType identifies a true type violation in 470.lbm that, to our knowledge, has not
been previously reported. The header file lbm 1d array.h defines a macro SET FLAG. A use
of that macro expands to the code in Listing 4. The variable grid is an array of double.
The address of a member of grid is taken in line 5. That pointer is cast, first to void *,
then to int *. Finally, the new int * value is used to set a flag bit. That use constitutes
a modification of a double object in memory by an lvalue of type int; as described in
Section 3, such a modification is a violation of the C standard. Although we are not aware
of a compiler that takes advantage of the incorrect invariant generated by a type-based
alias analysis in this case, a sufficiently aggressive optimizing compiler could theoretically
eliminate or reorder uses of SET FLAG in a way that does not preserve the semantics of the
program.

Python and Perl: The implementation of Python objects in versions of Python prior
to 3.0 violated the C standard’s restrictions on memory access, and the internal data
structures representing Perl’s variables are accessed in such a way as to violate aliasing rules
in 400.perlbench. SafeType correctly identifies these violations. These violations typically
take the form of a struct of one type being cast to a struct of another type. In addition to the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

13

Listing 5. False Positive in 400.perl
1 s t r u c t SV {
2 void ∗ sv any ; /∗ po in t e r to something ∗/
3 U32 s v r e f c n t ; /∗ how many r e f e r e n c e s to us ∗/
4 U32 s v f l a g s ; /∗ what we are ∗/
5 } ;
6
7 s t r u c t SV sv ;
8 . . .
9 i f (sv−>s v f l a g s == . . .) {

10 . . .
11 }

Listing 6. False Positive in 403.gcc
1 s t r u c t b a s i c b l o c k d e f {
2 . . .
3 s t r u c t edge de f ∗ succ ;
4 . . .
5 } ;
6
7 s t r u c t b a s i c b l o c k d e f ∗block , ∗head ;
8 block−>succ = (s t r u c t edge de f ∗) head ;

large number of true positives, 400.perlbench also includes an example of an important
type of false positive. As seen in Listing 5, 400.perlbench uses tagged void pointers to
represent scalar values. The SV struct includes a void pointer (sv any) that represents a
value, and a tag (sv flags) to indicate the type of the variable being pointed to. The value
of sv flags is used in control-flow statements to determine the type of sv any, as in line
9 of Listing 5. This code construct causes difficulties for SafeType. As a result of the test
in line 9, the block beginning at line 10 may be able to safely cast sv any to a particular
type. However, to determine if such a cast is safe, SafeType would have to examine the
condition in line 9, and then prove the existence of an invariant relationship between that
condition and the type of the object pointed to by sv any. In the general case, computing
such invariants is infeasible. As a result, it is necessary for SafeType to conservatively emit
a warning for a cast that occurs within the block beginning on line 10.

gcc: gcc contains another example of a false positive. Listing 6 demonstrates the situation.
In cfg.c, gcc manages a pool of structs representing basic blocks. In the functions
expunge block nocompact and alloc block, unused basic blocks are added to and removed
from a linked list. To save memory, gcc uses a pointer variable that already exists as a
member of the basic block struct to store the links in the linked list. However, the member
in question is defined as a pointer to a different type of struct, the edge def struct, which
represents an edge between basic blocks. SafeType identifies the assignment in line 8 of
Listing 6 as a violation. However, because the value of block-¿succ is never dereferenced, no
actual violation occurs.

5.2. Missing Type Information

As described in Section 3.3, SafeType requires data-flow and call-graph information to
accurately perform flow- and context-sensitive analysis. In our prototype implementation,
this information is not available until the optimization phase of the compilation, after
the source code has already been converted into an internal representation. This internal
representation is language-independent, and does not preserve all of the type information
available in the source code. This impedes the ability of SafeType to determine the declared

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14

Table I. Violations Detected by SafeType

Name Total # of True # of False Positives
Positives Safe Type in Prototype

400.perlbench 52938 3463 166 49309
401.bzip2 14 0 0 14
403.gcc 8380 0 2 8380
429.mcf 13 0 0 13
433.milc 180 0 0 180
445.gobmk 5737 0 0 5737
456.hmmer 53 0 0 53
458.sjeng 325 0 0 325
462.libquantum 0 0 0 0
464.h264ref 2723 0 0 2723
470.lbm 57 30 0 27
482.sphinx3 1153 0 0 1153
emacs 7167 0 0 7167
python 16554 9089 0 7465

type of some symbols representing pointers. To remain sound, it is therefore necessary for
this implementation of SafeType to conservatively emit a warning in cases where the missing
type information is necessary to prove safety.

Manual examination of the output indicates that these additional warnings are a
limitation of the prototype implementation, rather than the underlying SafeType analysis.
A mature implementation of SafeType could eliminate these spurious warnings by ensuring
that the front end of the compiler preserves precise type information for every symbol, and
communicates that information to the SafeType analysis.

Table I shows the number of false positives that are due to the SafeType analysis and
the ones that are reported in the prototype. The majority of these can be easily identified
with an automated post-processing script, a few required manual inspection to determine
that they were false positives. The frequency of these implementation-specific false positives
is significantly higher than the frequency of warnings produced by the SafeType algorithm
itself. Overall, on the benchmarks studied, over 80% of the emitted warnings were due to
the limitations of the prototype. Of the remaining warnings, 98% occurred in python and
400.perlbench, benchmarks already known to violate aliasing rules. Examination of these
warnings resulted in the discovery of the false positives in 400.perlbench described above.
The remainder appear to be true positives, although it is likely that several false positives
were missed. The remaining warnings occurred in 403.gcc and 470.lbm, as described above.
It is likely that a mature implementation of the SafeType algorithm would have emitted
additional warnings that were masked by the limitations of the prototype implementation.
However, based on our exploration of these results, we cautiously predict that the number
of false positives emitted by a mature implementation of SafeType would be manageable.

5.3. Performance

Table II shows the time necessary to run SafeType on each benchmark. Column LoC is
the number of lines of code in each benchmark. Column Total is the time taken to compile
the benchmark. The following two columns show the time spent inside SafeType: first as
an absolute value, and then as a percentage of the total compilation time. As mentioned
above, compilation time is measured for a compilation with optimizations turned off. With
less compilation time spent on other optimizations, the percentage of compilation time spent
inside SafeType is higher.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

15

Table II. Performance of SafeType

Name LoC Total (s) SafeType (s) %
400.perlbench 138480 3939.0 3819.9 96.9
401.bzip2 5882 10.6 1.7 15.9
403.gcc 387777 650.9 304.8 46.8
429.mcf 1669 2.7 0.1 3.5
433.milc 9746 15.5 1.1 7.2
445.gobmk 157792 109.6 25.8 23.5
456.hmmer 20793 29.1 1.8 6.1
458.sjeng 10630 13.8 1.0 7.2
462.libquantum 2732 4.2 0.2 4.3
464.h264ref 36162 74.8 20.7 27.7
470.lbm 1006 2.9 0.15 5.1
482.sphinx3 13240 22.2 1.6 13.9
emacs 326779 338.2 90.1 26.7
python 514345 390.8 263.9 67.5

Table III. Timing Breakdown

Flow-Sensitive Context-Sensitive

Name Data FSQuery Other Rec Time Rec Freq
(%) (%) (%) (%) (%)

400.perlbench 0.4 95.3 4.3 99.6 81.3
401.bzip2 59.8 21.0 19.2 0.0 0.0
403.gcc 22.3 38.6 39.1 74.3 75.5
429.mcf 38.6 10.9 50.5 2.0 2.8
433.milc 33.6 28.2 38.2 0.0 0.0
445.gobmk 18.7 32.0 49.3 76.3 80.9
456.hmmer 38.1 20.4 41.5 3.8 2.9
458.sjeng 27.0 18.6 54.4 10.0 4.4
462.libquantum 43.7 10.9 45.4 9.8 11.3
464.h264ref 20.9 50.1 29.0 2.5 6.7
470.lbm 24.1 23.1 52.8 0.0 0.0
482.sphinx3 24.3 11.9 63.8 1.6 2.9
emacs 16.3 13.8 69.9 75.9 70.3
python 7.7 55.8 36.5 91.8 82.4

For the majority of programs in Table II, performance is entirely reasonable. The clear
outlier is 400.perlbench, which spends 96.9% of its compilation time inside SafeType.
As described below, this appears to be caused by inefficiencies in the analysis of calls
through function pointers. There are several reasons to believe that the performance of
400.perlbench is not a problem for SafeType as a whole. First, these measurements must be
taken in the context of an unoptimized prototype. There exists significant low-hanging that
a more performance-oriented implementation could use to reduce execution time. Second,
400.perlbench is not a good representative of the class of programs for which SafeType is
expected to be useful. SafeType is best used on programs with few or no known violations,
to identify whether changes must be made to make type-based alias analysis safe. It is less
important to be able to identify each of the many known violations in 400.perlbench. The
two benchmarks that spend the greatest percentage of their compilation time executing
SafeType are 400.perlbench and python, the benchmarks that were already known to be

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16

unsafe for type-based alias analysis. Third, as described above, SafeType is not intended to
be used during every compilation. Because SafeType is used relatively infrequently, even a
large slowdown is not prohibitive.

Table III categorizes the time spent inside SafeType in two ways. The first three columns
divide the time spent inside SafeType into three categories that demonstrate the behaviour
of the flow-sensitive analysis. Data is the percentage of the execution time of SafeType
spent building the data structures necessary to analyze data flow. In a normal compilation,
the time spent building these data structures would be amortized over each analysis that
uses them. However, as described above, no other analysis using these data structures was
enabled during the evaluation. FSQuery is the percentage of the execution time of SafeType
spent performing flow-sensitive queries as described in Section 4.1. Other is the percentage
of the execution time of SafeType that does not fall into one of the previous two categories.

The remaining columns of Table III illuminate the behaviour of the context-sensitive
analysis. Rec Time is the percentage of the execution time of SafeType spent analyzing
recursive functions: that is, functions that are part of a strongly connected component in
the call graph. This category includes both self-recursive and mutually recursive functions.
As a point of comparison, Rec Freq is the percentage of functions in the program that are
recursive, measured as a static count.

More than half of all recursive functions are analyzed a single time. In the majority of
test programs, no function must be analyzed more than twice. The benchmark 445.gobmk
includes three functions that must be analyzed three times each. emacs includes a number
of functions that must be analyzed three times, and two that must be analyzed four times
each. gcc includes functions that must be analyzed up to five times. In each of these cases,
the functions that must be analyzed more than twice are part of large mutually recursive
cycles. Amortized across each of the functions in a strongly connected component of the
call graph, the average number of iterations per function necessary to find a fixed point in
these cases is always two or less.

This is not true for 400.perlbench or python. Each of these benchmarks has a significant
number of functions that must be analyzed six or more times: 329 for python, and 182 for
400.perlbench. As before, higher numbers of iterations are substantially less common
than lower numbers. However, 400.perlbench includes a number of functions that require
many iterations to find a fixed point, including one function that requires 33 iterations to
find a fixed point. Regardless, amortized over an entire strongly connected component, the
average number of iterations per function necessary to find a fixed point in 400.perlbench
or python never surpasses 3.5.

Empirically, functions that require a large number of iterations occur in strongly
connected components of the call graph that are large and contain a large number of calls
through function pointers. Profiling shows that the majority of time that is spent analyzing
these functions is spent performing flow-sensitive queries to determine the effective types of
global variables at call sites. For example, Python uses a number of global variables of type
void* to implement global locks; at the call site for each function that touches a lock, or
calls a function that touches a lock, the current effective type for the variable representing
that lock must be determined. Further work may be able to improve the performance of the
analysis. However, even the current prototype scales to programs of hundreds of thousands
of lines of code.

6. RELATED WORK

A closely related idea to alias analysis is points-to analysis. Where an alias analysis
determines if two memory references point to the same location, a points-to analysis
approximates, for each pointer in the program, the set of locations to which it could
point at runtime [16]. Thus, a points-to analysis can be used to determine aliasing

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

17

information, although the converse is not in general true. Points-to analysis is a rich area
of research [17][18][16][19][20][21][22] [23] [15] [24].

SafeType itself, however, is neither an alias analysis nor a points-to analysis. It is an
analysis designed to verify the safety of alias analysis. Much work has been done on the
question of analyzing the safety of C programs. The most relevant comparisons for SafeType
are analyses that aim to detect illegal memory operations: dereferences of undefined pointers,
dereferenced of freed memory, and array-bounds violations.

Valgrind is an open-source instrumentation framework for building dynamic analysis
tools [25]. Memcheck, the default Valgrind tool, instruments each memory access to detect
a variety of common errors, including (among others) invalid pointer dereference and the
use of uninitialized values. However, Memcheck is not designed to detect memory accesses
through pointers of incompatible type. The addition of this instrumentation leads to a 10-
50 times slowdown in program execution. Thus, Valgrind is useful as a developer’s tool to
detect bugs, rather than being used to run production code.

Cyclone is a type-safe programming language derived from C [26]. Cyclone aims to
preserve the low-level control of data representation and resource management available in
C, while eliminating safety violations such as incorrect type-casts, buffer overruns, dangling
pointer dereferences, and memory leaks. This safety is accomplished by dividing memory
into regions and requiring that pointer variables be annotated with information about the
region into which they point. Empirically, porting C code into Cyclone requires alterations
in approximately 8% of the lines of code in a program. Compared to the original C program,
a network or I/O bound Cyclone application runs with little to no overhead, but compute-
intensive applications may be three times slower than the C version. This overhead comes
from bounds-checks inserted into the code, as well as garbage collection and fat pointers.

CCured is a program transformation system that adds type-safety guarantees to existing
C programs. CCured extends the type system of C to separate pointer types based on
their usage; it then attempts to use static analysis to verify that programs adhere to that
type system. Run-time checks are inserted in cases where static analysis is insufficient:
these checks include null checks, bounds checks, and type checks. CCured replaces manual
memory management with a garbage collector and requires the programmer to annotate
custom allocators. CCured also requires wrappers around calls to external library functions
to preserve the metadata associated with runtime checks. Like Cyclone, CCured imposes
little overhead on network- and I/O-bound applications, but causes a slowdown of 5 to 87%
on most compute-intensive benchmarks, increasing to a ten times slowdown in pathological
cases.

SafeCode is a compilation strategy for C programs that uses static analysis and run-time
checking to ensure the accuracy of the points-to graph, call graph, and the available type
information [4]. SafeCode uses automatic pool allocation to partition heap memory into
fine-grained pools, while retaining explicit memory management (rather than introducing
a garbage collector). SafeCode requires no code modifications and imposes less than 30%
overhead. Unlike Cyclone and CCured, SafeCode does not guarantee the absence of dangling
pointer references.

In comparison to each of the above, SafeType limits its scope to consider exclusively
type violations. In doing so, SafeType does not introduce any runtime checks, does not
impose any overhead on execution, and does not require any modifications to existing code.
The previous approaches are useful in cases where users wish to exchange performance for
memory safety. However, the primary use of type information is in alias analysis, which in
turn is used by various transformations to improve performance. Thus, it is useful to have
a specialized analysis that a programmer can use to verify the safety of type-based alias
analysis without incurring a performance penalty. Certain aspects of the static analysis of
CCured and SafeCode resemble the flow-insensitive component of SafeType. However, they
do not have any static analogue to SafeType’s flow-sensitive, context-sensitive approach to

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

18

pointers of type void *. Instead, CCured and SafeCode verify the safety of such pointers
using runtime checks.

Unlike languages such as C++ and Java, C does not include a concept of inheritance, and
the C standard does not provide any support for subtypes or supertypes. Despite this, many
C programmers simulate inheritance in C using typecasts. In many cases, this situation can
be analyzed by extending the C type system to include physical subtyping [27][28]. The
version of SafeType presented in this paper restricts itself to the type system described
in the C standard. However, it would be straightforward to extend SafeType to handle
alternative type systems for C by changing the definition of . used in Section 3.5.

7. CONCLUSION

Type-based alias analysis is a useful tool for enabling and improving the precision of program
transformations in optimizing compilers. However, type-based alias analysis is unsafe when
applied to programs that violate the C standard’s type-based restrictions on memory access.
As a result, programs are frequently compiled without the benefits of type-based alias
analysis.

SafeType is a sound and scalable static analysis that identifies violations of the C
standard’s type-based restrictions on memory access. To do so, SafeType verifies that each
non-null pointer in the program can be safely dereferenced. This verification uses a flow-
insensitive analysis in the general case, augmented with flow-sensitive queries to safely
analyze pointer variables of type void *. These flow-sensitive queries are made context-
sensitive through the use of precise, compact summary functions.

A prototype implementation of SafeType in the IBM XL C compiler was created
and evaluated. This prototype implementation demonstrates the utility of the SafeType
approach by identifying previously unreported violations in the 470.lbm benchmark of
SPEC CPU2006. The prototype implementation scales to programs with hundreds of
thousands of lines of code.

The description of the SafeType approach in this paper, along with the discoveries made
with the performance evaluation of the prototype implementation, are a solid basis for a
robust and precise analysis that will enable the safe use of type-based alias analysis in
commercial compilers.

8. ACKNOWLEDGEMENTS

This work was funded by the Natural Sciences and Engineering Research Council of Canada
(NSERC) through a Collaborative Research and Development (CRD) grant, by the Alberta
Innovates Technology Futures organization, and by the IBM Canada Centre for Advanced
Studies.

REFERENCES

1. ISO 9899. Programming languages – C 2000.
2. Reinig AG. Alias analysis in the DEC C and DIGITAL C++ compilers. Digital Technical Journal 1998;

10(1):48–57.
3. Loewis M. ANSI Strict Aliasing and Python. http://mail.python.org/pipermail/python-dev/

2003-July/036909.html 2003. [Online; accessed 10-November-2013].
4. Dhurjati D, Kowshik S, Adve V. SAFECode: enforcing alias analysis for weakly typed languages.

Programming Language Design and Implementation (PLDI), Ottawa, Ontario, Canada, 2006; 144–157.
5. Necula GC, Condit J, Harren M, McPeak S, Weimer W. CCured: type-safe retrofitting of legacy

software. Transactions on Programming Languages and Systems (TOPLAS) May 2005; 27(3):477–526.
6. Chase DR, Wegman M, Zadeck FK. Analysis of pointers and structures. Programming Language Design

and Implementation (PLDI), White Plains, New York, USA, 1990; 296–310.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

19

7. Diwan A, McKinley KS, Moss JEB. Type-based alias analysis. Programming Language Design and
Implementation (PLDI), Montreal, Quebec, Canada, 1998; 106–117.

8. Alias Analysis. http://gcc.gnu.org/news/alias.html 1998. [Online; accessed 10-November-2013].
9. Ghiya R. On the importance of points-to analysis and other memory disambiguation methods for C

programs. Programming Language Design and Implementation (PLDI), Snowbird, Utah, USA, 2001;
47–58.

10. LLVM 2.9 Release Notes. http://llvm.org/releases/2.9/docs/ReleaseNotes.html 2011. [Online;
accessed 10-November-2013].

11. Sundaresan V, Hendren L, Razafimahefa C, Vallée-Rai R, Lam P, Gagnon E, Godin C. Practical virtual
method call resolution for Java. Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Minneapolis, Minnesota, United States, 2000; 264–280.

12. Bravenboer M, Smaragdakis Y. Strictly declarative specification of sophisticated points-to analyses.
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), Orlando, Florida,
USA, 2009; 243–262.

13. Bacon DF, Sweeney PF. Fast static analysis of C++ virtual function calls. Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), San Jose, California, USA, 1996;
324–341.

14. Lhoták O, Hendren L. Scaling java points-to analysis using spark. Compiler Construction (CC),
Warsaw, Poland, 2003; 153–169.

15. Wilson RP, Lam MS. Efficient context-sensitive pointer analysis for C programs. Programming Language
Design and Implementation (PLDI), La Jolla, California, USA, 1990; 1–12.

16. Emami M, Ghiya R, Hendren LJ. Context-sensitive interprocedural points-to analysis in the presence
of function pointers. Programming Language Design and Implementation (PLDI), Orlando, Florida,
USA, 1994; 242–256.

17. Hind M. Pointer analysis: haven’t we solved this problem yet? Program Analysis for Software Tools and
Engineering (PASTE), Snowbird, Utah, United States, 2001; 54–61.

18. Andersen L. Program analysis and specialization for the C programming language. PhD Thesis, DIKU,
University of Copenhagen May 1994.

19. Hardekopf B, Lin C. The ant and the grasshopper: fast and accurate pointer analysis for millions of
lines of code. Programming Language Design and Implementation (PLDI), San Diego, California, USA,
2007; 290–299.

20. Hardekopf B, Lin C. Flow-sensitive pointer analysis for millions of lines of code. Code Generation and
Optimization (CGO), Chamonix, France, 2011; 289–298.

21. Landi W, Ryder BG. A safe approximate algorithm for interprocedural aliasing. Programming Language
Design and Implementation (PLDI), San Francisco, California, USA, 1992; 235–248.

22. Steensgaard B. Points-to analysis in almost linear time. Principles of Programming Languages (POPL),
POPL ’96, St. Petersburg Beach, Florida, USA, 1996; 32–41.

23. Whaley J, Lam MS. Cloning-based context-sensitive pointer alias analysis using binary decision
diagrams. Programming Language Design and Implementation (PLDI), Washington DC, USA, 2004;
131–144.

24. Zhu J, Calman S. Symbolic pointer analysis revisited. Programming Language Design and
Implementation (PLDI), Washington, DC, USA, 2004; 145–157.

25. Nethercote N, Seward J. Valgrind: a framework for heavyweight dynamic binary instrumentation.
Programming Language Design and Implementation (PLDI), San Diego, California, USA, 2007; 89–
100.

26. Grossman D, Morrisett G, Jim T, Hicks M, Wang Y, Cheney J. Region-based memory management in
Cyclone. Programming Language Design and Implementation (PLDI), Berlin, Germany, 2002; 282–293.

27. Chandra S, Reps T. Physical type checking for c. Program Analysis for Software Tools and Engineering
(PASTE), Toulouse, France, 1999; 66–75.

28. Siff M, Chandra S, Ball T, Kunchithapadam K, Reps T. Coping with type casts in c. Foundations of
Software Engineering (FSE), Toulouse, France, 1999; 180–198.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

