
A New Formulation of Neural Data Prefetching

Quang Duong

The University of Texas at Austin

qduong@cs.utexas.edu

Akanksha Jain

Google

akanksha@cs.utexas.com

Calvin Lin

The University of Texas at Austin

lin@cs.utexas.edu

Abstract—Temporal data prefetchers have the potential to
produce significant performance gains by prefetching irregular
data streams. Recent work has introduced a neural model
for temporal prefetching that outperforms practical table-based
temporal prefetchers, but the large storage and latency costs,
along with the inability to generalize to memory addresses outside
of the training dataset, prevent such a neural network from seeing
any practical use in hardware.

In this paper, we reformulate the temporal prefetching pre-
diction problem so that neural solutions to it are more amenable
for hardware deployment. Our key insight is that while temporal
prefetchers typically assume that each address can be followed
by any possible successor, there are empirically only a few
successors for each address. Utilizing this insight, we introduce
a new abstraction of memory addresses, and we show how this
abstraction enables the design of a much more efficient neural
prefetcher.

Our new prefetcher, Twilight, improves upon the previous
state-of-the-art neural prefetcher, Voyager, in multiple dimen-
sions: It reduces latency by 988×, shrinks storage by 10.8×,
achieves 4% more speedup on a mix of irregular SPEC 2006,
SPEC 2017, and GAP benchmarks, and is capable of predicting
new temporal correlations not present in the training data.
Twilight outperforms idealized versions of the non-neural tem-
poral prefetchers STMS by 12.2% and Domino by 8.5%. While
Twilight is still not practical, T-LITE, a slimmed-down version of
Twilight that can prefetch across different program runs, further
reduces latency and storage (1421× faster and 142× smaller than
Voyager), matches Voyager’s performance and outperforms the
practical non-neural Triage prefetcher by 5.9%.

I. INTRODUCTION

Data prefetchers are vital mechanisms for hiding the long

latencies of memory accesses. While most modern hardware

prefetchers identify strides or spatial footprints to target regular

or spatial access patterns, this paper focuses on temporal

prefetching, a type of irregular data prefetching that identifies

pairs of addresses that are temporally correlated. For instance,

if address X is often followed by address Y, then X and Y are

correlated, and a load of X can serve as a trigger to prefetch

Y. Since these correlations can be found between any two

addresses X and Y, temporal prefetchers can eliminate cache

misses from any arbitrary repeated memory access stream.

Recent work by Shi, et al. [41] shows that ML-based tempo-

ral prefetchers like Voyager provide significant headroom over

idealized versions of table-based temporal prefetchers, achiev-

ing an extra 13% speedup.1 Unfortunately, several limitations

prevent Voyager from being realized in practice.

1More compellingly, Shi, et al. show that on proprietary Google Search
and Ads workloads, Voyager sees accuracy and coverage far beyond what
non-neural prefetchers can obtain (73.9% vs 51.1%). Without access to these
proprietary workloads, we report results from publicly available workloads.

(a) Voyager

(b) Twilight

(c) T-LITE

Fig. 1: Overview of model inputs and outputs. Instead of

operating on data addresses directly like Voyager, Twilight’s

and T-LITE’s neural models utilize layers of indirection to

create an abstraction space that improves their practicality.

Excessive Model Size and Latency: Figure 1a shows that

Voyager takes as input and produces as output any address

in the address space. As a result, the neural model’s size and

prediction latency grow with the program’s memory footprint.

Across an irregular subset of the GAP, SPEC 2006, SPEC 2017

and Google server workloads, Voyager requires on average

81M FLOPs to make a prediction and 113.5 MB of storage.

Inability to Adapt or Generalize: Voyager was designed

as a limit study, and there is no clear path for it to be

trained in a realistic setting. On one hand, Voyager cannot

be trained online while the program runs because it requires

multiple passes over the training data and billions of FLOPS to

1173

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00088

learn each correlation. On the other hand, it cannot be trained

offline because it can only learn temporal correlations for data

addresses that it sees during training, which is problematic

because the virtual to physical address mapping changes on

every program execution, rendering Voyager’s offline learned

address correlations useless.

Unfortunately, these two issues are so significant that they

cannot be mitigated by standard machine learning techniques.

For example, distillation [22] and quantization [18] would

only shrink the model size by some small factor (up to

8× for quantization). Thus, if we are ever to see practical

deployment of a neural temporal prefetcher, we need to rethink

the prediction problem so that it is more amenable to a neural

solution. This paper does precisely that.

We observe that the root cause of these issues is the very

definition of temporal prefetching, which correlates addresses

with other addresses. This formulation results in huge storage

and computational costs, and it limits generalization since

Voyager cannot predict addresses outside of the training data.

Since addresses are the problem, we reformulate the temporal

prefetching prediction problem to avoid their use.

Our key observation, which we refer to as the Sparse
Connectivity Hypothesis, is that in practice each address is

only ever succeeded by a handful of other addresses. Armed

with this insight, we reformulate the problem: Instead of

predicting an address, the neural model predicts an ordinal

i, which corresponds to prefetching the ith most frequent

prefetch candidate. For example, suppose A is followed by

B 40% of the time and is followed by C 60% of the time.

If the model predicts i = 1, then the most frequent candidate,

C, is prefetched; and if the model predicts i = 2, then the

second most frequent candidate, B, is prefetched. We refer to

this new formulation as frequency-based candidate selection,

and we use it to create an abstraction layer that insulates our

new neural prefetcher, which we refer to as Twilight,2 from

the output address space (see Figure 1b).

Our new formulation plays a central role in the design of

a slimmed down version of Twilight, referred to as Twilight-

LITE or simply T-LITE, which moves us closer to a practical

neural temporal prefetcher. In particular, candidate selection

enables us to create an abstraction layer between T-LITE and

the input address space by grouping together addresses with

similar prefetching behavior (see Figure 1c). We find these

groups by using offline clustering to divide the address space

into a fixed set of behavioral clusters. Together, our two new

abstraction layers insulate T-LITE from interacting directly

with memory addresses, so T-LITE’s size and latency do not

grow with the program’s memory footprint, making T-LITE

small and fast enough to be in the realm of feasible hardware

deployment.

These two abstraction layers provide another advantage:

They allow T-LITE’s deployment to be staged. The neural

model is trained offline, while the mappings between the

2The name Twilight reflects the fact that it sits at the edge of the offline
and online divide just as twilight separates night and day.

address space and the new abstraction layers are learned

online. That is, at runtime, T-LITE tracks the set of addresses

that comprise the set of prefetch candidates and dynamically

assigns unseen addresses to behavioral clusters. As a result,

T-LITE better adapts across program phases and can prefetch

for subsequent runs across different program inputs.

This paper makes the following contributions:

• We reformulate the notion of temporal prefetching by

introducing two novel levels of indirection, namely,

frequency-based candidate selection and behavioral clus-
tering, which abstract the neural model’s outputs and

inputs, respectively.

• We present Twilight, a neural temporal prefetcher that

utilizes frequency-based candidate selection to provide

the following benefits over Voyager:

– 988× faster inference (82K FLOPs).

– 10.8× smaller neural model (10.5 MB).

– 4% higher IPC improvement over no prefetcher.

– Better generalization because its online component

dynamically tracks metadata for prediction. Whereas

Voyager loses 17% performance on unseen program

execution, Twilight loses just 6.6%.

• We present T-LITE, a slimmed down version of Twilight

that utilizes behavioral clustering to trade off perfor-

mance for significantly increased practicality.

– T-LITE matches Voyager’s performance while being

1421× faster (57K IOPs) and 142× smaller (0.8MB).

– T-LITE sees 5.9% more speedup than the practical

table-based Triage prefetcher, which stores up to 1

MB of metadata in the cache. By contrast, T-LITE

requires just 64 KB of metadata by baking in some

of the prefetching knowledge into the neural model.

– T-LITE’s staged deployment transfers the knowledge

learned in offline training across program phases and

program inputs. On GAP benchmarks that are run

on inputs from unseen domains, T-LITE outperforms

Triage by 16.6% and achieves 94% of the perfor-

mance of a T-LITE model fine-tuned on the unseen

inputs.

The remainder of this paper is organized as follows. We

place our work in the context of prior work in Section II. We

then describe our solution in Section III and our experimental

methodology in Section IV before presenting our evaluation of

Twilight in Section V and T-LITE in Section VI. We discuss

future work in Section VII and conclude in Section VIII.

II. RELATED WORK

Data prefetching [8], [9], [12], [25], [29], [31], [32], [34],

[38], [39], [43], [50], [52], [53] has been studied for decades,

but the use of machine learning is fairly recent, with almost

all work in this area [13], [21], [36], [45], [46], [55]–[60]

focusing on delta prefetching, which is suitable for programs

with good spatial locality. Peled, et al [36] explore neural

models for irregular data prefetching, but their solution has

poor predictability for irregular programs because it phrases

1174

the problem as delta prefetching. Voyager [41] is the only prior

solution that supports temporal prefetching.

We now discuss related work in more detail by first dis-

cussing ML-based spatial prefetching and then discussing both

non-neural and neural solutions for temporal prefetching. We

end by briefly discussing the use of profiling in data prefetch-

ing and other applications of ML for hardware prediction.

A. ML-Based Spatial Prefetching

Most work in ML prefetching focuses on using neural net-

works [13], [21], [36], [45], [46], [55]–[60] or reinforcement

learning (RL) [12], [35] to improve the prediction accuracy

and coverage of delta prefetchers. To make costly neural

networks more amenable for evaluation and deployment,

neural stride prefetchers have used (1) clustering to share

model weights across address regions [21] and across differ-

ent applications [46], [60], (2) compression by representing

deltas in binary format [36], [45], [46], [57], [60], (3) spatial

bitmask prediction [6], [55], [56], [58], [59], and (4) graph

specialization [55], [56]. Prefetchers based on RL [12], [35]

have significantly lower cost in exchange for lower predictive

power. However because these approaches can train online,

they recover this performance loss by adapting better to

changes in program behavior.

Our work is orthogonal to this prior work because it focuses

on temporal prefetching, which has a much larger problem

space than spatial prefetching; our new abstraction shrinks the

problem space, which in turn shrinks the neural model to be

closer in size to those for neural spatial prefetching.

B. Temporal Prefetching

The notion of temporal prefetching was introduced by

Joseph and Grunwald, who use a table to record multiple

successors for a given memory address [28]. Subsequent

work has followed two broad directions, with one focused on

performance and the other on practicality.

The first direction improves the performance of tempo-

ral prefetchers by devising more sophisticated prediction

mechanisms, such as spatio-temporal correlation [44], PC-

localization [25], and longer histories [8], [41]. The Voyager

neural prefetcher [41] uses a long history of data addresses to

significantly outperform prior art.

The second direction addresses the large metadata require-

ments of temporal prefetchers. Early solutions store the cor-

relation table off-chip and optimize the memory bandwidth

requirements and prefetch look-ahead distance for off-chip ta-

ble access [15], [42]. The Global History Buffer [33] amortizes

the cost of accessing off-chip metadata for long streams [50].

The ISB prefetcher [25] reformulates temporal prefetching

so that its metadata can be cached on-chip, and the MISB

prefetcher [53] shows that this off-chip metadata can be easily

prefetched to hide its off-chip access latency. Finally, the

Triage prefetcher [52] stores the most relevant metadata on-

chip by repurposing a portion of the last-level cache.

Twilight significantly reduces the high latency and storage

costs of prior neural temporal prefetchers. Furthermore, Twi-

light is more generalizable because it incorporates an online

component that enables it to adapt to unseen data addresses.

C. Neural Temporal Prefetching

Shi et al. [41] formulate temporal prefetching as a classifi-

cation task and show that temporal prefetching suffers from a

class explosion problem where the sheer number of classes—

252 possible cache lines in a 64-bit address space—would

make any neural solution untenable. Because the number of

unique pages encountered in their program traces is 1 − 2
orders of magnitude smaller than the number of unique cache

lines, Shi, et al. split cache line addresses into page and offset

pairs, enabling their Voyager model to be feasibly trained.

We observe that while the page-offset split enables offline

training over a small region of 250M instructions, the underly-

ing class explosion problem has not been solved. At best, this

split reduces the number of classes by 64×, so the number of

classes (246) remains impractically large.

For example, there are SPEC 2006 traces that Voyager was

not evaluated on with as many as 255K unique pages within

a 250M instruction span, which is approximately 3× larger

than the biggest footprint Voyager was evaluated on. Since

Voyager’s size and latency grow with the number of unique

pages, the neural model for this trace takes a week to make a

single pass over the data and is unable to exceed 1% validation

accuracy even after two months of training.

D. Profile-Driven Dynamic Prediction

T-LITE’s staged deployment might seem to resemble pre-

vious profile-driven prediction mechanisms, but profile-driven

prefetchers [26] use profiling to insert software prefetches into

the code, which adds instruction overhead and is difficult to

time correctly across different program runs. T-LITE’s use

of profiling is different—it uses offline training to augment

hardware prefetching. In particular, T-LITE has two stages:

(1) an offline stage that trains the neural model on profiled

memory traces, and (2) an online stage (that executes on

the hardware) in which T-LITE dynamically collects runtime

information that informs the offline trained model and enables

it to be reusable across program runs. A similar strategy has

been used in neural branch prediction [54].

E. ML for Other Hardware Prediction Tasks

Machine learning has been used for other hardware pre-

diction problems, such as cache replacement [30], [37], [40],

[48], branch prediction [47], [54], and level prediction [11],

but such work is largely orthogonal to ours.

III. OUR SOLUTION

This section presents our reformulation of the temporal

prefetching problem. We explain our two new abstraction lay-

ers, we provide an overview of Twilight’s neural architecture,

and we describe how it generates a prefetch address.

1175

(a) Cache Line-to-Cache Line

(b) Page-to-Page

Fig. 2: The top graph shows the percentage of cache lines that

could be prefetched when limited to the top-N most frequent

cache lines after a given trigger cache line. The bottom graph

shows similar results for pages. For N = 20, 93.2% of cache

lines / 92.7% of pages are contained within this set of the

top-N successors.

A. Problem Formulation

Temporal prefetching, also known as address correlation,

typically predicts the address that temporally follows a history

of addresses. Under this formulation, the size and computa-

tional cost of a neural prefetcher grow with the size of the

program’s memory footprint: For each unique address, the

neural model needs an embedding3 to represent that address

as input and an output neuron to predict that address as a

prefetch candidate.

1) The Sparse Connectivity Hypothesis: We observe that a

given cache line is typically followed by only a small set of

other cache lines. Figure 2a empirically supports this claim:

68% of the cache lines are followed by their most likely

successor, where a successor is defined as the address that

immediately follows a given history of accesses. 93.2% of

cache lines are followed by one of their top 20 successors,

and 98.5% of accesses are followed by one of their top 100.

2) Frequency-Based Candidate Selection: To insulate the

neural model from the huge output space of addresses, our

new formulation introduces the notion of frequency-based can-
didate selection: Based on the Sparse Connectivity Hypothesis,

we constrain the prefetcher to select from among the top-N
most likely successors. To account for the case where the

3An embedding is a learned representation commonly used to represent
categorical variables (such as words, addresses or in our case, pages or
behavioral clusters) as a numerical vector such that similar categories would
have similar embeddings.

ground truth address is not among these N candidates, we

add an (N +1)th option so that the prefetcher can learn when

not to prefetch.

With frequency-based candidate selection, the output of our

neural model is an ordinal value i—where i corresponds to the

ith most frequent successor, or N + 1 for no prefetching—

rather than the address itself. Thus, the output space of our

neural temporal prefetcher has constant size—just N+1 output

neurons—instead of growing with the memory footprint. In

Section V-D3, we show that the neural network is able to learn

a non-trivial distribution of successors, and we show that the

learned distribution is fairly close to the true distribution.

3) Page Granularity: Shi, et al. [41] find that the number

of unique cache lines grows far quicker than the number

of unique pages and would require an infeasible amount of

storage and compute, so decomposing data addresses into

their respective pages and offsets enables a significantly more

tractable neural model. In the context of frequency-based
candidate selection, we observe in Figure 2b that our Sparse
Connectivity Hypothesis extends to pages as well: A given

page will likewise be succeeded by a small set of pages.

Thus, similar to Voyager, Twilight decomposes the address

prediction problem into page prediction and offset prediction.

Because there are only a small fixed number of cache line

offsets (64), we only apply our new problem formulation

to Twilight’s page prediction and continue to predict offsets

directly.

B. Behavioral Clustering

To insulate the neural model from the huge input space

of addresses, our new formulation introduces the notion of

behavioral clustering, which groups together pages that have

similar prefetching behavior.

1) Graph Traversal Example: Under traditional address

correlation, A being followed by X and B being followed by

Y are unrelated correlations, but under candidate selection, A
and B would now be similar if both were followed by their jth

candidate in one context and their kth candidate in another.

To understand why such groupings might be useful, consider

the example shown in Figure 3, in which a graph program

performs BFS 70% of the time and DFS 30% of the time,

which leads to two clusters of nodes:

1) A,D, F where the next accessed node is the same for

both BFS and DFS

2) B,C,E where the next accessed node differs between

BFS and DFS

For cluster (1), our prefetcher would learn to always prefetch

the i = 1 node for all contexts. For cluster (2), the prefetcher

would learn to prefetch the i = 1 node for PCs that are

performing BFS and the i = 2 node for PCs that are

performing DFS. Armed with this insight, we can cluster pages

based on their prefetching behavior and then replace the input

history of pages with the corresponding history of clusters

without a significant reduction in prediction accuracy.

1176

(a) Example Graph

Node Most Freq 2nd Most Freq Cluster
A B (100%) - 1
B C (70%) D (30%) 2
C D (70%) F (30%) 2
D E (100%) - 1
E F (70%) C (30%) 2
F G (100%) - 1

(b) Top-2 most frequent succeeding nodes for each node

Fig. 3: Graph traversal example where a program executes

BFS 70% of the time and DFS 30% of the time. Two clusters

of nodes arise: (A, D, F) and (B, C, E), where the former

prefetches the same address regardless of the traversal pattern

and the latter prefetches differently depending on the context.

2) Empirical Validation: To empirically evaluate the idea

that behavioral clusters are an effective substitute for pages,

we examine whether pages with “similar” prefetching behavior

produce similar predictions. Page embeddings implicitly cap-

ture prefetching behavior, so we examine Twilight’s trained

page embeddings to see whether similar embedding vectors

produce similar offset predictions. For a given sample trace,

we track the offset predictions for each page in a 64 × 64
matrix of the page’s offset transitions. Each entry (i, j) in a

page’s offset transition matrix corresponds to the number of

times that a cache line in that page with offset i is followed

by another cache line with offset j.

Figure 4 shows a t-SNE visualization [49] for omnetpp

where each point represents one of the page embeddings;

points that are close together have similar page embeddings.

The shape and color of each point is determined by a k-means

clustering of the offset transitions matrix of that point’s page.

The figure clearly shows that pages with similar embeddings

are often within the same cluster of offset transitions, empiri-

cally confirming that different pages will have similar predic-

tion behaviors under frequency-based candidate selection.

3) Clustering: We compute a set number of behavioral

clusters, which yields a fixed-sized page embedding table and

a fixed-sized neural model. Section VI-B1 shows empirically

that this clustering produces minimal performance loss.

With behavioral clustering, the training procedure for

Fig. 4: A t-SNE [49] visualization of a subset of Twilight’s

page embeddings for a SPEC 2006 omnetpp trace. The color

and the shape correspond to the clustering of the page’s offset
transitions, demonstrating that pages that are similar in the

embedding space produce similar offset predictions.

T-LITE occurs in two passes. First as in Voyager, the entire

neural model with per-page embeddings is trained offline.

Then, we cluster the learned page embeddings using k-means

and force pages in the same cluster to share an embedding,

which we initialize to the centroid. Finally, we fine-tune all of

the model weights including the embeddings by retraining on

the same training data under these constraints to recalibrate

the model to using behavioral clusters instead of pages.

C. Dynamic Metadata Collection

Our new problem formulation requires maintaining, for ev-

ery input history, the distribution of the N most frequent suc-

cessor pages (see Table 3b for an example distribution). Since

these distributions change throughout a program’s execution,

we dynamically track their metadata similar to how non-neural

temporal prefetchers [52], [53] track address correlations.

Namely, each metadata entry corresponds to an input history

and stores the frequencies for each of its successors. However,

naively tracking metadata for every history has exponential

cost: For a history of H prior pages, there could be O(PH)
distributions where P is the number of unique pages. To avoid

this exponential increase in metadata, we introduce the notion

of decoupled positional frequency or DPF.

We define DPF as the frequency distribution of successors

that occur several accesses ahead. More formally, let f(h, n)
denote the distribution of successors that are n accesses ahead

of the history h. Rather than tracking a per-history joint

distribution, f((X,Y, Z), 1), DPF decouples the history and

tracks f(X, 3), f(Y, 2) and f(Z, 1) separately which scales

better with O(P ×H) distributions. We can then approximate

1177

Fig. 5: T-LITE’s Neural Architecture. Neural components are dashed and abstraction layers are dotted. The dimensionality

of each component’s outputs is labeled above. See Table I for the value of each hyperparameter (H, N, etc). Twilight has a

similar organization but without the behavioral clustering, and it utilizes page embeddings instead of cluster embeddings.

Component Hyperparameters

Neural Model

• PC Embedding Dim [P] = 64

• Page/Cluster Embedding Dim [C] = 25

• # of Offset Experts [E] = 100

• History Length [H] = 3

• Max # PC Embeddings = 4096 (no max)

Abstraction
• # Candidates [N] = 4 (20)

• DPF History Length [D] = 1 (3)

• # Behavioral Clusters = 4096

Training

• Learning Rate / Decay = 0.001 / 0.5

• Batch Size = 256

• # Epochs = 500

• # Early Stopping Epochs = 50

• Optimizer = Adam

TABLE I: T-LITE Hyperparameters. Twilight-specific hyper-

parameters are parenthesized.

the true joint distribution by multiplying the individual DPFs:

f((X,Y, Z), 1) ≈ f(X, 3)× f(Y, 2)× f(Z, 1)

However, the weight of each access is not uniform in

practice—the most recent access is typically the best predictor

for prefetching. We feed in the raw DPF distributions to our

neural models which learn the best weights to assign to each

access. Section III-D shows an example of how DPF is used as

a model input and how it determines the prefetch candidates.

D. Model Overview

Figure 5 shows T-LITE’s (and Twilight’s) overall archi-

tecture and Table I contains its hyperparameters. As per

Section III-A, T-LITE predicts the prefetch offset directly and

an ordinal i that maps to a prefetch candidate page. T-LITE

decomposes the input address history into a page history and

an offset history and maps these incoming pages to behavioral

clusters as described in Section III-B. T-LITE also takes in the

raw DPF distributions as input, as described in Section III-C.

We utilize a mixture-of-experts [24] approach similar to

Voyager’s page-aware offset embeddings to generate our

context-aware offset embeddings that incorporate page and PC

information into the offset embeddings. Each raw offset em-

bedding is subdivided into multiple experts associated with the

different contexts in which the offset appears. The context—

the page and the PC—weights the information from each of

the experts via attention [7] and combines them into the final

context-aware offset embedding.

Conceptually, Voyager’s page-aware offset embedding rep-

resents a given cache line because it combines the page em-

bedding and the offset embedding. By contrast, since T-LITE’s

context-aware offset embedding additionally incorporates the

load PC, it further contextualizes this cache line embedding

to contain information about the access stream in which this

particular access occurred.

T-LITE utilizes a single fully connected layer for candidate

prediction (Candidate-FC) and another for offset prediction

(Offset-FC) for a much more compact and parallelizable

design than Voyager’s pair of LSTMs that require significant

serialized computation. Furthermore, Twilight’s page/cluster

embeddings (25D) are an order of magnitude smaller than

Voyager’s page embeddings (256D), and to constrain the size

of the PC embedding table, we limit the number of load PC

embeddings to the 4096 most occurring load PCs.

The candidate-page mapping table is stored implicitly in

the DPF metadata for a given page. Furthermore, we augment

each page’s DPF metadata entry to include a 12-bit integer

that maps that page to a behavioral cluster which obviates the

need for a dedicated page-cluster mapping table.

E. Model Inference

We now show an example of a T-LITE prediction using the

graph traversal example from Figure 3. Recall that f(A, n)
corresponds to the distribution of successors n accesses ahead

of A. For a given input history, (B,D,E), the most recent

access E determines the set of prefetch candidates: {F,C}.

We construct the DPF input vectors utilizing only those

candidates, and we then renormalize the resulting vectors:

f(B, 3) = [F : 0.0, C : 1.0]

f(D, 2) = [F : 0.7, C : 0.3]

f(E, 1) = [F : 0.7, C : 0.3]

Since D is not one of the prefetch candidates, the DPF

vector for f(B, 3) normalizes the frequency of the candidate

1178

Fig. 6: Single Core Speedup comparing temporal prefetchers across SPEC 2006, SPEC 2017, and GAP benchmark suites

C to 1. Next, we feed the DPF vectors, cluster sequence,

offset sequence and load PC to T-LITE. T-LITE computes the

context-aware offset embedding and concatenates it with the

above DPF vectors, the raw cluster embeddings, and the raw

PC embedding. We flatten this vector and feed it into the two

fully connected layers for prediction. For candidate prediction,

a prediction of 1 maps to the most frequent page, F , 2 maps to

the second most, C, and 3 maps to no prefetch. Since f(B, 3)
indicates that F has never occurred 3 accesses ahead of B,

T-LITE would likely select C. We then combine the selected

page with the predicted offset to get the prefetch address.

IV. METHODOLOGY

Core
Out-of-order, 4 GHz, 352 ROB entries

6-wide fetch, decode, and dispatch

perceptron-based branch predictor [27]

L1I 32 KB, 8 ways, 4-cycle latency, 8 MSHRs

L1D 48 KB, 12 ways, 5-cycle latency, 16 MSHRs

L2 512 KB, 8 ways, 10-cycle latency, 32 MSHRs

LLC 2 MB / core, 16 ways, 20-cycle latency, 64 MSHRs

DRAM
3200 MT/S, 8 B channel width, 64K rows

tCAS = tRP = tRCD = 12.5, 8 banks / rank

1/4/8-Core: 1/2/4 channels, 1/2/2 ranks / channel

TABLE II: Machine Configuration

Voyager [41] simulated online training with epochs of 50M

instructions—the model trained on one epoch and evaluated on

the next epoch. However, since neither Voyager nor Twilight

can feasibly train online, we instead utilize an offline training

scheme to more faithfully model staged deployment. In par-

ticular, we train the model on one region of a SimPoint [20]

and evaluate on an unseen region of the same SimPoint.

All of our evaluated neural and non-neural prefetchers reside

in the LLC, training on the LLC access stream and prefetching

with degree 1. For fairness, the hardware prefetchers warm up

their structures on the neural model’s training region.

Simulator: We simulate the baseline and neural prefetchers

using ChampSim [19], a trace-based simulator that models

a 6-wide OOO processor with a 352-entry re-order buffer.

ChampSim has a detailed memory system with a three-level

cache hierarchy. Table II details the system configuration,

which is similar to an Intel Ice Lake core [3].

Benchmarks: We use as benchmarks the GAP benchmark

suite [10] and an irregular memory-intensive subset from the

SPEC 2006 CPU [1] and SPEC 2017 CPU [2] suites (we select

workloads that have >5% IPC improvement with an idealized

temporal prefetcher). Since the Google workloads that Voyager

was evaluated on are proprietary, we instead report results for

a subset of the recently released Google server workloads [5].

For SPEC, we use all SimPoints for each benchmark in our

subset. For the GAP benchmarks, we use as inputs synthetic

graphs with 217 vertices for all results except in Section VI-E2

where we evaluate T-LITE’s transferability across input graph

domains: web crawls, road networks, and citation networks.

For both of SPEC and GAP, the neural models train on the

first 200M instructions of the trace, validate on the next 25M

instructions, and are then evaluated on the subsequent 175M

instructions. Unless stated otherwise, all speedup results are

from the 175M region. By evaluating about 4× the number of

instructions evaluated by Voyager [41], we are able to better

gauge the model’s ability to generalize to unseen data.

For the Google server workloads, we port to ChampSim

the original traces, which are provided under the DynamoRIO

simulation infrastructure [14]. The memory dependence in-

formation is unavailable, but we model them using statistics

collected from CloudSuite [17], another server benchmark

suite. For each benchmark, we select the longest thread,

and warm up on the first 80% and evaluate on the last

20%. Because of the missing information, we only evaluate

prefetcher accuracy and coverage for these workloads.

Baselines: In Section V, we compare Twilight against the

state-of-the-art neural temporal prefetcher, Voyager [41], and

two idealized non-neural temporal baselines, Domino [8] and

STMS [50]. For these temporal prefetchers, we focus on

evaluating predictive power, so we do not simulate prediction

latency, storage cost, or off-chip metadata traffic. Furthermore,

all temporal prefetchers are evaluated with lookahead 2, which

provides better timeliness, except for Voyager which performs

better at lookahead 1 (see Figure 7b). We also compare against

two delta prefetchers: IPCP [34], the DPC-3 winner, and

Pythia [12], an ML-based prefetcher.

1179

(a) Prefetch Accuracy (�) and Coverage (X) (b) Varying Prefetch Lookahead (LA)

Fig. 7: (a) Twilight has similar or better coverage (X) at greater accuracy (�) across all benchmark suites. (b) Twilight’s

superior accuracy enables larger lookahead (LA) prefetching which improves timeliness and coverage.

Whereas in Section V we evaluate temporal prefetchers

idealistically, in Section VI we more faithfully model T-LITE’s

latency and storage to more fairly compare with Triage, a prac-

tical table-based temporal prefetcher with on-chip metadata.

V. TWILIGHT EVALUATION

We first present our single-core results. Figure 6 shows

Twilight’s performance compared with the baseline prefetchers

across SPEC and GAP. We make several observations.

First, Twilight (24.1%) outperforms Voyager (20.1%) on all

benchmark suites despite being orders of magnitude smaller

and faster (see Figure 16a). Twilight’s speedup on 473.astar

is lower than Voyager because Twilight’s set number of

candidates, N = 20, cannot accommodate the wider successor

distributions found in this benchmark. Voyager performs worse

than Twilight on 403.gcc, mcf, 607.cactuBSSN, and 621.wrf

because these benchmarks have many accesses in their eval-

uation region to pages not in the training data. As a result,

Voyager cannot effectively prefetch for those benchmarks

because its offline learned address correlations are useless,

whereas Twilight’s dynamically collected metadata allows it

to adapt and prefetch these new pages.

Second, Twilight (24.1%) significantly outperforms the

non-neural baselines, idealized STMS (11.9%) and idealized

Domino (15.6%) in all benchmark suites. By contrast, Voyager

performs worse than the non-neural baselines on SPEC due

to its inability to generalize across longer evaluation periods

(see Section V-D2). While our new abstractions dramatically

improve generalization, Twilight underperforms the non-neural

baselines on some of the benchmarks because there are some

access patterns and load PCs not found in the training data.

Training Twilight with more representative datasets or fine-

tuning the neural model online with a low-cost solution like

LoRA [23] could help bridge the remaining performance gap.

Low-Rank Adaptation (LoRA) fine-tunes neural models by

separating the fine-tuning weight updates from the model and

then decomposing them into two low-rank matrices which

enables cheap computation and requires minimal storage.

Figure 7a shows that Twilight achieves coverage similar to

or better than other prefetchers while also having significantly

higher accuracy across benchmark suites. In particular, Twi-

light has 8.6% higher accuracy than the next best prefetcher,

Voyager. Twilight’s higher accuracy is the direct result of its

frequency-based candidate selection, which culls pages that

are likely to be useless. By contrast, since Voyager can prefetch

any page, it periodically issues prefetches to pages entirely

unrelated to the current access stream.

In Figure 7b, we observe that while Voyager’s accuracy

declines with increasing lookahead, Twilight’s accuracy is

constant, enabling it to achieve 1.5% more speedup due to

better timeliness at higher lookahead. Normally, the further

into the future a prefetcher attempts to prefetch, the weaker the

temporal correlation and consequently the more often the ad-

dress mapping changes. Twilight’s online metadata component

improves its ability to adapt, which mitigates these effects.

A. Comparison with Delta Prefetchers

We now show that delta prefetchers largely target different

access patterns from temporal prefetchers and that Twilight

profitably hybridizes with them. To fairly compare predictive

power, we evaluate both delta and temporal prefetchers in the

LLC with degree 1 unless otherwise stated.

Figure 8a compares temporal prefetchers against delta

prefetchers. We see that that Voyager (1.7%) and Twilight

(5%) outperform IPCP (−0.9%) and Pythia, particularly on

SPEC06 which is the most irregular. Moreover, we observe

that only neural temporal prefetchers outperform Pythia and

that only Twilight outperforms Pythia across benchmark suites.

In Figure 8b, we hybridize various temporal prefetchers with

Pythia-deg-1 and see that Twilight (5.8%) significantly outper-

forms Voyager (2.2%), Domino (2.5%), and STMS (1.3%).

At equal prefetch degree, hybridized Twilight outperforms

degree-2 delta prefetchers, IPCP-deg-2 and Pythia-deg-2, by

5.5% and 3.5% respectively, demonstrating that hybridizing

across types of prefetchers provides better performance than

just increasing degree.

1180

(a) Temporal vs Delta Prefetcher Performance (b) Temporal Prefetchers Hybridized with Delta Prefetchers

(c) Prefetch Coverage Breakdown for xalancbmk (d) Prefetch Coverage Overlap

Fig. 8: Temporal prefetchers are complementary to delta prefetchers. (a) Degree-1 performance. (b) Hybridized temporal

prefetcher performance vs delta prefetchers with equal degree. (c) Prefetch coverage bucketed by the magnitude of the predicted

delta for xalancbmk. (d) Breakdown of prefetch overlap between Twilight and baselines.

Fig. 9: Multi-Core Speedup across 50 4-core mixes and 75

8-core mixes of SPEC 2006 and GAP benchmarks.

Figure 8c breaks down, for xalancbmk, useful prefetches

based on the distance between the prefetch and the trigger.

Whereas IPCP and Pythia4 are biased to small deltas, Twilight

predicts deltas more uniformly, indicating that it prefetches

more irregularly within pages. Furthermore, Twilight fruitfully

prefetches across pages—which delta prefetchers cannot—and

had more useful irregular prefetches (3.6M) than IPCP and

Pythia had useful prefetches (1.9M). Figure 8d shows that this

disjoint coverage occurs in all benchmark suites where 20 −
50% of useful prefetches can only be issued by Twilight.

Overall, Twilight is capable of significantly boosting perfor-

mance by accurately prefetching irregular accesses that delta

4For Pythia, we add all possible deltas to its action set.

Fig. 10: Google Workloads Prefetch Accuracy and Coverage

prefetchers cannot cover. Moreover, it does so better than other

neural and idealized non-neural temporal prefetchers.

B. Multi-Core Results

Figure 9 shows our multi-core results for 50 4-core mixes

and 75 8-core mixes of random combinations of SimPoints

sampled from the SPEC 2006, SPEC 2017, and GAP bench-

marks suites. All cores are warmed up for 225M instructions

and simulated for 75M instructions.

In these multi-core settings where available bandwidth is

more scarce, the gap between the neural and non-neural

prefetchers grows because of the higher accuracy of the

neural prefetchers. On the 4-core mixes, Twilight (9.7%) and

Voyager (8.2%) outperform both idealized Domino (5.3%) and

idealized STMS (4.9%). This trend continues in the 8-core

1181

(a) Filter Voyager’s Prefetches by Twilight’s No-Prefetch (b) Usefulness of Mispredicted Prefetches

Fig. 11: (a) We filter Voyager prefetches on trigger accesses for which Twilight predicts No-Prefetch, and we see that increased

filtering improves Voyager’s accuracy, showing that Twilight doesn’t prefetch on accesses with weak temporal correlation.

(b) Twilight issues fewer mispredicted prefetches (i.e. prefetches to addresses that aren’t the next PC-localized access) than

Voyager; moreover, Twilight’s mispredictions are more often useful because candidate selection culls out irrelevant pages.

setting where Twilight (8%) and Voyager (7.3%) maintain a

3− 4% advantage over Domino (4.4%) and STMS (4%).

C. Google Results

Figure 10 compares Voyager with Twilight on the pub-

lic Google server workloads. Twilight’s higher adaptability

enables it to achieve significantly higher accuracy (73.2%)

than Voyager (49.6%) while seeing just 0.8% lower coverage.

Moreover, the larger memory footprints from the server work-

loads increases the amount of information that Voyager must

learn, which also contributes to its reduced prefetch accuracy.

D. Frequency-Based Candidate Selection

We now provide insights into the benefits of frequency-
based candidate selection, and we show that Twilight performs

more complicated prediction than just naively multiplying the

frequency values.

1) Better Prefetch Accuracy: Frequency-based candidate

selection improves Twilight’s prefetch accuracy for two rea-

sons: (1) Twilight can predict to not prefetch and (2) Twilight’s

mispredictions are more likely to be useful.

Figure 11a evaluates the utility of Twilight’s No-Prefetch

predictions in filtering out prefetches that Voyager does

prefetch. We see that Voyager’s accuracy monotonically im-

proves with increased filtering, and at 100% filtering, Voyager

trades off 1.5% coverage for an extra 5.4% accuracy and 1.1%
speedup, showing that Twilight’s No-Prefetch predictions are

mostly for poorly correlated addresses. Unlike candidate se-

lection where Twilight learns to not prefetch infrequent suc-

cessors outside of its set of candidates, Voyager’s problem

formulation cannot determine when to not prefetch without it

becoming some analog of candidate selection.

Figure 11b shows that Twilight’s mispredictions are more

likely to be useful than Voyager’s. That is, even when a

prefetcher fails to predict the intended target address (i.e.

the address of the next access in the PC-localized stream),

the prefetch can still be useful. We see that compared to

Voyager, Twilight issues 9.6% fewer mispredicted prefetches.

Fig. 12: Performance loss relative to speedup at 50M instruc-

tions. Whereas Voyager increasingly loses speedup in unseen

code regions, Twilight adapts and generalizes better.

Fig. 13: Twilight’s distribution of predicted candidates com-

pared against the true distribution and the distribution from

naively multiplying the DPFs together.

Moreover, Twilight’s rate of useful mispredictions is 12.4%
higher because Twilight’s mispredictions still come from the

set of prefetch candidates and therefore are strongly temporally

correlated with the trigger address. Consequently, a Twilight

misprediction is more likely to be accessed in the near future

than a Voyager misprediction, which can be some arbitrary

address from the entire address space.

2) Generalizability: Frequency-based candidate selection

provides generalizability by enabling Twilight to prefetch

addresses not in the training data. Figure 12 shows Twilight’s

and Voyager’s performance throughout the evaluation region—

1182

normalized to their speedups at 50M instructions. Voyager

continually loses performance throughout evaluation, with

17% performance loss at 200M, while Twilight suffers only

6.6% performance loss and actually recovers performance

between 150M and 200M instructions, demonstrating that Twi-

light’s dynamic metadata collection improves its adaptability.

3) Predicted Candidate Distribution: Figure 13 shows that

Twilight closely predicts the true distribution of successor

candidates. The x-axis corresponds to the candidate index,

and the y-axis is the percentage of accesses for which that

candidate was chosen. The naive predictor multiplies the DPF

values together to predict the most likely candidate.

Compared to the true distribution, the naive predictor over-

predicts the top candidate by 15%, whereas Twilight overpre-

dicts by just 1.5%. Similarly, for the other candidates, Twilight

more closely mirrors the true distribution than the naive

predictor. From the second candidate onward, both predictors

underpredict the true distribution. Since these candidates occur

less often, Twilight cannot easily learn these correlations and

instead learns to not prefetch (3.7% more than the true dis-

tribution) rather than pollute the cache. By contrast, Voyager

always prefetches even for unpredictable input.

VI. T-LITE EVALUATION

Whereas Twilight was evaluated idealistically, our evalua-

tion of T-LITE models storage costs and inference latency with

higher fidelity to more fairly compare against Triage [52], a

practical table-based temporal prefetcher.

A. DPF Metadata Management

T-LITE changes two hyperparameter settings to dramati-

cally reduce the number and size of DPF metadata entries:

• T-LITE reduces the number of possible successors from

N = 20 to N = 4, trading off 9.8% coverage (see

Figure 2b) for a 80% reduction in DPF entry size and

a 30% reduction in prediction latency.

• T-LITE only uses f(P, 1), the DPF distribution for imme-

diate page successors, reducing the number of metadata

entries by two-thirds.

Since DPF metadata is tracked at a page granularity, it

requires far fewer entries than other temporal prefetchers [8],

[52], [53]. This observation combined with the above opti-

mizations enables T-LITE to retain most of Twilight’s perfor-

mance with just 64 KB of DPF metadata. Unlike Triage which

partitions out 1 MB of the last-level cache, T-LITE stores its

DPF metadata in an on-chip metadata cache separate from the

LLC (see Figure 14). We faithfully model this metadata cache

as a 8-way, set-associative cache using LRU replacement.

B. Neural Model

1) Behavioral Clustering: As described in Section III-B,

T-LITE utilizes behavioral clustering to produce a fixed num-

ber of cluster embeddings and therefore a constant model size.

Figure 16a shows that this shrinks the model size from 10.5
MB (10.8× smaller than Voyager) to 3.2 MB (35.5×).

Fig. 14: T-LITE’s Hardware Design. [1] On LLC access,

[2] T-LITE fetches the DPF metadata from the DPF cache.

[3] T-LITE computes the prefetch address and [4] issues the

prefetch request to DRAM which [5] fills in the LLC.

Fig. 15: With behavioral clustering, a fine-tuning pass recali-

brates T-LITE to take clusters as inputs instead of pages.

Compared to the page-based T-LITE-Page, Figure 15 shows

that utilizing clusters without fine-tuning (T-LITE-Cluster)

drops speedup by 1.3% while fine-tuning (T-LITE) reduces

this drop to 0.1%, demonstrating the importance of recalibrat-

ing the neural model to take clusters as input instead of pages.
2) Weight Quantization: We further reduce our neural

model size by quantizing the model weights from 32-bit

floating point numbers (T-LITE-FP) to 8-bit integers (T-LITE),

reducing the model size to 0.8 MB (142× reduction) with zero

performance loss. Figure 16b shows that further quantization

is possible where T-LITE-4bit outperforms Triage by 3.2%
with a 0.4 MB (284× reduction) neural model.

C. Speculative Prediction

After quantization, T-LITE only requires 57K IOPs per pre-

diction (1421× faster than Voyager). Given matrix extensions

such as Intel AMX [4] or Arm SME [51], which can perform

8-bit integer operations at 2048 IOPs/cycle, T-LITE’s latency

is approximately 29 cycles.

However, since T-LITE has high prediction accuracy, it

can speculatively predict ahead of time based on its own

prefetches. By doing so, T-LITE can have zero-cycle prefetch

latency when the prior prefetch is correct as the latency

between LLC accesses is larger than T-LITE’s prediction

latency. Thus, we model T-LITE to have a 29 cycle delay if

the prior prefetch was incorrect and a 0 cycle delay otherwise.

1183

(a) Storage vs Latency

(b) Storage vs Performance

Fig. 16: (a) Our abstractions provide several orders of mag-

nitude improvement over Voyager. Voyager-FBCS utilizes

candidate selection and reduces storage by 42% and latency by

32%. (b) All quantized versions of T-LITE outperform Triage

across performance and storage.

D. Results

Figure 17 shows that T-LITE achieves a 20.7% speedup,

outperforming Triage (14.8%), a practical temporal prefetcher.

Moreover, T-LITE also achieves 2.6% higher accuracy and

7.8% higher coverage. T-LITE outperforms Triage on both

SPEC 2017 and GAP, but it underperforms on SPEC 2006

by 2%. As noted in Section V, SPEC 2006 has workloads

with wider successor distributions, and because T-LITE further

reduces the number of successors that it tracks, it has 9% lower

prefetch coverage but maintains similar accuracy to Triage.

Compared to Triage’s 1 MB metadata storage, all quantized

versions of T-LITE require less total storage: 64 KB of

metadata and 0.3 to 0.8 MB of neural weights. Moreover,

T-LITE’s 29 cycle prediction latency is similar to the 20 cycle

prefetch delay that Triage would incur to read its metadata

from the LLC. Finally, because its DPF metadata is stored

outside of the LLC, T-LITE does not contend with LLC

demand accesses, while Triage’s metadata accesses do.

Figure 16b shows that T-LITE matches Voyager’s perfor-

mance despite the many orders of magnitude improvement

in storage and latency. Moreover, even with further reduced

precision, T-LITE-6bit still matches Voyager’s performance.

E. Transfer Learning

We now evaluate T-LITE’s ability to transfer what its

learned across program inputs. We first show that unseen pages

can be accurately mapped to their corresponding behavioral

Fig. 17: T-LITE vs Triage

Fig. 18: Dynamically mapping pages to clusters during runtime

by assigning the cluster with the most similar offset transition

distribution yields high accuracy with few accesses.

clusters. We then use this mapping scheme to train T-LITE on

one input and evaluate it on another.

1) Dynamic Page-to-Cluster Mapping: Figure 4 demon-

strates that similar page embeddings have similar offset tran-

sition matrices. Given this relationship, we show in Figure 18

that we can dynamically map unseen pages to their behav-

ioral clusters with reasonable accuracy. For each cluster, we

aggregate an offset transition matrix across the pages assigned

to that cluster. During runtime, we track the offset transitions

for unseen pages and assign these pages to the cluster whose

aggregate offset transitions is most similar. The mapping

accuracy increases with each access to the page and for SPEC

2006, the accuracy reaches 95.6% at 250 accesses. Given the

large number of clusters (4096), this simple scheme achieves

decent accuracy with cheaper overhead than dynamically train-

ing a page embedding for every new page.

2) Cross Input Evaluation: We now evaluate T-LITE’s

transferability across different program inputs. Specifically, we

evaluate performance on the GAP benchmark suite with input

graphs from the SuiteSparse collection [16] across different

graph types: web crawls, road networks, and citation networks.

Since there are 3 graph types, we can select one for training

(A), one for validation (B), and one for evaluation (C). First,

we train T-LITE on every graph from A and select the model

α that performs the best on B. We normalize α’s performance

on B by dividing it by the average performance of the other A-

models on B. We repeat this process with A and B switched

to produce another best model β and use the normalized scores

to select whether to transfer α or β to C, ensuring that the

1184

Fig. 19: T-LITE transfers well on GAP across graph inputs

from different domains (web, road, citation).

chosen model has no exposure to the evaluation data.

Figure 19 shows that T-LITE-Transfer significantly outper-

forms Triage (30.4% speedup vs. 13.8% speedup) despite

never having trained on the evaluated input graph domain.

Moreover, compared to T-LITE-FineTune which is trained on

the actual evaluation data, T-LITE-Transfer is able to achieve

94% of T-LITE-FineTune’s performance, demonstrating how

well the dynamic mapping scheme is able to align new pages

to behavioral clusters. Figure 18 shows low top-1 page-to-

cluster mapping accuracy for GAP, but these results indicate

that even if the dynamically mapped cluster isn’t the best

cluster, the mapped behavioral cluster still performs well

because it has sufficiently similar offset transition behavior.

F. T-LITE’s Limitations

While T-LITE’s latency and storage is feasible, inference

would cost more energy than the savings provided by superior

prefetching. Moreover, despite T-LITE profitably transferring

knowledge learned across different program inputs, it’s still

constrained to the program it was trained on and requires sig-

nificant offline-training on more representative data to further

improve its generalization.

VII. FUTURE WORK

Our reformulation of temporal prefetching bridges most of

the gap between the prior state-of-the-art, Voyager, and the

actual hardware deployment of a neural temporal prefetcher.

Moreover, it provides various avenues for future work in

temporal prefetching.

A. Lightweight Neural Temporal Prefetching

We believe frequency-based candidate selection is a viable

path forward for improving the accuracy of existing temporal

prefetchers. We can envision a lightweight neural model like

a perceptron accompanying a temporal prefetcher to decide

which successor prefetch candidate should be issued given

features such as the PC, the access history, bandwidth, etc.

B. Insights for Non-Neural Temporal Prefetching

Voyager’s page and offset split make it feasible to train

and evaluate neural temporal prefetchers. In tracking our page-

granularity DPF metadata, we observe a significant reduction

in the amount of required metadata for our temporal prefetcher.

This decomposition of addresses could likewise help future

temporal prefetchers reduce their metadata by utilizing page-

to-page temporal locality.

VIII. CONCLUSIONS

The Voyager prefetcher showed the tremendous promise that

neural networks hold for performing temporal data prefetch-

ing. Unfortunately, its costs in terms of model size, prediction

latency, and training time are so large that they cannot be

bridged by standard machine learning techniques such as

distillation, pruning, and quantization. Moreover, the direct use

of addresses in temporal prefetching precludes the use of any

kind of staged deployment, in which the neural prefetcher is

trained offline with predictions being performed online.

In this paper, we have reformulated the temporal prefetching

problem to make it fundamentally more suitable for practical

implementation in hardware. By introducing two novel layers

of indirection that abstract a temporal prefetcher away from

specific data addresses, we have enabled neural prefetchers

to operate in a staged manner, where the neural model is

first trained offline on representative program traces and then

deployed online, where it can dynamically track address

metadata to allow it to adapt to different program phases and

to prefetch unseen addresses across program inputs.

Our new formulation also dramatically reduces the size and

cost of the neural model. Compared to Voyager, our Twilight

neural prefetcher utilizes frequency-based candidate selection
to improve the storage (10.8× smaller) and latency (988×
faster) by orders of magnitude, while also generalizing better,

allowing it to outperform Voyager by 4%.

We have also introduced T-LITE, which utilizes behavioral
clustering, quantization, and other optimizations to move

neural temporal prefetching towards feasible hardware de-

ployment by trading off performance. T-LITE outperforms

Triage by 5.9% and even matches Voyager’s performance

while having 142× less storage and 1421× faster prediction

latency. We have evaluated versions of T-LITE whose model

size ranges from 0.3 MB to 0.8 MB and all outperform Triage

provisioned with 1 MB for on-chip metadata storage. These

versions of T-LITE require just 64 KB of on-chip storage

for metadata, demonstrating that the amount of dynamic

metadata for temporal prefetching can be orders of magnitude

smaller than previously thought because a significant amount

of prefetching knowledge can be baked into the neural model.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Daniel Jiménez, and

members of the Speedway Research group for their helpful

comments on earlier drafts of this paper. This work was funded

in part by a gift from Arm Inc., NSF Grant CCF-1823546, and

a gift from Intel Corporation through the NSF/Intel Partnership

on Foundational Microarchitecture Research.

1185

REFERENCES

[1] “Spec 2006,” 2006. [Online]. Available: https://www.spec.org/cpu2006/

[2] “Spec 2017,” 2017. [Online]. Available: https://www.spec.org/cpu2017/

[3] “Sunny cove microarchitecture: Going deeper and wider,”
2019. [Online]. Available: https://www.anandtech.com/show/14514/
examining-intels-ice-lake-microarchitecture-and-sunny-cove/3

[4] “Accelerate artificial intelligence (ai) workloads with intel
advanced matrix extensions (intel amx),” 2022. [Online].
Available: https://www.intel.com/content/dam/www/central-libraries/us/
en/documents/2022-12/accelerate-ai-with-amx-sb.pdf

[5] “Google workload traces,” 2022. [Online]. Available: https://dynamorio.
org/google workload traces.html

[6] A. Asgari, A. Gunter, M. Saeidi, M. Lis, and P. Nair, “MPMLP: A Case
for Multi-Page Multi-Layer Perceptron Prefetcher,” 2021.

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.
[Online]. Available: https://api.semanticscholar.org/CorpusID:11212020

[8] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2018, pp. 131–142.

[9] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2019,
pp. 399–411.

[10] S. Beamer, K. Asanovic, and D. Patterson, “The gap benchmark suite,”
2017.

[11] R. Bera, K. Kanellopoulos, S. Balachandran, D. Novo, A. Olgun,
M. Sadrosadati, and O. Mutlu, “Hermes: Accelerating long-latency load
requests via perceptron-based off-chip load prediction,” 2022.

[12] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney, and
O. Mutlu, “Pythia: A customizable hardware prefetching framework
using online reinforcement learning,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, oct
2021. [Online]. Available: https://doi.org/10.1145%2F3466752.3480114

[13] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez, “Perceptron-based prefetch filtering,” in Proceedings of the
46th International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
113. [Online]. Available: https://doi.org/10.1145/3307650.3322207

[14] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” in Proceedings of the 8th ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments, ser. VEE ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p.
133144. [Online]. Available: https://doi-org.ezproxy.lib.utexas.edu/10.
1145/2151024.2151043

[15] Y. Chou, “Low-cost epoch-based correlation prefetching for commercial
applications,” in MICRO, 2007, pp. 301–313.

[16] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[17] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” in Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS XVII. New York, NY, USA:
Association for Computing Machinery, 2012, p. 3748. [Online].
Available: https://doi.org/10.1145/2150976.2150982

[18] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “OPTQ: Accurate
quantization for generative pre-trained transformers,” in The Eleventh
International Conference on Learning Representations, 2023. [Online].
Available: https://openreview.net/forum?id=tcbBPnfwxS

[19] N. Gober, G. Chacon, L. Wang, P. V. Gratz, D. A. Jiménez, E. Teran,
S. Pugsley, and J. Kim, “The Championship Simulator: Architectural
Simulation for Education and Competition,” 2022.

[20] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” J. Instr. Level Parallelism,
vol. 7, 2005.

[21] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
in International Conference on Machine Learning. PMLR, 2018, pp.
1919–1928.

[22] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015.

[23] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
2021.

[24] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Computation, vol. 3, no. 1, pp. 79–87,
1991.

[25] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: Association for Computing Machinery, 2013, p.
247259. [Online]. Available: https://doi.org/10.1145/2540708.2540730

[26] S. Jamilan, T. A. Khan, G. Ayers, B. Kasikci, and H. Litz, “Apt-get:
Profile-guided timely software prefetching,” in Proceedings of the
Seventeenth European Conference on Computer Systems, ser. EuroSys
’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 747764. [Online]. Available: https://doi.org/10.1145/3492321.
3519583

[27] D. Jiménez and C. Lin, “Dynamic branch prediction with percep-
trons,” in Proceedings HPCA Seventh International Symposium on High-
Performance Computer Architecture, 2001, pp. 197–206.

[28] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” in
Proceedings of the 24th Annual International Symposium on Computer
Architecture, 1997, pp. 252–263.

[29] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path confidence based lookahead prefetching,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–12.

[30] E. Z. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn, “An
imitation learning approach for cache replacement,” in Proceedings of
the 37th International Conference on Machine Learning, ser. ICML’20.
JMLR.org, 2020.

[31] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2016, pp. 469–480.

[32] A. Navarro-Torres, B. Panda, J. Alastruey-Bened, P. Ibez, V. Vials-Yfera,
and A. Ros, “Berti: an accurate local-delta data prefetcher,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2022, pp. 975–991.

[33] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” IEEE Micro, vol. 25, no. 1, pp. 90–97, 2005.

[34] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: In-
struction pointer classifier-based spatial hardware prefetching,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), 2020, pp. 118–131.

[35] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic locality and
context-based prefetching using reinforcement learning,” in Proceedings
of the 42nd Annual International Symposium on Computer Architecture.
Portland Oregon: ACM, Jun. 2015, pp. 285–297. [Online]. Available:
https://dl.acm.org/doi/10.1145/2749469.2749473

[36] L. Peled, U. Weiser, and Y. Etsion, “A neural network prefetcher
for arbitrary memory access patterns,” ACM Trans. Archit. Code
Optim., vol. 16, no. 4, oct 2019. [Online]. Available: https:
//doi.org/10.1145/3345000

[37] S. Sethumurugan, J. Yin, and J. Sartori, “Designing a cost-effective
cache replacement policy using machine learning,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021, pp. 291–303.

[38] M. Shakerinava, M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Multi-lookahead offset prefetching,” in 3rd Data Prefetching
Championship, 2019.

[39] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015, pp. 141–152.

[40] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying Deep Learning to
the Cache Replacement Problem,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. Columbus
OH USA: ACM, Oct. 2019, pp. 413–425. [Online]. Available:
https://dl.acm.org/doi/10.1145/3352460.3358319

[41] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin,
“A hierarchical neural model of data prefetching,” in Proceedings of

1186

the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 861–873.

[42] Y. Solihin, J. Lee, and J. Torrellas, “Using a user-level memory thread for
correlation prefetching,” in Proceedings of the 29th Annual International
Symposium on Computer Architecture, 2002, pp. 171–182.

[43] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” SIGARCH Comput. Archit. News,
vol. 37, no. 3, p. 6980, jun 2009. [Online]. Available: https:
//doi.org/10.1145/1555815.1555766

[44] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal memory streaming,” in ISCA, 2009, pp. 69–80.

[45] A. Srivastava, A. Lazaris, B. Brooks, R. Kannan, and V. K.
Prasanna, “Predicting memory accesses: the road to compact ML-
driven prefetcher,” in Proceedings of the International Symposium on
Memory Systems. Washington District of Columbia USA: ACM, Sep.
2019, pp. 461–470. [Online]. Available: https://dl.acm.org/doi/10.1145/
3357526.3357549

[46] A. Srivastava, T.-Y. Wang, P. Zhang, C. A. F. De Rose, R. Kannan, and
V. K. Prasanna, “MemMAP: Compact and Generalizable Meta-LSTM
Models for Memory Access Prediction,” in Advances in Knowledge
Discovery and Data Mining, ser. Lecture Notes in Computer Science,
H. W. Lauw, R. C.-W. Wong, A. Ntoulas, E.-P. Lim, S.-K. Ng, and S. J.
Pan, Eds. Cham: Springer International Publishing, 2020, pp. 57–68.

[47] S. J. Tarsa, C.-K. Lin, G. Keskin, G. Chinya, and H. Wang, “Improving
branch prediction by modeling global history with convolutional neural
networks,” 2019.

[48] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). Taipei, Taiwan: IEEE, Oct. 2016, pp.
1–12. [Online]. Available: http://ieeexplore.ieee.org/document/7783705/

[49] L. van der Maaten and G. E. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[50] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Practical off-chip meta-data for temporal memory streaming,” in 2009
IEEE 15th International Symposium on High Performance Computer
Architecture, 2009, pp. 79–90.

[51] F. Wilkinson and S. McIntosh-Smith, “An initial evaluation of arms
scalable matrix extension,” in 2022 IEEE/ACM International Workshop
on Performance Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS). IEEE, 2022, pp. 135–140.

[52] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and
C. Lin, “Temporal prefetching without the off-chip metadata,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 9961008. [Online].
Available: https://doi.org/10.1145/3352460.3358300

[53] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient metadata
management for irregular data prefetching,” in 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture (ISCA),
2019, pp. 1–13.

[54] S. Zangeneh, S. Pruett, S. Lym, and Y. N. Patt, “Branchnet: A con-
volutional neural network to predict hard-to-predict branches,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 118–130.

[55] P. Zhang, R. Kannan, A. Nori, and V. Prasanna, “A2p: Attention-based
memory access prediction for graph analytics [a2p: Attention-based
memory access prediction for graph analytics],” the 11th International
Conference on Data Science, Technology and Applications. [Online].
Available: https://par.nsf.gov/biblio/10376313

[56] P. Zhang, R. Kannan, X. Tong, A. V. Nori, and V. K. Prasanna, “Sharp:
Software hint-assisted memory access prediction for graph analytics,” in
2022 IEEE High Performance Extreme Computing Conference (HPEC),
2022, pp. 1–8.

[57] P. Zhang, A. Srivastava, B. Brooks, R. Kannan, and V. K. Prasanna,
“RAOP: Recurrent Neural Network Augmented Offset Prefetcher,”
in The International Symposium on Memory Systems. Washington
DC USA: ACM, Sep. 2020, pp. 352–362. [Online]. Available:
https://dl.acm.org/doi/10.1145/3422575.3422807

[58] P. Zhang, A. Srivastava, A. V. Nori, R. Kannan, and V. K. Prasanna,
“Transformap: Transformer for memory access prediction,” in The
International Symposium on Computer Architecture (ISCA), ML for
Computer Architecture and Systems Workshop, 2021.

[59] P. Zhang, A. Srivastava, A. V. Nori, R. Kannan, and V. K. Prasanna,
“Fine-grained address segmentation for attention-based variable-degree

prefetching,” in Proceedings of the 19th ACM International Conference
on Computing Frontiers, ser. CF ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 103112. [Online]. Available:
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3528416.3530236

[60] P. Zhang, A. Srivastava, T.-Y. Wang, C. A. F. De Rose, R. Kannan, and
V. K. Prasanna, “C-MemMAP: clustering-driven compact, adaptable,
and generalizable meta-LSTM models for memory access prediction,”
International Journal of Data Science and Analytics, vol. 13, no. 1, pp.
3–16, Jan. 2022. [Online]. Available: https://doi.org/10.1007/s41060-
021-00268-y

1187

