
Proteus: Portable Runtime Optimization of GPU
Kernel Execution with Just-in-Time Compilation
Giorgis Georgakoudis

Lawrence Livermore National
Laboratory

Livermore, USA
georgakoudis1@llnl.gov

Konstantinos Parasyris
Lawrence Livermore National

Laboratory
Livermore, USA

parasyris1@llnl.gov

David Beckingsale
Lawrence Livermore National

Laboratory
Livermore, USA

beckingsale1@llnl.gov

Abstract
In High-performance computing (HPC) fast application exe-
cution is the primary objective. HPC software is written in
high-performance languages (C/C++, Fortran) and is stati-
cally compiled Ahead-of-Time (AOT) using optimizing com-
pilers to generate fast code. AOT compilation optimizes
source code with only limited information available at com-
pile time, which precludes possible optimization leveraging
runtime information.
We propose Proteus, an easy-to-use, portable, and light-

weight Just-In-Time (JIT) compilation approach to optimize
GPU kernels at runtime. Proteus dynamically extracts, com-
piles, and optimizes language-agnostic LLVM IR to reduce
compilation overhead while enhancing portability and ver-
satility compared to language-specific solutions. Using a
minimally intrusive annotation-based interface, Proteus spe-
cializes GPU kernels for input arguments and launch param-
eters. Evaluation on a diverse set of programs on AMD and
NVIDIA GPUs shows that Proteus achieves significant end-
to-end speedup, up to 2.8× for AMD and 1.78× on NVIDIA,
over AOT optimization, while outperforming CUDA-specific
Jitify with an average 1.23× speedup, thanks to reduced over-
head and faster binary code in certain cases.

CCS Concepts: • Software and its engineering → Just-
in-time compilers; Runtime environments.

Keywords: Runtime optimization, GPU programming

ACM Reference Format:
Giorgis Georgakoudis, Konstantinos Parasyris, and David Beck-
ingsale. 2025. Proteus: Portable Runtime Optimization of GPU Ker-
nel Execution with Just-in-Time Compilation. In Proceedings of
the 23rd ACM/IEEE International Symposium on Code Generation
and Optimization (CGO ’25), March 01–05, 2025, Las Vegas, NV, USA.

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only. Request permissions from
owner/author(s).
CGO ’25, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708939

ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3696443.
3708939

1 Introduction
Heterogeneous computing systems comprised of CPUs and
GPUs are the norm in HPC and datacenters. They lever-
age GPU execution to accelerate computation with power
efficiency for a wide range of applications, from scientific
simulations to machine learning. This trend is apparent in
Supercomputing systems, where 9 out of the 10 fastest super-
computers in the world equip GPUs [2]. Nonetheless, those
systems deploy diverse GPU architectures from different
vendors with different software environments, which makes
software portability and its optimization a first-order con-
cern. For example, the Frontier supercomputer comes with
AMD MI250X GPUs, the Aurora supercomputer features In-
tel Max GPUs, and Microsoft’s Eagle cluster in the Azure
cloud service utilizes NVIDIA H100 GPUs.
Software development in HPC is primarily done using

statically compiled languages such as C/C++ and Fortran.
Applications are typically compiled ahead-of-time (AOT) –
prior to execution – with an optimizing compiler to gener-
ate fast machine code. Optimizing compilers, such as LLVM,
implement an aggressive optimization pipeline that runs
extensive static analysis to optimize generated code based
on code structure and information available or inferred at
compile time. However, AOT compiler analysis and optimiza-
tion is limited by the information inferred at compile time,
for example unknown values of program variables inhibit
possible optimization.
Just-In-Time (JIT) compilation defers compilation until

runtime, lifting such limitations to analysis and optimization
by having access to runtime information, at the cost of run-
time overhead. Interpreted languages, like Java, Python, and
Javascript, use JIT optimization to mitigate the significant
overhead of interpretation and achieve higher performance.
Additionally, JIT compilation for these languages has been
shown to optimize code further than simply removing inter-
preting overheads by specializing code. A central optimiza-
tion is runtime value specialization, where a code region is
specialized and optimized for a specific set of runtime values
of program variables.

507

https://orcid.org/0000-0001-6542-3555
https://orcid.org/0000-0002-8258-9693
https://orcid.org/0000-0003-2545-4837
https://doi.org/10.1145/3696443.3708939
https://doi.org/10.1145/3696443.3708939
https://doi.org/10.1145/3696443.3708939
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696443.3708939&domain=pdf&date_stamp=2025-03-01

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Giorgis Georgakoudis, Konstantinos Parasyris, and David Beckingsale

Applying similar JIT optimization on statically compiled
languages is challenging because of their limited introspec-
tion and because it is hard to mitigate the overhead of dy-
namic compilation, even if dynamically optimized code is
faster. Interestingly, recent work [7, 16, 25–27, 39] has shown
promise for JIT optimization targeting C/C++ code, by ex-
tending compiler technology, as in Clang/LLVM [7, 16, 25–
27], or providing vendor-specific runtime compilation inter-
faces [39].While inspirational, those approaches fall short be-
cause of lacking GPU support [7] or being non-portable and
language dependent [16, 39]. Furthermore, the interface they
present to programmers for enabling JIT optimization is con-
voluted and hard-to-use. They require significant code refac-
toring to retrofit C++ functors/templates/lambdas [7, 16, 25–
27] for runtime value specialization, or worse require source
code as a C-string for runtime compilation [39].

In this paper, we propose a new approach, named Proteus1
for easy-to-use, portable, optimizing JIT compilation target-
ing GPU kernels in statically compiled languages with mini-
mal overhead. Proteus consists of: (1) minimally-intrusive
source code annotations to specify JIT compiled regions and
optimization possibilities, (2) extensions in AOT compila-
tion to extract annotated code regions and runtime infor-
mation, and (3) a JIT compilation runtime library leverag-
ing LLVM [33] to dynamically generate highly-optimized,
specialized code using extracted runtime information, cru-
cially including specialization-based code caching to mini-
mize overhead.
The design of Proteus is portable, implemented for both

CUDA and HIP codes, targeting NVIDIA and AMD GPUs.
Our evaluation on both these architectures shows signif-
icant end-to-end speedup over AOT compiled code, recu-
perating overheads, and also outperforming the similar but
non-portable NVIDIA’s Jitify solution. We summarize the
paper contributions as following:

• We present Proteus, a novel, easy-to-use, portable, low-
overhead JIT optimizing compilation approach for GPU
kernels that targets CUDA and HIP programs, based on
LLVM. Proteus includes (1) novel extensions in AOT com-
pilation for code and runtime value extraction, (2) key
techniques for runtime JIT compilation with specialization,
and (3) specialization-based caching to minimize overhead.

• We present two specialization optimizations portably en-
abled by our JIT compiler, namely runtime constant folding
of kernel arguments and dynamic setting of kernel launch
bounds, to generate highly optimized code at runtime.

• We provide our implementation open-source [1] to the
community to extend, experiment, and study further.

1In Greek mythology, Proteus is an elusive, shape-shifting sea deity with
prophetic powers that answers only when captured. In analogy, our Just-
In-Time optimization approach captures the elusive, changing runtime
information during execution to dynamically optimize code.

NVIDIA

LLVM

LLVM

AMDGPU

NVIDIA
toolchain

Frontend
(Clang CUDA/HIP)

Embed</>

Source
Code

</>

Host LLVM IR

Device LLVM IR

</>

</>

PTX assembly

.obj

Device Object

.exe

Figure 1. Split compilation for CUDA/HIP codes

• We perform an extensive evaluation on performance and
overheads of Proteus, on several benchmark GPU pro-
grams from different application domains on an AMD
MI250X and an NVIDIA V100 GPU. Results show that Pro-
teus significantly speeds up end-to-end execution time
compared to AOT compilation, by up to 2.8× for AMD and
1.78× for NVIDIA, fully mitigating JIT-induced overheads.

• We also compare Proteus with the non-portable NVIDIA
Jitify solution on the NVIDIA GPU. Our approach consis-
tently outperforms it by achieving 1.23× higher end-to-end
speedup on average.
We structure the paper as follows. Section 2 provides back-

ground information. Section 3 discusses in detail the design
and implementation of Proteus. Section 4 evaluates our ap-
proach. Section 5 reviews related literature, and finally Sec-
tion 6 concludes the paper.

2 Background: GPU Programming and
Compilation

CUDA and HIP extend C/C++ for GPU programming, al-
lowing programmers to define GPU kernels – functions ex-
ecuted on the GPU device – within host-executed source
code. Programmers launch device kernels using CUDA/HIP
runtime interfaces or the triple chevron notation2. Along
with input arguments, kernel launches require specifying the
launch configuration, defining the number of thread blocks
and threads per block to execute the kernel. Programmers
can also define device functions and global variables, acces-
sible only by GPU code. Kernel functions are denoted with
the __global__ qualifier, while other device functions and
global variables are denoted using the __device__ qualifier.
Compiling GPU-enabled code ahead-of-time splits com-

pilation to two different branches: one compiling code tar-
geting the host and another compiling code targeting the
device. Figure 1 exemplifies split compilation, following the
Clang/LLVM implementation.

Device compilation.
Clang directs GPU code (qualified functions and globals)

to the device compilation path, emitting a separate Device
LLVM IR module. LLVM optimizes this IR and passes it to
the backend – AMDGPU for AMD or NVPTX for NVIDIA –
2The CUDA/HIP syntax for launching kernels, e.g., kernel<<<grid_dim,
block_dim>>>(args)

508

Proteus: Portable Runtime Optimization of GPU Kernel Execution with Just-in-Time Compilation CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

__attribute__((annotate("jit", 1, 2)))
__global__ void daxpy(double a, int N,
 double *x, double *y)
{…}

Compile time
Frontend

(e.g., Clang) JIT-enabled compilation __jit_launch_kernel(
<module unique id>
<kernel symbol>
<launch parameters>,
a=<value>, N=<value>)

Executable

Is cached?LLVM IR

Specialize

a=<value>
N=<value>

Optimize

Specialized
LLVM IR

LLVM IR

Binary

Execute

In-memory
Cache

Persistent
Cache

Retrieve

Binary

Execution Time

No

Yes

Resolve Globals

LLVM IR

Figure 2. An overview of the Proteus JIT approach.

to generate machine code. AMDGPU produces binary code
directly, while NVPTX generates PTX assembly (NVIDIA’s
re-targetable GPU assembly), requiring NVIDIA’s assembler
to produce the final binary. The device binary is then embed-
ded in the host binary for runtime kernel execution.
A crucial GPU-specific optimization at compile time in-

volves maximizing thread occupancy and register usage.
GPU architectures have a fixed number of registers per pro-
cessor3, shared among threads in scheduled thread blocks.
CUDA/HIP’s launch_bounds qualifier allows specifying the
maximum threads per block and minimum blocks per pro-
cessor, enabling optimized register allocation for maximum
occupancy. Without it, the compiler assumes multiple thread
configurations, leading to conservative register allocation
and performance degradation from register spilling. Since
launch parameters depend on runtime inputs, we revisit
launch bounds as a JIT optimization, leveraging the runtime-
known kernel launch parameters for improved performance.
Host compilation. For host compilation, Clang emits a

separate Host LLVM IRmodule lowering host code, including
CUDA/HIP runtime API calls for device binary loading and
kernel launching. Clang generates a shadow host function
stub for each kernel and a shadow host global variable for
each device global variable, associating them with their de-
vice counterparts via calls to the CUDA/HIP internal runtime
API. The shadow host function launches the corresponding
GPU device kernel using the CUDA/HIP runtime API. Clang
replaces triple-chevron calls with calls to the shadow func-
tion stub and uses the stub’s address to refer to the kernel in
direct launch kernel calls of the CUDA/HIP runtime API.
Our JIT extensions in AOT compilation operate on both

host and device compilation paths to extract code and run-
time information, as detailed next in Section 3.

3Streaming multiprocessor in NVIDIA or compute unit in AMD

3 Proteus: Design and Implementation
3.1 Overview
Figure 2 shows an overview of the workflow of Proteus. In
this example, the programmer annotates a kernel named
daxpy, corresponding to scaled vector addition, for JIT com-
pilation and optimization. The annotation consists of the
generic annotate function attribute4. Its parameters are the
string “jit”, signifying JIT compilation, and a list of inte-
gers corresponding to kernel arguments (indexed from 1) to
specialize for JIT optimization. Specifically, this annotation
specifies to specialize for argument a (1), which is the scaling
factor, and the argument N (2), which is the vector size.

Compile time. During AOT compilation, Proteus exten-
sions in LLVM parse those annotations and extract the unop-
timized LLVM IR of the associated kernels. Moreover, they
modify AOT code generation to replace calls to kernels with
calls to the JIT compilation runtime library through an entry
point function. The entry point takes as input arguments
the module identifier as well as the kernel symbol to extract
its LLVM IR, and the runtime values of kernel arguments
and launch parameters for specialization. Further, AOT code
generation modifications include adding instrumentation
functions to register device global variables with the JIT run-
time library of Proteus. Those are needed to dynamically
link device global variables to the JIT-generated binaries –
we expand on this in the implementation discussion later.
The end product of AOT compilation with Proteus exten-
sions is an executable linked with the JIT runtime library for
dynamic compilation, optimization, and execution.

Runtime. At execution time, this JIT-enabled executable
calls into Proteus’s runtime library whenever invoking an
annotated kernel. The library first checks if there is a pre-
compiled, cached instance of this kernel specialization, tak-
ing into account the runtime information to retrieve it from

4https://clang.llvm.org/docs/AttributeReference.html

509

https://clang.llvm.org/docs/AttributeReference.html

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Giorgis Georgakoudis, Konstantinos Parasyris, and David Beckingsale

cache. If the cache hits, the JIT runtime library retrieves
the cached entry and executes it, saving the overhead of
dynamic compilation and optimization. Otherwise, the run-
time parses the LLVM IR module of the kernel, links any
device global variables, specializes the IR on runtime values,
and compiles it with an aggressive optimization pipeline
to leverage specialization for generating highly-optimized
binary code. Lastly, it executes the generated kernel binary
and returns to its caller in the main program.

The design of Proteus is implemented in two components:
an LLVM module pass plugin that extends AOT compila-
tion for code and runtime information extraction, and a JIT
runtime library for dynamic compilation and optimization.
AOT extensions are purposefully implemented as an LLVM
plugin to easily integrate with existing LLVM installations.
The JIT runtime library itself utilizes LLVM as a library when
parsing and optimizing the extracted LLVM IR. Additionally,
it utilizes CUDA/HIP runtime APIs for loading JIT-compiled
modules, launching kernels, and in the case of CUDA code,
lowering the LLVM-generated PTX assembly to machine
code. We expand on those components in the next sections.

3.2 AOT Compilation Extensions
Proteus includes an LLVM plugin pass that parses attribute
annotations for specifying JIT kernels. Executing in the
LLVM context, it automatically detects whether it is invoked
during host or device compilation by inspecting the targeted
architecture and adjusts its operation. For device compila-
tion, it extracts the LLVM IR bitcode of JIT-annotated kernels
and stores them as byte arrays to be read by the JIT runtime
library when generating code. Whereas for host compilation,
it replace calls in the host LLVM IR to launch annotated ker-
nels with calls into the JIT runtime library, passing runtime
information for optimized execution. Additionally, it inserts
instrumentation routines to relay the addresses of device
global variables to the JIT runtime library. We elaborate on
those two modes next.
Device compilation. The LLVM IR represents attribute

annotations as entries in a global array, named by conven-
tion as llvm.global.annotations. Each entry in this array
includes the corresponding kernel function, the annotation
identifier “jit” and the list of kernel argument indices to spe-
cialize at runtime. The plugin pass extracts the LLVM IR
bitcode for each annotated kernel as a byte array and stores
it in an emitted global variable, uniquely named following
the pattern __jit_bc_<kernel symbol>. The goal is to ex-
pose extracted kernel’s LLVM IR bitcode to the JIT runtime
library by embedding it in the device binary (see Figure 1).
Implementation wise, this slightly differs depending on

AMD or NVIDIA compilation. In particular, for AMD device
compilation, the plugin allocates the global variables storing
the LLVM IR of kernels to different, designated sections in the
device binary, uniquely named as .jit.<kernel symbol>.
Following, the JIT runtime library extracts the LLVM IR

bitcode for a kernel using its symbol to retrieve it from the
corresponding section.

The same method cannot be used for CUDA compilation
because NVIDIA’s proprietary binary tools discard such non-
standard sections. To circumvent this, the plugin pass stores
the global variable containing the byte array of the kernel’s
LLVM IR code to the standard data section of the device
binary. Then, the JIT runtime library uses the CUDA runtime
API (cuModuleGetGlobal) to retrieve the global variable’s
content from device memory using kernel’s symbol, at the
cost of an extra read operation from the device prior to
dynamic compilation.
Host compilation. During host compilation, the plugin

pass modifies host LLVM IR to redirect all calls to annotated
device kernels to the JIT runtime library. Also, it injects
calls to the JIT runtime library to register any device global
variables. This is needed because the JIT runtime library
must dynamically resolve the memory addresses of device
global variable symbols and link them with JIT-generated
code. This is to ensure that global variables are common
between all device code, JIT-generated or AOT-generated.
In more details, JIT annotations of kernels are visible to

host compilation as annotations to the host’s shadow ker-
nel stub function (see section 2). The LLVM plugin finds
calls to cudaLaunchKernel (CUDA) or hipLaunchKernel
(HIP) and inspects whether they launch kernels correspond-
ing to the annotated stubs. For such calls, the plugin re-
places them with a call to the JIT runtime library’s entry
point (__jit_launch_kernel), forwarding: (1) an LLVM-
generated source module unique identifier bound to source
code used for caching (more details in section 3.3), (2) the
unique kernel symbol, (3) the kernel launch parameters
including the grid/block size, shared memory, and stream
number needed to mirror the call to cudaLaunchKernel or
hipLaunchKernel, and (4) the runtime values of denoted
kernel arguments for specialization.
The pass detects the existence of device global variables

by tracking calls to registration API functions for vendor run-
times, namely __cudaRegisterVar and __hipRegisterVar.
Typically, those functions are invoked during program initial-
ization within a global constructor to link the device global
variable symbol with its shadow host counterpart. The plu-
gin adds a call to our own registration function in the JIT
runtime library, named __jit_register_var, forwarding
the global variable’s symbol, which enables the runtime to
query its device memory address. The JIT runtime uses this
functionality to dynamically link references to device global
variables in the JIT-compiled modules to their registered
address in GPU global memory resolved at runtime.

3.3 JIT Compilation Runtime Library
Proteus implements a JIT runtime library, based on LLVM,
to specialize, optimize and compile the extracted LLVM IR.
The library invokes vendor-specific CUDA/HIP interfaces to

510

Proteus: Portable Runtime Optimization of GPU Kernel Execution with Just-in-Time Compilation CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

create and load object binaries of the JIT-compiled kernels,
and to launch those kernels. It also implements specialization-
aware code caching, both in-memory and persistent, to avoid
re-compilation overhead for previously JIT compiled code.
Referring back to Figure 2, during execution, the host

executable calls into the JIT runtime library through the
__jit_launch_kernel interface when launching a kernel.
If cachemisses, the JIT runtime retrieves the LLVM IR bitcode
for the invoked kernel to specialize, optimize, and launch. If it
hits, the runtime retrieves the optimized kernel specialization
and launches it without the dynamic compilation overhead.
The following discussion goes into details on the different
operations of the JIT runtime library.

Dynamic linking of device global variables. The first
step in modifying the extracted LLVM IR of a kernel is to
link any references to device global variables. Device global
variables are assigned to memory locations at loading time
of the device binary embedded in the host executable. As
discussed in section 3.2, our JIT extensions in AOT compi-
lation register device global variables with the JIT runtime.
The runtime then queries the memory addresses of those
symbols through CUDA/HIP runtime interfaces, namely
cudaGetSymbolAddress and hipGetSymbolAddress respec-
tively. Following, it replaces references to device global vari-
ables in the JIT module LLVM IR with the queried memory
addresses resolved at runtime. That ensures that either AOT
kernels or JIT-compiled kernels view and modify the same,
global program state.
Dynamic specialization. After linking device global

variables, the JIT runtime specializes the LLVM IR for run-
time values of kernel arguments and launch parameters.
In specifics, the runtime performs two specializations: it
folds kernel arguments to constants, using their runtime
values, and sets launch bounds for the specific threading
configuration at invocation time, as communicated through
__jit_launch_kernel, to optimize register allocation.

Runtime constant folding of kernel arguments has possibly
cascading optimization effects by revealing opportunities to
simplify control-flow, eliminate unused code, and enable
more aggressive loop unrolling and vectorization. The JIT
runtime specializes the LLVM IR bitcode by replacing uses
of folded kernel arguments with their exact runtime value.

Further, explicitly setting kernel launch bounds helps reg-
ister allocation to maximize register usage under expected
thread occupancy, with possibly significant performance
benefits [42]. To set launch bounds, the JIT runtime either
adds metadata to LLVM IR for CUDA kernels, or adds a
function attribute for HIP kernels, to encode the maximum
number of threads per block at runtime, known through
the __jit_launch_kernel interface. Note that setting the
maximum number of threads per block is required, thus ex-
plicitly set by the JIT runtime using the exact launch value,
whereas the minimum number of blocks per multiprocessor

is optional, for which the runtime sets the default, minimum
value of 1.

Code optimization. Next, the JIT runtime passes the
specialized LLVM IR through the aggressive O3 optimization
pipeline by calling into the LLVM API. The expectation is
that the output LLVM IR has additional code optimization
thanks to specialization.

Machine code generation and execution. The last step
is to generate machine code by invoking the LLVM back-
end on the specialized and optimized LLVM IR, and launch
the JIT-optimized kernel through CUDA/HIP runtime in-
terfaces. As discussed in section 2, the AMDGPU backend
directly generates machine code, whereas LLVM’s NVIDIA
NVPTX backend generates PTX assembly, which requires
NVIDIA’s PTX compiler to generate the binary. Hence, for
NVIDIA compilation, the JIT runtime invokes CUDA’s PTX
API, specifically the interface nvPTXCompilerCompile, as
an extra step for generating machine code. Upon generating
machine code, the JIT runtime inserts it in the code cache, we
elaborate on it next, and launches the JIT-optimized kernel.
Code caching. For each compiler kernel specialization

the JIT runtime library generates a uniquely identifying hash
value. Hashing ensures uniqueness by jointly encoding: (1) a
unique module identifier bound to source code, generated by
LLVM, (2) the kernel’s symbol, and (3) the runtime values of
specialized kernel arguments and launch bound values. The
code cache stores key-value pairs with the unique hash value
being the key that retrieves the corresponding JIT-optimized
machine code for a specific kernel specialization.

On a kernel invocation, the JIT runtime library computes
the hash value encoding the above information that uniquely
identifies the specialization. If the hash value matches an
entry in the cache, the runtime retrieves the machine code
obviating dynamic compilation overhead. If it does not, the
runtime dynamically compiles the kernel specialization and
inserts it in the cache.
As for the caching implementation, the JIT runtime li-

brary employs two-level caching. The first level is a fast,
in-memory cache, populated afresh at runtime during pro-
gram execution. The second level is a persistent storage
cache, designed to retain objects across program runs, feed-
ing the in-memory cache. The persistent storage cache is
implemented using file storage, storing each JIT-optimized
binary in a unique file, named cache-jit-<hash>.o.

In the current implementation, we do not limit the size of
the persistent cache, thus it is monotonically increasing as
more specializations accumulate across program runs. Nev-
ertheless, users can clear the persistent cache as needed by
deleting its files in storage, to re-populate it. One particular
challengewith code caching is that source code changesmust
avoid stale entries in the cache from prior source code ver-
sions. Notably, our hashing method is responsive to source
code changes, since the unique, LLVM-generated module
identifier changes if source code changes. Due to that, stale

511

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Giorgis Georgakoudis, Konstantinos Parasyris, and David Beckingsale

entries will not propagate from the persistent cache to the in-
memory cache, triggering instead re-compilation at runtime.
Clearing the persistent cache due to source code changes is
easy to integrate in software build systems by deleting cache
files when re-building.

3.4 Discussion
Our approach purposefully operates at the LLVM IR level for
both code and runtime value extraction and optimization,
to facilitate porting to other frontends besides Clang (e.g.,
Flang for Fortran, Rust) that target LLVM IR. Proteus differs
from other state-of-the-art solutions [3, 16, 39, 41] which are
bound to source code or Clang’s AST, thus restricted to a
single language. Besides porting advantages, JIT specializa-
tion and optimization using the LLVM IR avoids parsing and
syntax/semantic analysis overheads at runtime, when this is
required for language-bound solutions.
Regarding caching, our present implementation aggres-

sively caches specializations without eviction, assuming pro-
grammers judiciously use JIT annotations for hotspots with
a manageable number of runtime specializations. We are
developing Least Recently Used (LRU) eviction to prevent
cache overgrowth and plan to add environment variables
for users to limit in-memory and persistent caches sizes.
Additionally, we aim to explore runtime-informed eviction
mechanisms that prioritize evicting less likely-to-execute
specializations over LRU. As shown in the next section, the
evaluated programs’ code caching is in the KB range, which
does not require such mechanisms.

4 Evaluation
We select a comprehensive set of programs from theHeCBench
benchmark suite [29], as shown in Table 1, to evaluate Pro-
teus. HeCBench is curated by the HPC community and in-
cludes benchmark implementations representative of large
applications in HIP and CUDA. We annotate kernels in those
programs for JIT compilation, specifying meaningful argu-
ments for runtime specialization (arguments used in loop
bounds, conditionals, or numeric computation).

We evaluate on both an NVIDIA V100 GPU and an AMD
MI250X GPU, thanks to the portability of our approach. For
our software setup, we use the Clang/LLVM compiler pro-
vided by AMD in ROCm version 5.7.1, and the Clang/LLVM
version 17.0.5 for compiling CUDA codes using CUDA 12.2
libraries. Program implementations in HIP are executed on
the AMD GPU, while CUDA ones on the NVIDIA GPU.
We contrast the Proteus JIT optimization approach with

AOT compilation on both NVIDIA and AMD systems in
terms of performance and overheads. Additionally, for NVIDIA,
we contrast it with NVIDIA’s Jitify [39] tool, which performs
similar specialization, though limited to C++ templates and
a cumbersome interface requiring to provide kernel code in
a string representation. To ensure statistical stable results,

Table 1. Benchmark programs.

Benchmark Domain Input

ADAM Machine Learning 160000 1600 1000
RSBENCH Neutron Transport Algorithm -m event -s large
WSM5 Weather Simulation 10
FEY-KAC Monte Carlo PDEs 1
LULESH Physics -s 128
SW4CK Earth Science sw4ck.in 1000

Table 2. End-to-end execution time per program andmethod.
Highlighted entries show the fastest execution time.

AMD End-to-end Execution Time (s)

ADAM RSBENCH WSM5 FEY-KAC LULESH SW4CK

AOT 2.56±0.11% 3.78±0.15% 9.10±0.10% 10.66±0.07% 63.25±0.01% 120.75±0.03%
Proteus 2.03±0.06% 2.28±0.14% 3.62±0.02% 8.36±0.09% 62.05±0.04% 84.96±0.08%

Proteus+$ 2.01±0.09% 1.91±0.10% 3.25±0.08% 8.27±0.06% 61.70±0.07% 83.11±0.07%
NVIDIA End-to-end Execution Time (s)

ADAM RSBENCH WSM5 FEY-KAC LULESH SW4CK

AOT 2.87±0.23% 2.67±0.15% 3.69±0.23% 14.57±0.03% 24.39±1.64% 53.20±0.04%
Proteus 2.20±0.25% 2.38±0.43% 2.73±0.21% 13.17±0.09% 24.64±0.58% 57.22±0.02%

Proteus+$ 2.11±0.34% 2.01±0.55% 2.08±0.21% 12.96±0.08% 24.32±0.26% 53.64±0.02%
Jitify 3.35±0.31% 3.34±0.37% 2.73±0.21% 15.04±0.06% N/A 57.76±0.13%

each program goes through a warm-up run discarding mea-
surements, to avoid any static initialization overheads. Then,
we perform three separate program runs and report the mean
out those three runs. We found the relative standard error of
the mean to be less than 1.64% in all cases (see Table 2), which
is expected since GPU is an isolated accelerator platform,
thus results are deemed statistically significant.

4.1 End-to-End Performance Comparisons
Figure 3 presents the end-to-end speedup for each program
across both architectures. We contrast AOT compilation to
Proteus JIT compilation with all runtime optimizations acti-
vated. To show the effects of caching on speedup, we show
results as Proteus when execution starts with a “cold” per-
sistent cache, hence incurring the full overhead of dynamic
compilation, and as Proteus+$, when it starts with a “warm”
cache of pre-compiled kernel specializations, hence overhead
consists of only loading the kernel binary from persistent
storage. Additionally, for the NVIDIA system, we compare
against NVIDIA’s Jitify tool for all programs except LULESH,
as Jitify hangs during compilation.
Overall, results show that Proteus, owing to runtime op-

timization, demonstrates significant speedup across both
architectures, even when the persistent cache is “cold”, ef-
fectively recuperating dynamic compilation overheads.

For AMD, 5 out of the 6 evaluated programs significantly
speed up between 1.26× to 2.52× with a “cold” cache and
1.28× to 2.8× with a “warm” cache. The one exception is
LULESH, where Proteus marginally speeds up execution
(1.02× without caching, 1.03× with), which shows that spe-
cialization optimizations have little benefit for this program.

512

Proteus: Portable Runtime Optimization of GPU Kernel Execution with Just-in-Time Compilation CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

ADAM
RSBENCH WSM5

FEY-KAC
LULESH

SW4CK
0.0

1.0

2.0

3.0
Sp

ee
du

p
ov

er
A

O
T

1.
26

1.
65

2.
52

1.
27

1.
02

1.
42

1.
28

1.
98

2.
80

1.
29

1.
03

1.
45

(a) AMD

ADAM
RSBENCH WSM5

FEY-KAC
LULESH

SW4CK
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ov
er

A
O

T

1.
30

1.
12

1.
35

1.
11

0.
99

0.
93

1.
36

1.
33

1.
78

1.
12

1.
00

0.
99

0.
86

0.
80

1.
35

0.
97

0.
92

Proteus
Proteus+$
Jitify

(b) NVIDIA

Figure 3. End-to-end speedup over AOT, incl. JIT overhead.

For NVIDIA, 4 out of 6 programs exhibit noticeable speedup,
ranging from 1.11× to 1.35× for a “cold” cache and 1.12× to
1.78× for a “warm” cache. Consequently, a pre-populated
cache is more important for achieving higher speedup on
NVIDIA rather than AMD. This is expected since NVIDIA
requires the extra runtime compilation overhead for pulling
LLVM IR from device memory and the intermediate step of
PTX compilation. LULESH on NVIDIA also does not ben-
efit from JIT specialization, hence its performance is on a
par with AOT. A difference between the two platforms is
that SW4CK under Proteus significantly speeds up on AMD
(up to 1.45×), whereas it slightly slows down for NVIDIA.
Specifically, SW4CK with Proteus on NVIDIA is slightly
slower (0.93×) with a “cold” persistent cache compared to
AOT, or it has similar performance (0.99×) when the cache
is “warm”. The brief explanation is that JIT specialization
benefits AMD, but not NVIDIA. Specifically, setting launch
bounds optimizes register allocation on AMD but has no
effect on NVIDIA, whereas runtime constant folding does
not benefit either architecture. We provide more details in
our in-depth analysis at section 4.5.
Interestingly, Proteus outperforms the NVIDIA-specific

Jitify approach across all tested programs. Jitify results in
slowdown across most programs and achieves end-to-end

ADAM
RSBENCH WSM5

FEY-KAC
SW4CK

0.0

1.0

2.0

3.0

Sp
ee

du
p

ov
er

A
O

T
(k

er
ne

lt
im

e
on

ly
)

1.
43

1.
40

1.
96

1.
13

0.
98

0.
93 1.

18

2.
80

0.
99

1.
44

Proteus
Jitify

Figure 4. Speedup over AOT considering only kernel execu-
tion, excluding JIT overhead, for NVIDIA.

speedup only for WSM5. Figure 4 shows kernel-only exe-
cution times without including runtime compilation over-
heads, to understand whether this advantage of our JIT ap-
proach is due to faster kernel execution times or by mini-
mizing runtime overhead, or both. Looking at results, Jitify
generates slower kernel code than Proteus for some pro-
grams (ADAM, RSBENCH, FEY-KAC) while faster for oth-
ers (WSM5, SW4CK). That suggests that our JIT approach
achieves end-to-end speedup by always minimizing runtime
compilation overheads, even with a “cold” persistent cache
which is equivalent to Jitify execution, and this speedup
compounds in certain cases with generating faster kernel
code too. The higher dynamic compilation overhead of Ji-
tify is explainable as it starts off with parsing, analyzing,
and compiling stringified source code, whereas Proteus uses
lower level LLVM IR for JIT compilation and optimization.

4.2 AOT Extensions Compilation Overhead
Since both Proteus and NVIDIA’s Jitify extend AOT compi-
lation for code and runtime value extraction, we measure
the static, one-off cost when building a program including
those extensions during AOT compilation. Figure 5 shows
the slowdown of AOT compilation (single-threaded) when
building each program with JIT extensions versus without
them. For Proteus, extensions include the LLVM JIT plu-
gin pass and linking with the runtime library. For Jitify, JIT
extensions in compilation include usage of its header-only,
templated C++ library.
Results show Proteus imposes minimal overhead across

systems. For HIP/AMD, compilation overhead is negligible
with no noticeable slowdown. For CUDA/NVIDIA, compi-
lation time increases by 1.1× to 1.6× across benchmarks,
primarily due to static linking of our JIT runtime library and
NVIDIA’s proprietary libraries as the Proteus LLVM JIT plu-
gin itself has negligible overhead. In contrast, Jitify incurs
greater slowdowns, ranging from 1.4× to 6.5×, due to its
templated header library inflating compilation time.

513

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Giorgis Georgakoudis, Konstantinos Parasyris, and David Beckingsale

ADAM
RSBENCH WSM5

FEY-KAC
LULESH

SW4CK
0.0

0.2

0.5

0.8

1.0

1.2
Sl

ow
do

w
n

co
m

pi
lin

g
A

O
T

+E
xt

.v
s.

A
O

T 1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

(a) AMD

ADAM
RSBENCH WSM5

FEY-KAC
LULESH

SW4CK
0.0

2.0

4.0

6.0

8.0

Sl
ow

do
w

n
co

m
pi

lin
g

A
O

T
+E

xt
.v

s.
A

O
T

1.
6

1.
2 1.

5

1.
6

1.
1 1.
2

5.
6

1.
8

3.
4

6.
5

1.
4

Proteus
Jitify

(b) NVIDIA

Figure 5. Slowdown AOT compilation with JIT extensions.

ADAM
RSBENCH WSM5

FEY-KAC
LULESH

SW4CK
0.0

0.2

0.5

0.8

1.0

1.2

Sp
ee

du
p

ov
er

A
O

T
w

/o
JI

T
op

t.

0.
98

0.
9 0.
93 0.

99

0.
99

0.
980.
99

1.
0

0.
97 1.
0

0.
99

1.
0

(a) AMD

ADAM
RSBENCH WSM5

FEY-KAC
LULESH

SW4CK
0.0

0.2

0.5

0.8

1.0

1.2

Sp
ee

du
p

ov
er

A
O

T
w

/o
JI

T
op

t.

0.
96

0.
87

0.
8

0.
98

0.
98

0.
90.

99 1.
03

0.
99

0.
99

1.
0

1.
0

Proteus Proteus+$

(b) NVIDIA

Figure 6. Speedup (<1 is slowdown) over AOT when delib-
erately disabling runtime optimizations in JIT compilation.

Table 3. Maximal code cache size.

Machine Program

ADAM RSBENCH WSM5 FEY-KAC LULESH SW4CK

NVIDIA 5.9KB 32KB 73KB 18KB 54KB 282KB
AMD 6.7KB 24KB 35KB 18KB 46KB 199KB

4.3 Runtime Overheads
We conduct experiments where we deliberately turn off any
runtime specialization to measure the overhead of dynamic
JIT compilation in Proteus. Instead, we use our kernel an-
notations and dynamically compile kernels only with the
default O3 pipeline, akin to AOT compilation. This way JIT
compilation will be invoked as many times as there are possi-
ble specializations, despite not performing specialization as
it is explicitly turned off, to expose the overheads of dynamic
compilation without the benefits of specialization.
Figure 6 shows the end-to-end speedup under this setup,

showing results with and without a pre-populated persistent
cache. Note that the pre-populated persistent cache contains
kernel objects optimized just with O3, hence without run-
time specialization. Results affirm that Proteus compilation
overhead is indeed small and that caching significantly mit-
igates it. The best case under this setup is a speedup of 1,
meaning negligible slowdown due to JIT compilation. For
AMD, the slowdown of JIT without caching is small, be-
tween 0.9×–0.99×, whereas with caching it is effectively
negligible, ranging between 0.97×–1.0×. For NVIDIA, over-
head is greater than AMD, due to pulling LLVM IR from
device memory and the need to compile PTX for machine
code generation. However, that overhead is still manage-
able. Specifically, slowdown using Proteus without caching
is between 0.8×–0.98×, while with caching it is negligible,
between 0.99×–1.0×. Interestingly, RSBENCH is an outlier
where we see marginal speedup of 1.03×, attributed to mar-
ginal differences in machine code generation when using
the PTX compiler through our runtime library. Revisiting
Figure 3 on end-to-end speedup, those small overheads are ef-
fectively recuperated when runtime optimization is enabled,
hence the significant end-to-end speedup from Proteus.

4.4 Code Cache Size
Table 3 shows the maximal cache size for each program on
both machines, including all specializations without eviction
or cache size limits. Code caches are typically small (on the
order of KB), resulting in minimal overhead. Nonetheless, we
will include eviction mechanisms and size limits to manage
cache scaling and aggressive specialization (see Section 3.4).

4.5 Detailed Performance Analysis
Further, We conduct an in-depth analysis of execution time
and hardware performance counters under various special-
ization optimizations to identify factors driving the observed

514

Proteus: Portable Runtime Optimization of GPU Kernel Execution with Just-in-Time Compilation CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

1 template <typename T, typename G>
2 __global__
3 __attribute__((annotate("jit", 5, 6, 7, 8, 9, 10, 11, 13)))
4 void adam (
5 T* __restrict__ p,
6 T* __restrict__ m,
7 T* __restrict__ v,
8 const G* __restrict__ g,

9 const float b1 ,

10 const float b2 ,

11 const float eps ,

12 const float grad_scale ,

13 const float step_size ,

14 const int time_step ,

15 const size_t vector_size ,
16 adamMode_t mode,

17 const float decay)

Listing 1. The ADAM kernel prototype with JIT annotations.
Highlighted arguments are designated as runtime constants.

performance improvements. For that, we utilize the vendor
profiling tools nvprof (NVIDIA) and rocprof (AMD):
• AOT denotes results when the kernel has been compiled
and optimized using AOT compilation only with the de-
fault O3 optimization pipeline.

• None denotes Proteus JIT compilation, but without spe-
cialization, hence only O3 optimization, expecting similar
performance with AOT compilation.

• LB denotes results when Proteus JIT compilation special-
izes the kernel only for launch bounds, and optimizing
with the O3 pipeline, to show the impact of better register
allocation through runtime threading configuration.

• RCF denotes results when Proteus specializes the kernel
only with runtime constant folding of kernel arguments,
optimizing with the O3 pipeline, to show the effects of
runtime folding for enhanced optimization.

• Lastly, LB+RCF denotes results when Proteus specializes
the kernel with both runtime constant folding and launch
bounds, and optimizing with the O3 pipeline, to show the
combined effects of our runtime optimizations.

Those different modes aim to isolate and understand the
individual and combined effects of specializations, and the
resulting kernel performance enabled by Proteus JIT com-
pilation. Next, we discuss detailed performance results for
each kernel.

ADAM. TheAdam [31] optimizer is a popular algorithm in
the field of machine learning for optimizing neural network
parameters. Listing 1 shows the kernel function prototype
from the ADAM implementation with JIT annotations, des-
ignating all scalar variables5, as runtime constants – recall

5b1, b2, eps, grad_scale, step_size, time_size, vector_size,
decay

0 1 2
Kernel Duration (s) ×10−4

AOT

None

LB

RCF

LB+RCF

0.0 0.5 1.0
VALUInsts ×105

AOT

None

LB

RCF

LB+RCF

(a) AMD

0 1 2
Kernel Duration (s) ×10−4

AOT

None

LB

RCF

LB+RCF

0.0 0.5 1.0
inst per warp ×106

AOT

None

LB

RCF

LB+RCF

(b) NVIDIA

Figure 7. In-depth analysis of the ADAM benchmark.

1 void potential(double a, double b,
2 double x, double y) {
3 return (2.0 * (pow (x / a / a, 2.0)
4 + pow (y / b / b, 2.0))
5 + 1.0 / a / a + 1.0 / b / b);
6 }

Listing 2. Function computing the potential of a point in
the inner loop of FEY-KAC, called it in the innermost loop
of the computational kernel function.

argument counting starts from 1 in our annotations. Figure 7
shows results on kernel duration and number of executed
instructions. We consistently observe speedup across both
systems. Notably, runtime constant folding is the most effec-
tive specialization technique for yielding higher performance.
The primary factor contributing to this improvement is a
significant reduction in the number of executed instructions.

Specifically, performance profiling on AMD reveals a sub-
stantial decrease in the average number of vector ALU in-
structions executed per work item (VALUInsts), dropping
from 108,854 to 75,226. On NVIDIA, the total number of
executed instructions (inst_per_warp) also decreases from
approximately 9.6E5 to 4E05.
FEY-KAC. The Feynman-Kac formula [12] establishes a

connection between the solutions of certain partial differen-
tial equations (PDEs) and expected values from stochastic
processes, with applications in quantum mechanics and fi-
nancial mathematics. UsingMonte Carlo methods, individual
computational threads execute stochastic trajectories, calcu-
lating the potential at discrete points on a two-dimensional
lattice, as illustrated in Listing 2. Runtime constant folding
specialization for variables a and b enables JIT compilation
to eliminate redundant vector instructions, improving com-
putational efficiency.

515

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Giorgis Georgakoudis, Konstantinos Parasyris, and David Beckingsale

0.0 0.5 1.0
Kernel Duration (s)

AOT

None

LB

RCF

LB+RCF

0 1 2
VALUInsts ×109

AOT

None

LB

RCF

LB+RCF

(a) AMD

0.0 0.5 1.0 1.5
Kernel Duration (s)

AOT

None

LB

RCF

LB+RCF

0 2 4
inst per warp ×109

AOT

None

LB

RCF

LB+RCF

(b) NVIDIA

Figure 8. In-depth analysis for FEY-KAC.

Figure 8 shows results on kernel duration and instruc-
tion counters. Primarily RCF reduces vector instructions
compared to AOT. On AMD, AOT has around 1.9E9 vector
instructions, whereas JIT-optimized versions with RCF re-
duce them to 1.4E9 vector instructions, a reduction factor
of 1.29×. Similarly on NVIDIA, Proteus reduces instructions
from 4.7E9 to 3.9E9 instructions, achieving a 1.12× kernel
speedup.

WSM5. WSM5 (Weather Research and Forecasting Single
Moment 5-class) [35] is a weather simulation benchmark
focusing on cloud microphysics for meteorological research.
Figure 9 highlights differing optimization behaviors between
AMD and NVIDIA GPUs. For NVIDIA, runtime constant
folding (RCF) reduces instructions by 2.1× compared to AOT,
achieving a 1.95× kernel speedup, although memory-bound
limits lower the Instructions-Per-Cycle (IPC) for JIT (0.9)
compared to AOT (1.4).

On AMD, combining RCF and LB yields the best results, re-
ducing both vector and scalar ALU instructions (VALUInsts,
SALUInsts) and eliminating costly memory spills for vector
and scalar registers (VFetchInsts, SFetchInsts). In more
detail, AOT allocates 128 vector and 102 scalar registers,
leading to significant memory spills and a kernel duration of
0.088 seconds. RCF alone uses the same number of registers
but eliminates spills and reduces vector/scalar instructions,
achieving a 1.87× speedup with a duration of 0.047 seconds.
LB alone aggressively allocates 212 vector and 98 scalar reg-
isters, eliminating vector spills but keeping scalar spills, nev-
ertheless resulting in a 1.5× speedup (0.059 seconds).
The greatest improvement comes from combining RCF

and LB, reducing vector register usage, eliminating register
spills, and reducing instruction counts, thus achieving the
shortest kernel duration of 0.029 seconds – a 3.03× speedup
over AOT. These results demonstrate that while RCF and

0 1 2 3
VFetchInsts ×106

AOT

None

LB

RCF

LB+RCF

0 2 4
SFetchInsts ×105

AOT

None

LB

RCF

LB+RCF

0 2 4 6
VALUInsts ×107

AOT

None

LB

RCF

LB+RCF

0 1 2 3
SALUInsts ×107

AOT

None

LB

RCF

LB+RCF

0 2 4
MeanOccupancyPerCU×10−1

AOT

None

LB

RCF

LB+RCF

0.0 2.5 5.0 7.5
Kernel Duration (s) ×10−2

AOT

None

LB

RCF

LB+RCF

(a) AMD

0 1 2 3
Kernel Duration (s) ×10−2

AOT

None

LB

RCF

LB+RCF

0 2 4
inst per warp ×108

AOT

None

LB

RCF

LB+RCF

(b) NVIDIA

Figure 9. In-depth analysis for the WSM5 benchmark.

LB individually improve performance, their combination
delivers the highest gains.

RSBench. Figure 10 presents the analysis of the RSBench
HPC proxy application. OnAMD, LB achieves a 2.45× speedup
over AOT by optimizing register allocation, reducing mem-
ory spills, and increasing the L2 cache hit ratio. It also im-
proves vector ALU utilization, as indicated by the higher
VALUBusy counter, measuring the percentage of time GPU
execution spent in computation.
For NVIDIA, LB again delivers a 1.4× speedup over AOT

by minimizing memory spills and reducing pipeline stalls,
as measured by the stall_exec_dependency counter.

SW4CK. Figure 11 shows the analysis of the five kernels
in the SW4CK benchmark on AMD. LB specialization deliv-
ers significant improvements across all kernels, achieving
an average 2.99× speedup due to better register utilization
and a higher L2 cache hit ratio (from 50% to 78%, as shown
in Figure 11b). In contrast, RCF does not provide speedup
and degrades performance for kernel4 due to suboptimal
register usage, leading to more spills and a lower L2 cache hit
ratio (49% vs. 56%). However, combining LB and RCF results
in a net speedup, as LB compensates for RCF’s inefficiencies.

516

Proteus: Portable Runtime Optimization of GPU Kernel Execution with Just-in-Time Compilation CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

0 2 4
VFetchInsts ×104

AOT

None

LB

RCF

LB+RCF

0.0 2.5 5.0 7.5
L2CacheHit ×101

AOT

None

LB

RCF

LB+RCF

0 2 4
VALUBusy ×101

AOT

None

LB

RCF

LB+RCF

0 1 2 3
Kernel Duration (s) ×10−1

AOT

None

LB

RCF

LB+RCF

(a) AMD

0 1 2
Kernel Duration (s) ×10−1

AOT

None

LB

RCF

LB+RCF

0 2 4
stall exec dependency ×101

AOT

None

LB

RCF

LB+RCF

(b) NVIDIA

Figure 10. In-depth analysis for the RSBench benchmark.

Results for NVIDIA are omitted as neither LB nor RCF
yield improvements over AOT. NVIDIA’s proprietary reg-
ister allocator already optimizes effectively, rendering LB
unnecessary, while RCF fails to optimize due to limited op-
portunities for computational instruction improvements.
LULESH. Results are omitted for NVIDIA and AMD as

execution times match the AOT baseline, showing no notice-
able speedup. Nonetheless, this demonstrates that Proteus is
lightweight and avoids slowdowns, even for programs less
amenable to JIT optimization.

5 Related Work
The foundations of Just-In-Time optimization are based on
partial evaluation [30], a longstanding technique for opti-
mizing programs. Partial evaluation specializes a program
modulo its inputs to generate a specialized version of the
program, called the residual. Futamura [17–19] lays the the-
oretical foundation on partial evaluation and describes how
partial evaluations applied progressively on an interpreter
generate an optimized program executable (first projection),
a compiler (second projection), or a compiler generator (third
projection). Sullivan [44] discusses theoretical aspects of dy-
namic partial evaluation when specializing a program to its
environment, i.e., arguments of functions, in a simple lambda
calculus language. Partial evaluation via dynamic JIT com-
pilation can be used to optimize both dynamic, interpreted
languages and statically typed, compiled ones.

Interpreted languages, such as Java [4, 13, 48, 49], Julia [5],
Python [6, 32], Ruby [9], Javascript [11], frequently rely on

JIT compilation to accelerate their execution. JIT compilers
for those languages alleviate the interpretation overhead
by compiling hotspots of the program for native execution.
JIT compilation for dynamically-typed languages often uses
type-based specialization [8, 9, 20, 24, 43, 47] as a partial
evaluation technique to reduce boxing/unboxing overhead
and generate specialized computational instructions. Cost et
al. [11] propose automatic value specialization for JavaScript
functions in Mozilla’s IonMonkey Javascript JIT, as those are
called repeatedly with the same parameter values.

JIT compilation for GPUs in Python is an important area,
due to its prevalence for AI/ML codes, with Numba [32], Tri-
ton [46] being two state-of-the-art solutions. They both work
on a subset of Python and inspect the Python AST, which is
available at runtime, having ample time for dynamic compi-
lation due to the interpreted nature of the language. By con-
trast, Proteus works on statically compiled languages with
stringent performance constraints given highly-optimizing
AOT compilation. Additionally, those approaches use LLVM
IR just for backend generation of binary code, whereas Pro-
teus uses LLVM IR also to introspect and specialize the code
before applying automated compiler-based optimization.

’C [14], Tempo [10, 37], DyC [22, 23] propose extensions
to the C language to indicate possible variables as runtime
constants for specializing at scope level. Tempo produces
specialized code variants offline whereas ’C, DyC produce a
customized IR fed to a code generator at execution time.

Few JIT solutions leverage Clang/LLVM but are limited to
C++with minimal GPU support. EasyJIT [7] offers a C++ API
using placeholders for runtime function specialization via
LLVM IR. atJIT [15] extends EasyJIT with tuning capabilities.
ClangJIT [16] introduces a C++ attribute for annotating tem-
plates, including CUDA programs, deferring specialization
to runtime to reduce AOT compilation time. It specializes
functions for non-type template parameters at runtime by
operating on the Clang AST. PACXX [25–27] extends Clang
with a C++ API for GPU development using CUDA and
OpenCL. It specializes C++ lambda GPU kernels by embed-
ding user-selected captured variables as constants into the
kernel for dynamic compilation. Similarly, LambdaJIT [34]
specializes kernels for all captured variables of a lambda.
An OpenMP-specific approach [45] uses JIT compilation to
optimize GPU kernels by re-targeting them to the GPU ar-
chitecture, removing redundant calls to OpenMP runtime
functions, and folding scalar kernel arguments to constants.
Further, CUDA/HIP Runtime Compilation (RTC) [3, 41]

supports JIT compilation for C/C++ kernels, with NVIDIA
Jitify [39] providing a high-level interface. Jitify is a single
header C++ library that supports runtime constants through
template specialization, and an experimental API for user-
managed caching. Both CUDA/HIP and Jitify digest C/C++
source code as a string and invoke the full compilation
toolchain, with significant associated overhead, to gener-
ate binary code. KART [36] shares ideas with CUDA/HIP

517

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Giorgis Georgakoudis, Konstantinos Parasyris, and David Beckingsale

0.0 0.5 1.0 1.5
×10−3

AOT
None

LB
RCF

LB+RCF

kernel1

0 2 4
×10−4

AOT
None

LB
RCF

LB+RCF

kernel2

0 2 4
×10−4

AOT
None

LB
RCF

LB+RCF

kernel3

0 1 2
×10−4

AOT
None

LB
RCF

LB+RCF

kernel4

0.0 0.5 1.0 1.5
×10−3

AOT
None

LB
RCF

LB+RCF

kernel5

(a) Average execution time per kernel invocation.

0.0 2.5 5.0 7.5
L2CacheHit ×101

AOT

None

LB

RCF

LB+RCF

0.0 2.5 5.0 7.5
L2CacheHit ×101

AOT

None

LB

RCF

LB+RCF

0.0 2.5 5.0 7.5
L2CacheHit ×101

AOT

None

LB

RCF

LB+RCF

0.0 2.5 5.0 7.5
L2CacheHit ×101

AOT

None

LB

RCF

LB+RCF

0.0 2.5 5.0 7.5
L2CacheHit ×101

AOT

None

LB

RCF

LB+RCF

(b) L2 Cache hit rate for all kernels included in sw4ck.

0 1 2
SALUInsts ×102

AOT

None

LB

RCF

LB+RCF

0 2 4
SALUInsts ×101

AOT

None

LB

RCF

LB+RCF

0 2 4
SALUInsts ×101

AOT

None

LB

RCF

LB+RCF

0 2 4
SALUInsts ×101

AOT

None

LB

RCF

LB+RCF

0 1 2
SALUInsts ×102

AOT

None

LB

RCF

LB+RCF

(c) Number of Scalar Instructions per kernel invocation.

Figure 11. In-depth analysis of the SW4CK benchmark on AMD.

RTC and NVIDIA’s Jitify as it provides API abstractions to
JIT compile source code in textual format, requiring a full
compiler toolchain at the backend. All those approaches re-
quire significant code refactoring effort to define kernels
as C/C++ strings, while the overhead of invoking the com-
plete toolchain to parse, lower, and compile source code is
non-trivial.

Regarding possible JIT optimizations, authors in [28] use
profile-guided information to specialize the register alloca-
tion of functions by cloning specializations based on runtime
values affecting control flow. Another profiled guided ap-
proach [38] proposes to use JIT compilation and optimize
code layout, by re-compiling parts of the LLVM IR. DASS [21]
proposes embedding the LLVM IR in the executable for a
generic target architecture for portability, to later specialize
through dynamic compilation for the specific sub-target ar-
chitecture at deployment time. Those runtime specializations
are complementary to our approach.

Table 4 summarizes the differences between our work and
other GPU-targeting JIT approaches. In summary, Proteus
presents an easy-to-use, portable, language agnostic, high-
performance JIT compilation methodology by providing sim-
ple source annotations, operating in LLVM IR for portability,
and implementing JIT specialization optimizations as well as
specialization-based in-memory and persistent code caching.

6 Conclusion
We introduced Proteus, a portable, high-performance JIT
compilation approach that optimizes GPU kernel execution
with minimally intrusive developer annotations and runtime
specialization. Proteus extends LLVM’s AOT compilation

Table 4. Contrasting key attributes of GPU JIT approaches.

Method JIT Code Portability Cache
NVIDIA AMD In-memory Persistent

RTC/Jitify [39, 40] C++ ✓ ✗ ✓ ✓∗

PACXX[25–27] C++ ✓ ✗ ✓ ✗
LambdaJIT [34] C++ ✓ ✗ ✗ ✗
ClangJIT [16] Clang AST ✓ ✗ ✓ ✗

Proteus LLVM IR ✓ ✓ ✓ ✓
∗user-managed (experimental)

to extract LLVM IR and runtime information for annotated
kernels, incorporating a JIT runtime library for dynamic op-
timization and caching. Specialization optimizations include
runtime constant folding for kernel arguments and dynamic
launch bounds to improve register allocation. Evaluations
on HPC benchmarks with NVIDIA and AMD GPUs show
Proteus achieves 1.26× to 2.8× end-to-end speedup through
effective specialization and minimal overhead.
Future work includes exploring runtime optimizations

like kernel scheduling and auto-tuning, automating special-
ization decisions to balance performance and compilation
overhead, and porting Proteus to additional language fron-
tends and GPU architectures.

Acknowledgments
This work was prepared by LLNL under Contract DE-AC52-
07NA27344 and supported by the LLNL LDRD Program un-
der Project No. 23-ERD-022 and Project No. 25-ERD-019.
(LLNL-CONF-869329). The authors thank anonymous re-
viewers for their valuable feedback and LLNL colleagues Tal
Ben-Nun, John Bowen, and Thomas Stitt for their support.

518

Proteus: Portable Runtime Optimization of GPU Kernel Execution with Just-in-Time Compilation CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

A Artifact Appendix
A.1 Abstract
The artifacts comprise of:

• the Proteus software stack including the LLVM plugin pass
and the runtime library,

• the HeCBench benchmark programs modified for JIT com-
pilation using Proteus annotations or NVIDIA Jitify, and

• the experimentation driver and data analysis scripts that
compile and execute HeCBench programs to plot results

All artifacts are provided open-source, publicly available in
Zenodo (https://doi.org/10.5281/zenodo.14087063) andGitHub
(https://github.com/Olympus-HPC/proteus.git,
branch: cgo25-artifact).
The hardware requirements are an NVIDIA V100 GPU

hosted on an IBM Power9 machine and an AMD MI250X
GPU hosted on an AMD EPYC 7A53 machine. For experi-
mentation, the GPU systems are more important, the host
system configurations are less essential.

For the NVIDIA GPU machine, software requirements are
a Linux OS (RHEL 7.9), an NVIDIA CUDA 12.2 installation,
Clang/LLVM 17.0.5, and Python 3.
For the AMD GPU machine, software requirements are

a Linux OS (RHEL 8.10), AMD ROCm 5.7.1 (which includes
AMD’s Clang/LLVM installation), and Python 3.

The key results to reproduce are Proteus end-to-end speedup
over AOT compilation (Figure 3) and the end-to-end execu-
tion times (Table 2). Results in the rest of figures are elabora-
tions of the key result, showing overheads, GPU kernel-only
execution times, or detailed performance counters.
The experimentation workflow is to compile benchmark

programs with Proteus/Jitify and execute to collect tim-
ing/profiling measurements. The driver and data analysis
scripts we provide automate the experimentation workflow
and perform data collection and plotting of the results.

A.2 Artifact Check-list (Meta-information)
• Algorithm: JIT compilation with runtime optimizations.
• Program: Proteus software stack, NVIDIA Jitify, modifiedHeCBench
programs.

• Compilation: Clang 17.0.5 and CUDA 12.2 for NVIDIA, ROCm
5.7.1 for AMD

• Transformations: Proteus LLVM plugin pass parses annota-
tions and transforms program for JIT compilation, supported by
Proteus’s JIT runtime library.

• Binary: Driver script compiles different versions (Proteus con-
figurations, Jitify for CUDA, or plain AOT compilation) of bench-
mark programs and generates binaries.

• Data set: HeCBench GPU benchmark programs, modified for
Proteus/Jitify execution.

• Run-time environment: For NVIDIA, Linux OS (tested on
RHEL 7.9), CUDA 12.2, Clang/LLVM 17.0.5, Python 3. For AMD,
Linux OS (tested on RHEL 8.10), ROCm 5.7.1 including Clang/L-
LVM installation for AMD, Python 3. We provide an installation

script that installs and uses conda to download software depen-
dencies.

• Hardware: NVIDIA V100, AMD MI250X
• Execution: Driver script executes the experimentation work-
flow.

• Metrics: Key: end-to-end execution times and speedup of Pro-
teus over AOT compilation. Derivative: compilation overhead
with JIT extensions, runtime overhead of JIT compilation, GPU
performance counters.

• Output: Key: Table of execution times and plots of speedup of
Proteus over AOT compilation. Derivative: remaining plots on
JIT compilation overheads, kernel-only execution times, and GPU
performance counters.

• Experiments: Run HeCBench programs under different Proteus
configuration, Jitify (CUDA), and AOT compilation.

• How much disk space required (approximately)?: 10 GB
• How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes

• How much time is needed to complete experiments (ap-
proximately)?: 6 hours (NVIDIA), 10 hours (AMD)

• Publicly available?: Yes,
DOI: https://doi.org/10.5281/zenodo.14087063 (Zenodo), or
https://github.com/Olympus-HPC/proteus.git
branch cgo25-artifact

• Code licenses (if publicly available)?: Apache 2.0 w/ LLVM
exceptions, BSD 3-Clause.

A.3 Description
A.3.1 How Delivered. All artifacts are available in DOI:
https://doi.org/10.5281/zenodo.14087063 through Zenodo,
or
https://github.com/Olympus-HPC/proteus.git
branch cgo25-artifact.

A.3.2 Hardware Dependencies. NVIDIA V100 GPU,
AMD MI250X GPU

A.3.3 Software Dependencies. For NVIDIA, Linux OS (tested
on RHEL 7.9), CUDA 12.2, Clang/LLVM 17.0.5, Jitify (included in
the repo), Python 3. For AMD, Linux OS (tested on RHEL 8.10),
ROCm 5.7.1, Python 3. We provide an installation script that uses
conda to install dependencies.

A.3.4 Data Sets. Modified HeCBench suite, included in the repo.

A.4 Installation
Download and unzip from Zenodo: https://doi.org/10.5281/zenodo.
14087063, or clone the repo and checkout the cgo25-artifact
branch:

git clone --single-branch --depth 1 \
--branch cgo25-artifact \
https://github.com/Olympus-HPC/proteus.git

Installation assumes CUDA 12.2 is available and loaded in the
environment for the NVIDIA GPU. Installation assumes ROCm
5.7.1 is available and loaded in the environment for the AMD GPU.

We provide a script that sets up the environment by installing
conda in userspace to download and install dependencies (Python 3
and packages, Clang/LLVM for NVIDIA), and also to build Proteus
for the GPU target machine (NVIDIA or AMD).

519

https://doi.org/10.5281/zenodo.14087063
https://github.com/Olympus-HPC/proteus.git
https://doi.org/10.5281/zenodo.14087063
https://github.com/Olympus-HPC/proteus.git
https://doi.org/10.5281/zenodo.14087063
https://github.com/Olympus-HPC/proteus.git
https://doi.org/10.5281/zenodo.14087063
https://doi.org/10.5281/zenodo.14087063

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Giorgis Georgakoudis, Konstantinos Parasyris, and David Beckingsale

Change directory inside the artifact root path and source the
script named setup-proteus-env.sh under the buildscripts
directory:

From git
cd proteus
From Zenodo
cd Olympus-HPC-proteus-89a7563
source buildscripts/setup-proteus-env.sh

After the script executes, the user environment includes all soft-
ware dependencies and a working installation of Proteus for the
targeted GPU. The environment is ready to execute the experiment
workflow as described in the next section.

A.5 Experiment Workflow
Change to the benchmarks directory inside the root path:

cd benchmarks

We provide separate scripts for the NVIDIA and AMD architec-
tures that run all the respective experiments. The scripts invoke
the experimentation driver (driver.py) to run the experiments.

For NVIDIA, run:

bash runscripts/run-all-nvidia.sh

For AMD, run:

bash runscripts/run-all-amd.sh

The measurements are collected in CSV files in the benchmarks
directory, under a directory named results.

A.6 Evaluation and Expected Result
We provide a script that produces all the evaluation plots and tables
in the paper. After collecting measurements for both NVIDIA and
AMD run this script inside the benchmarks directory:

bash vis-scripts/plot-all.sh

The scripts will produce plots (in PDF format) and tables (in TEX for-
mat) under a directory named plots. The generated files start with
the prefix of the corresponding figure or table (e.g., figure-3-...).

A.6.1 Key Results. End-to-end execution times of HeCBench
benchmark programs for AOT and Proteus/Jitify JIT execution
(Table 2) are expected to match, subject to measurement margins.
Similarly, the end-to-end speedup graph (Figure 3) is expected to
reproduce.

A.6.2 Derivative Results. Results on maximal cache size (Ta-
ble 3) are expected to match. Subject to measurement margins,
results on kernel-only execution times (Figure 4) are expected to
match. Results on JIT compilation extensions and JIT compilation
runtime overhead (Figures 5, 6) depend on the host system, never-
theless those trends should be observable. Results on GPU metrics
(Figures 7, 8, 9, 10, 11) should reproduce on systems with the same
GPU model.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://2025.cgo.org/track/cgo-2025-artifact-evaluation

References
[1] 2024. Proteus GitHub. https://github.com/Olympus-HPC/proteus.
[2] 2024. Top 500 List. https://www.top500.org/lists/top500/2024/06/.
[3] AMD. 2023. HIP RTC Programming Guide. https://rocm.docs.amd.

com/projects/HIP/en/latest/user_guide/hip_rtc.html.
[4] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-

ter F. Sweeney. 2011. Adaptive optimization in the Jalapeno JVM.
SIGPLAN Not. 46, 4 (may 2011), 65–83. doi:10.1145/1988042.1988048

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B.
Shah. 2017. Julia: A Fresh Approach to Numerical Comput-
ing. SIAM Rev. 59, 1 (2017), 65–98. doi:10.1137/141000671
arXiv:https://doi.org/10.1137/141000671

[6] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin
Rigo. 2009. Tracing the meta-level: PyPy’s tracing JIT compiler. In
Proceedings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems
(Genova, Italy) (ICOOOLPS ’09). Association for Computing Machinery,
New York, NY, USA, 18–25. doi:10.1145/1565824.1565827

[7] Juan Manuel Martinez Caamaño and Serge Guelton. 2018. Easy::Jit:
compiler assisted library to enable just-in-time compilation in C++
codes. In Companion Proceedings of the 2nd International Conference
on the Art, Science, and Engineering of Programming (Nice, France)
(Programming ’18). Association for Computing Machinery, New York,
NY, USA, 49–50. doi:10.1145/3191697.3191725

[8] Mason Chang, Bernd Mathiske, Edwin Smith, Avik Chaudhuri, An-
dreas Gal, Michael Bebenita, Christian Wimmer, and Michael Franz.
2011. The impact of optional type information on jit compilation of
dynamically typed languages. SIGPLAN Not. 47, 2 (oct 2011), 13–24.
doi:10.1145/2168696.2047853

[9] Maxime Chevalier-Boisvert, Noah Gibbs, Jean Boussier, Si Xing (Alan)
Wu, Aaron Patterson, Kevin Newton, and John Hawthorn. 2021. YJIT:
a basic block versioning JIT compiler for CRuby. In Proceedings of the
13th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (Chicago, IL, USA) (VMIL 2021). Association
for Computing Machinery, New York, NY, USA, 25–32. doi:10.1145/
3486606.3486781

[10] Charles Consel and François Noël. 1996. A general approach for
run-time specialization and its application to C. In Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (St. Petersburg Beach, Florida, USA) (POPL ’96). Association
for Computing Machinery, New York, NY, USA, 145–156. doi:10.1145/
237721.237767

[11] Igor Costa, Péricles Alves, Henrique Nazaré Santos, and Fer-
nando Magno Quintão Pereira. 2013. Just-in-time value specialization.
In Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). 1–11. doi:10.1109/CGO.2013.
6495006

[12] Pierre Del Moral and Pierre Del Moral. 2004. Feynman-kac formulae.
Springer.

[13] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wim-
mer, Doug Simon, and Hanspeter Mössenböck. 2013. An intermedi-
ate representation for speculative optimizations in a dynamic com-
piler. In Proceedings of the 7th ACM Workshop on Virtual Machines
and Intermediate Languages (Indianapolis, Indiana, USA) (VMIL ’13).
Association for Computing Machinery, New York, NY, USA, 1–10.
doi:10.1145/2542142.2542143

[14] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. 1996. ’C:
a language for high-level, efficient, and machine-independent dynamic
code generation. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

520

https://2025.cgo.org/track/cgo-2025-artifact-evaluation
https://github.com/Olympus-HPC/proteus
https://www.top500.org/lists/top500/2024/06/
https://rocm.docs.amd.com/projects/HIP/en/latest/user_guide/hip_rtc.html
https://rocm.docs.amd.com/projects/HIP/en/latest/user_guide/hip_rtc.html
https://doi.org/10.1145/1988042.1988048
https://doi.org/10.1137/141000671
https://arxiv.org/abs/https://doi.org/10.1137/141000671
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/3191697.3191725
https://doi.org/10.1145/2168696.2047853
https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/3486606.3486781
https://doi.org/10.1145/237721.237767
https://doi.org/10.1145/237721.237767
https://doi.org/10.1109/CGO.2013.6495006
https://doi.org/10.1109/CGO.2013.6495006
https://doi.org/10.1145/2542142.2542143

Proteus: Portable Runtime Optimization of GPU Kernel Execution with Just-in-Time Compilation CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Symposium on Principles of Programming Languages (St. Petersburg
Beach, Florida, USA) (POPL ’96). Association for ComputingMachinery,
New York, NY, USA, 131–144. doi:10.1145/237721.237765

[15] Kavon Farvardin, H Finkel, M Kruse, and J Reppy. 2018. atJIT: A just-
in-time autotuning compiler for C++. In LLVM Developer’s Meeting
Technical Talk.

[16] Hal Finkel, David Poliakoff, Jean-Sylvain Camier, andDavid F. Richards.
2019. ClangJIT: Enhancing C++ with Just-in-Time Compilation. In
2019 IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). 82–95. doi:10.1109/P3HPC49587.2019.
00013

[17] Yoshihiko Futamura. 1983. Partial computation of programs. In RIMS
Symposia on Software Science and Engineering, Eiichi Goto, Koichi
Furukawa, Reiji Nakajima, Ikuo Nakata, and Akinori Yonezawa (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 1–35.

[18] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Pro-
cess—AnApproach to a Compiler-Compiler. Higher Order Symbol.
Comput. 12, 4 (dec 1999), 381–391. doi:10.1023/A:1010095604496

[19] Yoshihiko Futamura, Kenroku Nogi, and Akihiko Takano. 1991.
Essence of generalized partial computation. Theoretical Computer
Science 90, 1 (1991), 61–79. doi:10.1016/0304-3975(91)90299-H

[20] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Man-
delin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris
Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Re-
itmaier, Michael Bebenita, Mason Chang, and Michael Franz. 2009.
Trace-based just-in-time type specialization for dynamic languages.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Dublin, Ireland) (PLDI ’09). As-
sociation for Computing Machinery, New York, NY, USA, 465–478.
doi:10.1145/1542476.1542528

[21] Tyler Gobran, João P. L. de Carvalho, and Christopher Barton. 2023.
DASS: Dynamic Adaptive Sub-Target Specialization. In 2023 Interna-
tional Symposium on Computer Architecture and High Performance
Computing Workshops (SBAC-PADW). 36–45. doi:10.1109/SBAC-
PADW60351.2023.00016

[22] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and
Susan J. Eggers. 2000. DyC: an expressive annotation-directed dynamic
compiler for C. Theoretical Computer Science 248, 1 (2000), 147–199.
doi:10.1016/S0304-3975(00)00051-7 PEPM’97.

[23] Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and
Susan J. Eggers. 1999. An evaluation of staged run-time optimizations
in DyC. SIGPLAN Not. 34, 5 (may 1999), 293–304. doi:10.1145/301631.
301683

[24] Brian Hackett and Shu-yu Guo. 2012. Fast and precise hybrid type
inference for JavaScript. In Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (Beijing,
China) (PLDI ’12). Association for Computing Machinery, New York,
NY, USA, 239–250. doi:10.1145/2254064.2254094

[25] Michael Haidl and Sergei Gorlatch. 2014. PACXX: Towards a Unified
Programming Model for Programming Accelerators Using C++14. In
2014 LLVM Compiler Infrastructure in HPC. 1–11. doi:10.1109/LLVM-
HPC.2014.9

[26] Michael Haidl, Simon Moll, Lars Klein, Huihui Sun, Sebastian Hack,
and Sergei Gorlatch. 2017. PACXXv2 + RV: An LLVM-based Portable
High-Performance Programming Model. In Proceedings of the Fourth
Workshop on the LLVM Compiler Infrastructure in HPC (Denver, CO,
USA) (LLVM-HPC’17). Association for Computing Machinery, New
York, NY, USA, Article 7, 12 pages. doi:10.1145/3148173.3148185

[27] Michael Haidl, Michel Steuwer, Tim Humernbrum, and Sergei Gor-
latch. 2016. Multi-stage programming for GPUs in C++ using PACXX.
In Proceedings of the 9th Annual Workshop on General Purpose Process-
ing Using Graphics Processing Unit (Barcelona, Spain) (GPGPU ’16).
Association for Computing Machinery, New York, NY, USA, 32–41.
doi:10.1145/2884045.2884049

[28] Era Jain and Subhajit Roy. 2016. Phase Directed Compiler Optimiza-
tions. In 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC). 270–279. doi:10.1109/HiPC.2016.039

[29] Zheming Jin. [n. d.]. HeCBench. https://github.com/zjin-lcf/
HeCBench/. Accessed: 2023-09-01.

[30] Neil D. Jones. 1996. An introduction to partial evaluation. ACM
Comput. Surv. 28, 3 (sep 1996), 480–503. doi:10.1145/243439.243447

[31] Diederik P Kingma and Jimmy Ba. 2015. Adam: Amethod for stochastic
optimization. In International Conference on Learning Representations
(ICLR).

[32] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: a
LLVM-based Python JIT compiler. In Proceedings of the Second Work-
shop on the LLVMCompiler Infrastructure in HPC (Austin, Texas) (LLVM
’15). Association for Computing Machinery, New York, NY, USA, Arti-
cle 7, 6 pages. doi:10.1145/2833157.2833162

[33] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for
lifelong program analysis & transformation. In International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004. 75–86.
doi:10.1109/CGO.2004.1281665

[34] Thibaut Lutz and Vinod Grover. 2014. LambdaJIT: a dynamic compiler
for heterogeneous optimizations of STL algorithms. In Proceedings of
the 3rd ACM SIGPLANWorkshop on Functional High-Performance Com-
puting (Gothenburg, Sweden) (FHPC ’14). Association for Computing
Machinery, New York, NY, USA, 99–108. doi:10.1145/2636228.2636233

[35] John Michalakes and Manish Vachharajani. 2008. GPU acceleration of
numerical weather prediction. In 2008 IEEE International Symposium
on Parallel and Distributed Processing. IEEE, 1–7.

[36] Matthias Noack, Florian Wende, Georg Zitzlsberger, Michael Klemm,
and Thomas Steinke. 2017. KART – A Runtime Compilation Library
for Improving HPC Application Performance. In High Performance
Computing, Julian M. Kunkel, Rio Yokota, Michela Taufer, and John
Shalf (Eds.). Springer International Publishing, Cham, 389–403.

[37] F. Noel, L. Hornof, C. Consel, and J.L. Lawall. 1998. Automatic,
template-based run-time specialization: implementation and experi-
mental study. In Proceedings of the 1998 International Conference on
Computer Languages (Cat. No.98CB36225). 132–142. doi:10.1109/ICCL.
1998.674164

[38] Dorit Nuzman, Revital Eres, Sergei Dyshel, Marcel Zalmanovici, and
Jose Castanos. 2013. JIT technology with C/C++: Feedback-directed
dynamic recompilation for statically compiled languages. ACM Trans.
Archit. Code Optim. 10, 4, Article 59 (dec 2013), 25 pages. doi:10.1145/
2541228.2555315

[39] NVIDIA. [n. d.]. Nvidia/Jitify: A single-header C++ library
for simplifying the use of Cuda runtime compilation (NVRTC).,
url=https://github.com/NVIDIA/jitify.

[40] NVIDIA. 2023. NVRTC. https://docs.nvidia.com/cuda/nvrtc/index.
html

[41] NVIDIA. 2023. NVRTC Runtime Compilation Library. https://docs.
nvidia.com/cuda/archive/12.2.0/.

[42] Konstantinos Parasyris, Giorgis Georgakoudis, Esteban Rangel, Ignacio
Laguna, and Johannes Doerfert. 2023. Scalable Tuning of (OpenMP)
GPU Applications via Kernel Record and Replay. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (, Denver, CO, USA,) (SC ’23). Association for
ComputingMachinery, NewYork, NY, USA, Article 28, 14 pages. doi:10.
1145/3581784.3607098

[43] Armin Rigo. 2004. Representation-based just-in-time specialization
and the psyco prototype for python. In Proceedings of the 2004 ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation (Verona, Italy) (PEPM ’04). Association for Computing
Machinery, New York, NY, USA, 15–26. doi:10.1145/1014007.1014010

[44] Gregory T. Sullivan. 2001. Dynamic Partial Evaluation. In Programs
as Data Objects, Olivier Danvy and Andrzej Filinski (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 238–256.

521

https://doi.org/10.1145/237721.237765
https://doi.org/10.1109/P3HPC49587.2019.00013
https://doi.org/10.1109/P3HPC49587.2019.00013
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1016/0304-3975(91)90299-H
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1109/SBAC-PADW60351.2023.00016
https://doi.org/10.1109/SBAC-PADW60351.2023.00016
https://doi.org/10.1016/S0304-3975(00)00051-7
https://doi.org/10.1145/301631.301683
https://doi.org/10.1145/301631.301683
https://doi.org/10.1145/2254064.2254094
https://doi.org/10.1109/LLVM-HPC.2014.9
https://doi.org/10.1109/LLVM-HPC.2014.9
https://doi.org/10.1145/3148173.3148185
https://doi.org/10.1145/2884045.2884049
https://doi.org/10.1109/HiPC.2016.039
https://github.com/zjin-lcf/HeCBench/
https://github.com/zjin-lcf/HeCBench/
https://doi.org/10.1145/243439.243447
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2636228.2636233
https://doi.org/10.1109/ICCL.1998.674164
https://doi.org/10.1109/ICCL.1998.674164
https://doi.org/10.1145/2541228.2555315
https://doi.org/10.1145/2541228.2555315
https://docs.nvidia.com/cuda/nvrtc/index.html
https://docs.nvidia.com/cuda/nvrtc/index.html
https://docs.nvidia.com/cuda/archive/12.2.0/
https://docs.nvidia.com/cuda/archive/12.2.0/
https://doi.org/10.1145/3581784.3607098
https://doi.org/10.1145/3581784.3607098
https://doi.org/10.1145/1014007.1014010

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Giorgis Georgakoudis, Konstantinos Parasyris, and David Beckingsale

[45] Shilei Tian, Joseph Huber, John Tramm, Barbara Chapman, and Jo-
hannes Doerfert. 2022. Just-in-Time Compilation and Link-Time
Optimization for OpenMP Target Offloading/. In OpenMP in a Mod-
ern World: From Multi-device Support to Meta Programming, Michael
Klemm, Bronis R. de Supinski, Jannis Klinkenberg, and Brandon Neth
(Eds.). Springer International Publishing, Cham, 145–158.

[46] Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: an interme-
diate language and compiler for tiled neural network computations.
In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (Phoenix, AZ, USA)
(MAPL 2019). Association for Computing Machinery, New York, NY,
USA, 10–19. doi:10.1145/3315508.3329973

[47] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Opti-
mizing and evaluating transient gradual typing. In Proceedings of the
15th ACM SIGPLAN International Symposium on Dynamic Languages
(Athens, Greece) (DLS 2019). Association for Computing Machinery,
New York, NY, USA, 28–41. doi:10.1145/3359619.3359742

[48] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,
and Matthias Grimmer. 2017. Practical partial evaluation for high-
performance dynamic language runtimes. SIGPLAN Not. 52, 6 (jun
2017), 662–676. doi:10.1145/3140587.3062381

[49] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to rule them all. In Proceedings of the
2013 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Indianapolis, Indiana, USA)
(Onward! 2013). Association for Computing Machinery, New York, NY,
USA, 187–204. doi:10.1145/2509578.2509581

Received 2024-09-12; accepted 2024-11-04

522

https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3140587.3062381
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Background: GPU Programming and Compilation
	3 Proteus: Design and Implementation
	3.1 Overview
	3.2 AOT Compilation Extensions
	3.3 JIT Compilation Runtime Library
	3.4 Discussion

	4 Evaluation
	4.1 End-to-End Performance Comparisons
	4.2 AOT Extensions Compilation Overhead
	4.3 Runtime Overheads
	4.4 Code Cache Size
	4.5 Detailed Performance Analysis

	5 Related Work
	6 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Methodology

	References

