
Fast Template-Based Code Generation for MLIR

Florian Drescher
Technical University of Munich

Munich, Germany
florian.drescher@tum.de

Alexis Engelke
Technical University of Munich

Munich, Germany
engelke@in.tum.de

Abstract

Fast compilation is essential for JIT-compilation use cases
like dynamic languages or databases as well as development
productivity when compiling static languages. Template-
based compilation allows fast compilation times, but in ex-
isting approaches, templates are generally handwritten, lim-
iting �exibility and causing substantial engineering e�ort.
In this paper, we introduce an approach based on MLIR

that derives code templates for the instructions of any dialect
automatically ahead-of-time. Template generation re-uses
the existing compilation path present in the MLIR lowering
of the instructions and thereby inherently supports code
generation from di�erent abstraction levels in a single step.
Our results on compiling database queries and standard

C programs show a compile-time improvement of 10–30x
compared to LLVM -O0 with only moderate run-time slow-
downs of 1–3x, resulting in an overall improvement of 2x in
a JIT-compilation-based database setting.

CCS Concepts: • Software and its engineering→ Just-in-

time compilers; Translator writing systems and com-

piler generators.

Keywords: MLIR, JIT Compilation, Template-based Compi-
lation, Fast Compilation, Binary Code Patching

ACM Reference Format:

Florian Drescher and Alexis Engelke. 2024. Fast Template-Based
Code Generation for MLIR. In Proceedings of the 33rd ACM SIGPLAN

International Conference on Compiler Construction (CC ’24), March

2–3, 2024, Edinburgh, United Kingdom. ACM, New York, NY, USA,
12 pages. h�ps://doi.org/10.1145/3640537.3641567

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0507-6/24/03
h�ps://doi.org/10.1145/3640537.3641567

Template
Library

MLIR
Input

Template Generation Code Compilation
2

1
3

Figure 1. Templates are prepared from MLIR operations
ahead-of-time; at compile-time, actual instructions are
matched to templates (1), which are instantiated by �lling in
missing values (2), �nally missing addresses are �xed up (3).

1 Introduction

Just-in-time compilation is commonly employed to improve
the performance of programs, either by speeding up sub-
sequent computations, as in compiling database query en-
gines [14, 24, 28, 31], or by generating an executable for
previously unseen code, such as client-side code execution
of JavaScript or WebAssembly [5, 19, 34]. In either case, the
time it takes to compile the input and generate an executable
is counted towards the execution time of the program, di-
rectly a�ecting the user experience.
As a result, a key challenge for constructing JIT com-

pilers is reducing the compilation time without ultimately
sacri�cing code quality. Template-based code generation,
where precompiled code fragments are merely combined
during compilation, allows for extremely low compile-times.
This was previously demonstrated with VCode [16], focusing
on quick encoding of machine code through a reduced set
of operations with manually written templates for the ma-
chine code, and the Java virtual machine Maxine [41], whose
baseline compiler combines templates for every bytecode
instruction, which were written in Java and precompiled
by the optimizing compiler. A more recent approach in this
�eld [42] uses Clang/LLVM [25] to compile templates writ-
ten in C++ and demonstrates the applicability for larger
templates, which leads to shorter compile-times and bet-
ter run-time performance due to more optimization during
precompilation. However, all approaches so far require hand-
written templates, which not only comes with substantial im-
plementation e�ort, but the templates need to be maintained
in addition to existing lowerings for optimized compilation.
We, therefore, propose a template-based compilation ap-

proach leveraging MLIR [26], where instructions usually pro-
vide a — possibly multi-step — lowering to LLVM-IR for na-
tive code generation. This approach allows for automatically

1

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0004-7333-3401
https://orcid.org/0000-0003-1900-1292
https://doi.org/10.1145/3640537.3641567
https://doi.org/10.1145/3640537.3641567
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3640537.3641567&domain=pdf&date_stamp=2024-02-20

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Florian Drescher and Alexis Engelke

deriving templates using the existing lowerings, obviating
the need for manual template development or maintenance.
Moreover, as single MLIR instructions are not limited to
being simple operations, this approach easily allows for tem-
plates with complex logic, enabling further optimizations
during template pre-compilation and faster compile-times
due to fewer templates. Fig. 1 visualizes this approach. Our
results show that we can achieve a compilation time speedup
of 10–30x over LLVM -O0 with only moderate runtime slow-
downs of 1–3x, which results in an overall improvement of
up to 2x in a JIT-compilation-based database setting.
The main contributions of this paper are as follows:

• A framework for extracting the semantics of an arbi-
trary MLIR instruction from its de�ned lowering into
a reusable template.

• A template-based compiler that generates native code
from an MLIR program targeting x86-64 and AArch64.

• Optimizations for improved register usage and han-
dling of constant values in a template-based compiler.

2 Background: MLIR

MLIR [26] is a compiler framework that aims to simplify the
creation, transformation, and optimization of intermediate
representations in SSA representation. It allows for the im-
plementation of custom sets of instructions, called dialects,
where each SSA instruction is made up of input and output
values, can contain regions of other instruction sequences in
their body (e.g., the body of a natural loop), and has constant
attributes to further con�gure individual instructions (e.g.,
the value of a constant instruction). These attributes are fur-
ther classi�ed as inherent (also referred to as properties) or
discardable, where discardable attributes may be omitted at
any time and, therefore, do not contain essential information
for the execution of an instruction.
The MLIR framework provides a consistent way for gen-

eral optimizations (e.g., constant propagation and common
sub-expression elimination) and conversions from a higher-
level dialect to a lower-level one. For ease of use, MLIR comes
with a set of upstream dialects, including the scf dialect for
handling structured control �ow, the arith and math dialect
for mathematical expressions, and the memref dialect for
interacting with memory. A common lowering target, op-
tionally with di�erent intermediate dialects, is LLVM-IR. For
this purpose, MLIR provides a large part of LLVM-IR as MLIR
dialect serving as the target for conversions, which can then
be translated to the actual LLVM-IR easily.
Recent publications started applying the capabilities of

MLIR to various topics going beyond primary machine learn-
ing use cases [10, 20, 27, 40] to discover new optimization
opportunities when compiling static languages like Fortran,
C and C++ [4, 29, 30] and di�erent abstractions for data
processing pipelines [13, 21].

3 Template Generation

Based on the input of sample programs, templates are derived
and stored for all contained instructions. Further executions
for programs from the same domain can now be executed
based on the previously prepared templates.

3.1 Instruction Prerequisites

Our automatic template generation approach is generally ap-
plicable to all dialects independent of their abstraction level —
we successfully applied it to low-level dialects, like LLVM IR,
as well as very high-level ones, like the ONNX dialect [20].
The only prerequisite is that the lowering of each instruction
does not depend on any information coming from outside the
instruction itself. Otherwise, it is impossible to process each
instruction in isolation and thus not feasible to automatically
capture its semantics into a standalone template.
Most common instructions adhere to this rule. Nonethe-

less, there are some exceptions, e.g., the LLVM branching
instructions, as they depend on external block labels, and
the alloca instruction, as its lowering depends on the sur-
rounding scope. Another set of con�icting instructions is
the upstream OpenMP dialect, where many instructions are
very tightly coupled to their surrounding instruction (e.g.,
instructions inside/outside a critical section).

3.2 Capturing Instruction Semantics

As we want to avoid handcrafting templates, our approach
derives the native code templates from MLIR instructions
without any manual implementation e�ort. The main chal-
lenge is that MLIR instructions themselves are opaque: their
full semantics are only de�ned in the lowering. To cap-
ture the semantics of an instruction into a native code tem-
plate, we isolate each instruction into a function, provide
opaque inputs to the instruction and capture the output
using unrealized_conversion_casts, which are typically
not folded by any further conversions or transformations.
Listing 1 shows an example.

1 func.func @add() -> ptr {

2 // inputs

3 %0, %1 = unrealized_conversion_cast to (i64, i64)

4 %2 = arith.addi %0, %1 : i64

5 // output(s) - return to keep it alive

6 %3 = unrealized_conversion_cast %2 : i64 to ptr

7 return %3 : ptr

8 }

Listing 1. Automatically derived abstraction of the
arith.addi instruction in an internal intermediate state. In-
puts and outputs are made opaque for the instruction using
unrealized_conversion_casts. The symbolic value result-
ing from the cast applied on the outputs is returned from the
function to keep the values and thus computations alive.

2

Fast Template-Based Code Generation for MLIR CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

For instructions with regions, we furthermore place exter-
nal function calls into every region to encapsulate the behav-
ior. To keep track of region arguments, these are written to
memory before the call, and the operands of the terminator
instruction are loaded from memory.
The opaqueness of the instructions poses another chal-

lenge when matching an incoming instruction to a �tting
binary template. The lowering of an instruction can be di�er-
ent depending on the operand or result types. For example,
the behavior of most upstream instructions from the math or
arith dialect depends on the type, which is not necessarily
a scalar value but could be a tensor of values. Therefore, a
unique template must be generated for each input and output
type combination of an instruction, as the lowering may be
di�erent for each. The same applies to inherent attributes,
which may a�ect the lowering but cannot be re�ected by
any of the instruction inputs.
For operations that do not adhere to the de�ned prereq-

uisites, we provide two extension points to support them
manually: (a) a custom abstraction can be provided during
template generation time; and (b) a custom implementation
can be inserted for the run-time compilation of the template.

3.3 Lowering & Compilation

Next, we apply the dialect-speci�c conversions on the de-
rived abstraction to lower it to LLVM-IR. In the example, this
converts the arith.addi into an llvm.add and converts the
MLIR native pointer types to their LLVM pendants. After-
ward, we need to provide implementations for the opaque
inputs and outputs so that we can actually compile the code.
A simple but nonetheless e�ective way is: inputs as memory
loads and outputs as memory stores. The values are stored
in a value storage, which will later be allocated on the stack
and is passed as an argument to the template function. This
method allows for e�cient addressing with 32-bit o�sets
instead of arbitrary 64-bit memory addresses and also reuses
the natural stack growth and shrinking. As used in [42], the
actual locations and o�sets are computed during run-time
compilation and patched into the templates using addresses
of symbols, which result in relocations and, therefore, can
be patched during run-time compilation (cf. Sec. 4.2). As a
re�nement, we make these symbols weak to prevent LLVM
frommaking any assumption about the value being non-zero
and use the absolute_symbol attribute to restrict relocations
to absolute 32-bit ones, which leads to more e�cient code.
To allow the composition of the templates and to enable

control �ow between instructions, we leverage the continu-
ation passing style (CPS) [38] concept: We enforce a tail call
to the continuation function at the end of each template us-
ing the musttail annotation to transfer control �ow to the
next template. The continuation is an external symbol whose
actual address is patched during run-time compilation. A re-
sulting jmp instruction at the end of the template can easily
be detected and omitted when concatenating templates.

However, this technique is not applicable for region calls,
as those are regular non-tail calls, after which the execution
continues inside the template. Instead, these result in regular
calls with the value storage pointer passed as an argument.
Operands for the region terminator are loaded from the value
storage after the call. Listing 2 shows an example of the �nal
LLVM-IR code, which is then compiled as the template.

1 ; external symbol addresses as patchable constants

2 @off_0 = extern_weak global i8, align 1,

3 !absolute_symbol !{i64 0, i64 INT32_MAX}

4 @off_1 = extern_weak global i8, align 1,

5 !absolute_symbol !{i64 0, i64 INT32_MAX}

6 @off_2 = extern_weak global i8, align 1,

7 !absolute_symbol !{i64 0, i64 INT32_MAX}

8 declare void @next(ptr %value_storage)

9 define void @add(ptr %value_storage) {

10 ; load operands from memory at patched offsets

11 %1 = getelementptr i8, ptr %value_storage,

12 i64 ptrtoint (ptr @off_0 to i64)

13 %2 = load i64, ptr %1, align 4

14 %3 = getelementptr i8, ptr %value_storage,

15 i64 ptrtoint (ptr @off_1 to i64)

16 %4 = load i64, ptr %3, align 4

17 %5 = add i64 %2, %4 ; the operation itself

18 ; store result to memory at patched offset

19 %6 = getelementptr i8, ptr %value_storage,

20 i64 ptrtoint (ptr @off_2 to i64)

21 store i64 %5, ptr %6, align 4

22 ; call to continuation

23 musttail call void @next(ptr %value_storage)

24 ret void

25 }

Listing 2. Automatically derived abstraction of the
arith.addi instruction in LLVM-IR. Operands are memory
loads and the result is written back to memory. O�sets into
the value storage are represented as addresses of external
symbols and patched later during run-time compilation.
Control �ow is transferred by an enforced tail call.

3.4 Binary Format

To �nally derive a binary code template, the abstracted func-
tion is compiled to a binary object — currently limited to
the ELF format — using the LLVM optimization and code
generation infrastructure at its highest optimization level.

1 add: ; rdi = pointer to value storage

2 movq $off_0(%rdi), %rax

3 addq $off_1(%rdi), %rax

4 movq %rax, $off_2(%rdi)

5 jmp $next

Listing 3. Compiled template of arith.addi from Listing 2.
O�sets into the value storage and continuation address of
the template result in relocations (highlighted).

We extract the templates by parsing the ELF �le, using
the text sections as binary code for the template and storing
the data sections (e.g., .data and .rodata) to forward them

3

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Florian Drescher and Alexis Engelke

to the runtime system. Furthermore, we track the relocation
entries and identify patchpoint symbols for value storage
o�sets and continuation calls by their name. We also track
other relocations not originating from the framework, as we
have to take over some tasks of a run-time linker as well
(e.g., patching addresses to other symbols or data sections).

A simple template binary for the arith.addi operation
is shown in Listing 3, which only consists of the binary code
and some patchpoints, including the continuation address.

3.5 Case Study: Templates for the LLVM Dialect

As one example, we look at the application of our approach
to the LLVM dialect, which is required to run the bench-
marks used during evaluation. For most instructions, we can
generate templates automatically without any manual in-
teraction. However, to fully cover the LLVM IR instructions
required for the benchmarks, we had to provide some custom
implementations:

• Branching instructions (Br, Condbr and Switch) are
hand-assembled and run-time compilation additionally
deals with SSA destruction.

• AddressOf requires a custom abstraction, as memory
locations are only determined at run-time compilation.

• Regions and value attributes of globals are evaluated
during run-time compilation and placed into memory,
where they can be referenced with AddressOf.

• Stack allocations (Alloca) retrieve memory from the
value storage (�xed size) or the heap (var sized).

Nonetheless, this is a comparatively small amount of e�ort
to spend on such an extensive instruction set.

4 Run-time Compilation of Templates

The run-time compilation phase stitches together the pre-
compiled templates to produce code for a previously unseen
input program. This corresponds to the compilation part of
a JIT compiler and is therefore further referred to as compi-
lation. In contrast to the previous stage, it is time-critical as
the compilation contributes to the overall execution time.

4.1 Selection

As a �rst step, the input program must be covered with exist-
ing templates. To facilitate that, we walk the input program
starting at the top-level region in a depth-�rst manner and
�nd a matching template from our template library for each
instruction individually. As described in Sec. 3.2, an instruc-
tion can occur with di�erent con�gurations (e.g., input types
or property values) and therefore, for a template to match,
it must match the full signature consisting of the operation
name, input and output types, the number of regions and the
property values. To make looking up signatures as e�cient
as possible, we store them in a hash map. The used hash is
constructed over the operation type and the properties, as
the combination of those provides most of the entropy of a

signature. Furthermore, an MLIR context ensures that each
registered operation type is unique, allowing us to compare
the operation type identi�er, which is just a pointer, instead
of the string representations.

4.2 Instantiation

Once the matching template is found, it is instantiated. The
corresponding binary code is copied to the designated mem-
ory location and the identi�ed patchpoints — mainly o�sets
into the value storage and continuation addresses — are ad-
justed to their according values. During copying, we can omit
unnecessary jumps between two neighboring templates.

All values de�ned by the current instruction (results and
region arguments) are assigned to a slot in the value storage.
To keep compile-times low, we allocate the slots during the
same pass that generates the native code. In order to reduce
the memory usage of the value storage, we track the live-
ness of the slots and reuse them once they become free. For
performance, however, we do not perform a dedicated live-
ness analysis but generously over-approximate the lifetime
intervals: The end is de�ned as the end of the region unless
the instruction has only a single use in the same basic block,
where the lifetime ends at that instruction.

4.3 Fixup and Wrapper Function

As we generate code in a single pass over the input, some ad-
dresses or symbols are not known upon their �rst reference.
This mainly happens due to forward references to yet unde-
�ned functions, global symbols, or basic block labels. Those
locations are tracked and updated as soon as the referenced
data becomes available. For all address references — also
during instantiation — we take advantage of compile-time
information, which can lead to further linking optimizations,
e.g., we replace loads from the GOT by directly computing
the desired address if in range, saving the space of the GOT
entry and the load from memory at run-time.

Once code generation �nishes, control �ow has to be tran-
sitioned into the newly generated assembly. Transitioning
from our host C++ program to the generated assembly is
possible by looking up the address of the generated main
function and calling it with the default C calling convention.
The function template, which was generated to embody the
function declaration, takes care of allocating the initial value
storage, saving registers (and restoring them upon return),
preparing the value storage pointer argument and ultimately
invoking its body. From this point on, our framework does
not provide any runtime components during execution.

5 Optimizations

5.1 Constant Evaluation

In contrast to LLVM, where constants can be used as val-
ues arbitrarily, MLIR conceptually does not distinguish con-
stants and models them as constant instructions, for example,

4

Fast Template-Based Code Generation for MLIR CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

arith.constant for constant numbers. Because the actual
values for those constants are stored as attributes, each of
those instructions would be recognized as its own template.
To avoid a huge number of di�erent constant templates only
di�ering by their value, operations that have no side e�ects,
no regions, no input operands, and no references to any
dynamic addresses, can be executed during template gen-
eration. During run-time compilation, the results can then
be injected on demand using a custom template. This op-
timization considerably reduces the number of generated
templates as all constant-evaluated instructions share a sin-
gle dedicated template.

5.2 Template Calling Convention

So far, every value resides in the value storage in memory
and is passed into a template by patching its o�set into
the instantiated binary. For constants, this causes a store
operation of the value to memory, which the template loads
again immediately afterward. To improve this, we adjust the
handling of inputs and outputs of our templates.
Reasonably small input values (up to two registers wide)

are passed directly in registers, while larger values remain in
memory and are addressed via patched o�sets. We achieve
this by passing such values as parameters, which are passed
in registers by the underlying calling convention, to the func-
tion template. Similarly, small output operands are passed
as arguments to the continuation function. For larger data
types, the handling remains unchanged, as only a small sub-
set of its values is typically used. These are, therefore, better
suited for in-memory passing, as the template can speci�-
cally access the required elements, avoiding large loads and
stores. Listing 4 gives the binary code for the arith.addi
example with this optimization.

1 add: ; params: %rdi = value store, %rsi = a, %rdx = b

2 addq %rdx, %rsi

3 jmp $next ; params: %rdi = value store, %rsi = res

Listing 4. Compiled template of arith.addi using the
optimized calling convention: Input and output values in
registers; Continuation address to be patched (highlighted).

During run-time compilation, we additionally emit code
for loading the values from memory where required and ma-
terializing constants directly into registers. Results are writ-
ten back to memory after each template. Due to the explicit
separation of operand loading and computation, memory
operands can no longer be fused into arithmetic operations
(as happened in Listing 3; loading the second operand is
fused into the addq instruction), but this had no measurable
performance impact, as most modern x86-64 CPUs split load-
arith instruction into multiple micro-ops anyway. As a side
e�ect, this also reduces the template size signi�cantly, as
loading/storing values is no longer part of every template.

5.3 Register Caching

Even with the previous optimization, the resulting code ex-
cessively loads values from memory into registers and stores
results back into memory. To reduce the number of memory
loads, we cache the result values in registers — in addition to
writing them back to the value storage — thus, in many cases,
replacing the load from memory with a copy from a register.
We can even eliminate the store to memory if the value has
its single use in the immediately following instruction.

While it is possible to rely solely on callee-saved registers,
which are guaranteed to be unmodi�ed by the template,
many templates use only very few registers, so other caller-
saved registers can serve as additional cache space. During
template generation, we, therefore, analyze which registers
are clobbered. We obtained this information during template
compilation from the LLVM by analyzing the instructions of
the �nal Machine IR for the function.

During code generation, we additionally track the cached
values in registers and generate code to move result values
into and out of such registers. While the additional moves
increase the number of instructions, this pays o� during
execution as we save on loads from memory.

We evaluated two di�erent strategies to assign the cache
registers. When caching a register and none is available, we
either (1) do not cache the value at all or (2) override one
of the cached values in a round-robin manner. The round-
robin approach was chosen to account for SSA values usually
used rather locally and losing importance once the code
progresses. But there is no signi�cant di�erence between
them — both save up to 30% of the memory loads. Therefore,
our evaluation uses strategy (1) due to its lower compilation
time. Cache registers become free if a value reaches the end
of its lifetime (cf. Sec. 4.2) or a template clobbers them — in
which case we fall back to loading from the value storage.

5.4 Higher-Level Optimizations

Further common optimizations for interpreters and template-
base compilers include supernode generation [11, 37] and
template specialization on certain inputs [22]. However, with
a �exible framework like MLIR, we believe that there is no
need for such techniques. Instead, one can leverage the multi-
level approach of MLIR and apply the code generation on
a higher-level, domain-speci�c dialect. This implicitly cre-
ates supernodes, as higher-level instructions are typically
more complex and often lowered to several lower-level in-
structions. A simple example is the scf dialect for structured
control �ow, which already provides explicit operations for
common constructs like while and for loops instead of using
plain branch instructions found in the lower-level dialects cf
and llvm. Due to the reduced number of instructions and a
simpler control �ow, the compilation time is also reduced by
using higher dialects as a starting point for code generation.

5

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Florian Drescher and Alexis Engelke

Sieve of Eratosthenes

136

Quicksort

83

Fibonacci

187

0

1

2

3

0

0.5

1

O2 O0 LLI Ours (baseline) + calling convention + register caching

0

1

2

3

B
u
il
t-
in

D
ia
le
ct

136 83 187

10−4 10−3 10−2

0

1

2

3

10−4 10−3 10−2

0

0.5

1

10−4 10−3 10−2

0

1

2

3

L
L
V
M

IR
D
ia
le
ct

ex
ec
u
ti
o
n
ti
m
e
[s
]

startup time [s]

Figure 2. Comparison of our approach and optimizations with LLVM -O0 and -O2 and the LLVM Interpreter on three
micro-benchmarks on x86-64. The �rst row shows results when compiling from upstream dialect operations (scf, arith and
memref); the second row starts from the llvm dialect.

6 Target Architecture Considerations

Although the examples so far targeted the x86-64 architec-
tures, our approach does not require a speci�c architecture.
The template generation solely relies on LLVM and thus is
capable of generating templates for various architectures.
Even internal code generation (e.g., storing register to mem-
ory or vice versa) reuses the template compilation approach.
Thus, porting the approach to a new architecture requires
only moderate e�ort (e.g., architecture-speci�c relocations).

In addition to x86-64, we currently also support AArch64.
A key di�erence is the �xed-size and, therefore, less �exible
instruction set. In particular, constants are often composed
through multiple instructions and applying relocations of-
ten involves bit-level adjustments to code — in contrast to
x86-64, where relocations are generally byte-aligned and
continuous. In turn, the �xed length instruction set allows
for more straightforward modi�cation of the binary code,
thus simplifying optimization of instructions, like replacing
GOT entry loads with direct address computation.

7 Evaluation

We evaluate our approach on a range of micro-benchmarks
and benchmark suites. We assume all required templates are
generated and prepared for usage for all benchmarks. This
assumption is generally feasible, as the number of potential
instructions is inherently limited — as shown by [42].
We compare our approach against di�erent LLVM back-

ends. As LLVM back-ends do not operate on MLIR directly
but instead use LLVM-IR, we �rst lower the MLIR input to
LLVM-IR. This step is not included in the measurements,
as it is already higher than the compilation time with our
approach altogether. We then use LLVM ORC JIT, typically
with the small code model; only SPEC requires the medium
code model. For -O0, we used FastISel as the instruction
selector; for optimized compilation, we use -O2, as there are

no signi�cant di�erences to the other back-end optimization
levels. Where possible, we compared compiling with our
approach from the higher-level upstream dialects and the
lower-level LLVM dialect. The MLIR upstream dialect input
was derived using the C frontend of Polygeist [29] with
optimizations turned o�. For the LLVM dialect, we �rst apply
Clang with -O0 to derive LLVM-IR and, afterward, use the
MLIRTranslate tool for importing to MLIR.
Our x86-64 benchmark platform is an Intel Xeon Plat-

inum 8260 CPU equipped with 160GiB RAM; our AArch64
platform is an Apple M1 core equipped with 16GiB RAM;
all machines are running Linux and an LLVM development
snapshot (commit 5d492766a8). Besides the expensive SPEC
benchmarks, all diagrams report the median of ten runs.

7.1 Impact of Optimizations

To analyze the impact of the optimizations described in Sec. 5,
we compare our approach with LLVM back-end optimization
levels -O0 and -O2 as well as the LLVM interpreter on a set of
micro-benchmarks. The benchmarks were designed to stress
the impact of our optimization on compute-intensive tasks.
The Eratosthenes sieve runs in a single function and bench-
marks control �ow, memory and arithmetic operations. The
quicksort benchmark extends on this idea, slightly shifting
focus from control �ow inside a single function to recursive
calls and memory operations. Fibonacci is �nally used to
show the negligible startup overhead for minimal programs
while also indicating the limitations of our approach in pro-
grams exclusively bound by function calls. Figure 2 shows
the results. The standard deviation of the result remains
below 10% for our approach and below 5% for the LLVM
levels in the compilation time dimension and below 3% for
all approaches regarding execution time.

Compared to compiling with LLVM, the compilation times
of our approach are an order of magnitude faster compared
to -O0, in the range of 32–72x. Run-time performance on the

6

Fast Template-Based Code Generation for MLIR CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

100
101

co
m
p
il
e
ti
m
e

[m
s
] 48.8x

14.8x

0

50

ex
ec
u
ti
o
n
ti
m
e

[m
s
]

0.5x
0.7x

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Geomean
0

20
40
60

q
u
er
y
ti
m
e

[m
s
] 3.9x

1.7x

SPEED (O2) CHEAP (O0) Ours (LLVM dialect) Ours (built-in dialect)

Figure 3. Performance of compiling and executing the TPC-H queries (sf=0.1) on x86-64 comparing LLVM -O2/-O0 with our
approach on the LLVM dialect and the scf/arith/util dialects. Query time is the sum of compilation and execution time.

micro-benchmarks is generally comparable and between 2x
slower to 20% faster than LLVM -O0. The LLVM interpreter
is around 100x slower than all other approaches. Start-up
times are generally lower, but even these are outperformed
by our approach once. The signi�cant run-time overhead
in the Fibonacci benchmark is due to the impact of recur-
sive calls, which prevents register caching as calls concep-
tually clobber all registers. Our optimization of adjusting
templates to primarily use registers and materializing con-
stants reduces execution time by 15%. However, the cost of
separately inserting loads/stores increases compilation times
slightly by 8%. Extending it with our register caching strate-
gies signi�cantly reduces execution time by another 26%
(37% over baseline). Nonetheless, generating the additional
instructions and tracking registers has a compile-time cost
of 10% (19% over baseline).
Within our approach, starting from a higher abstraction

level (�rst row) is clearly favorable as such programs gener-
ally contain fewer and more complex operations and, there-
fore, cause less work during compilation and allow for better
code inside the templates.

7.2 LingoDB — an MLIR-based Database Engine

Compiling database engines is an important application area
of JIT compilation, as the compilation time fully counts to-
ward the overall processing time of a query. LingoDB [21]
is an MLIR-based query execution engine that lowers SQL
queries through a declarative top-level dialect, on which it
also performs query plan optimization, towards the LLVM
dialect to compile queries to native code.
We replaced the last lowering stages to generate native

code with our approach directly. This technique is applied
on two levels: the lowest LLVM-IR level and one above, con-
sisting of upstream dialects and a LingoDB-speci�c utility
dialect. We use TPC-H [39] (scaling factor 0.1) as a typi-
cal small-sized workload. As our code generation approach
is intended as an unoptimized tier, an adaptive execution
pipeline could switch to optimizing back-ends for larger data

sets. Fig. 3 shows the results comparing the existing Lin-
goDB modes speed (-O2) and cheap (-O0) with our approach.
The standard deviation for the LLVM execution stages is
about 5% for execution and compilation, while our approach
deviates by 20% on the compilation time dimension due to
the signi�cantly lower absolute values, and 10% (upstream
dialects) to 20% (LLVM IR dialect) on execution time.
When compiling from the higher-level dialects, our ap-

proach generates code an order of magnitude faster than
LLVM -O0, taking about one millisecond per query. As trade-
o�, the mean execution time increases by 40% (3% (Q14) to
76% (Q17)) compared to LLVM -O0. Nonetheless, when ac-
counting for both stages, the time to compile and execute a
TPC-H query is reduced by 43%with our approach compared
to LingoDB cheap and by around 4x compared to LingoDB
speed. Considering that query execution is usually multi-
threaded, speedup further increases, as parallel execution
can only start after single-threaded compilation �nishes.
When comparing with LLVM -O2, the execution time is

108% higher (35% (Q15) to 200% (Q17)). However, the time
spent generating optimized code does not amortize at such
small data sets. Similar to the micro-benchmarks, starting
from the higher-level dialects improves performance in both
compilation and execution time.
Although the template-based compilation approach of

[42] also supports a subset of the TPC-H queries, it is di�-
cult to compare the two directly, as LingoDB provides more
optimized operator implementations and an improved query
planner. Even for TPC-H Q6, where the query plans are iden-
tical, our approach executes around 2x faster — both run on
our machine. For other queries, where query optimization is
important, the run-time di�erences are orders of magnitude.
The compilation time of our approach, however, is 10x larger;
we elaborate on the details later in Sec. 7.5. Nonetheless, a
code generation time in the order of milliseconds is su�-
ciently small, as execution times of the remaining stages in
the query execution pipeline — query optimization and prior
MLIR lowerings — take multiple milliseconds anyway.

7

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Florian Drescher and Alexis Engelke

10−2

10−1

100

n
o
rm

a
li
ze
d

co
m
p
il
a
ti
o
n
ti
m
e

101.0x

29.3x

LLVM O2 LLVM O0 Ours (llvm-dialect) Ours (built-in dialect)

2m
m
3m

m ad
i
at
ax

bi
cg

ch
ol
es
ky

co
rr
el
at
io
n

co
va
ri
an
ce

de
ri
ch
e

do
it
ge
n

du
rb
in

fd
td
-2
d

flo
yd
-w
ar
sh
al
l

ge
m
m

ge
m
ve
r

ge
su
m
m
v

gr
am

sc
hm

id
t

he
at
-3
d

ja
co
bi
-1
d

ja
co
bi
-2
d lu

lu
dc
m
p
m
vt

nu
ss
in
ov

se
id
el
-2
d

sy
m
m
sy
r2
k
sy
rk

tr
is
ol
v

tr
m
m Geomean

0
2
4
6
8

n
o
rm

a
li
ze
d

ex
ec
u
ti
o
n
ti
m
e

0.4x
0.7x

Figure 4. Performance of the PolyBenchC suite normalized to LLVM -O2 on x86-64.

7.3 PolyBenchC

In addition to JIT compilation, our approach can also be used
for the static compilation of languages like Fortran and C,
where short compile-times are essential during development.

We �rst evaluate our approach on the PolyBenchC [36]
benchmark suite, a widespread example of polyhedral opti-
mization techniques. Figure 4 shows the results. The standard
deviation of the metric remains below 10% for execution and
compilation time with all approaches.
Compiling from the upstream dialect input not only pro-

vides faster compilation than starting from the LLVM dialect
but also the execution time di�erence is very apparent for
these programs, as the canonicalized representation using
MLIR upstream dialects is more concise and expressive when
it comes to numeric kernel computations. Compilation is one
to two orders of magnitude faster with our approach on both
abstraction levels compared to LLVM; the execution speed
ranges from a slowdown of 165% (jacobi-2d) to a 20% speedup
(jacobi-1d) compared to LLVM -O0 (median slowdown: 34%).

A comparison with the approach of [42] is only partially
possible. Although they run the same benchmark suite, their
evaluation targets compilation from optimized WebAssem-
bly code, in contrast to a less optimized and more high-level
representation as we do. The closest we can get is instead of
starting from unoptimized input code to use Clang optimiza-
tion level -O3 to derive an optimized input representation
similar to how the WebAssembly input was already opti-
mized once. However, as our input still remains comparably
high-level, we miss any possible back-end optimizations that
might be applied during WebAssembly emission. Again, we
reevaluated their results on our machine. The execution time
di�erence with the optimized input ranges between a slow-
down of 10x and a speedup of 2x for our approach compared
to theirs. However, we generate code in half the time required
for their approach, again taking advantage of the concise
representation of higher-level IRs.

7.4 CoreMark and SPECint 2017

To show the full extent of the LLVM-IR coverage, we run
CoreMark [1] and SPECCPU 2017 Integer [2] benchmarks. In
all cases, we could not derive MLIR code from the C sources
using Polygeist due to its limited functionality and, therefore,
only measured the LLVM-dialect level. The Fortran bench-
mark (SPECint 548.exchange2) was compiled using Flang [4],
which can output the LLVM MLIR dialect directly. Some
SPEC benchmarks (500.perlbench, 502.gcc, and 531.deep-
sjeng) could not be transformed into MLIR at all, or the
resulting MLIR led to a timeout or crash, even when compil-
ing with the LLVM back-ends. Furthermore, we excluded the
other C++ benchmarks due to their use of C++ exceptions,
which we currently do not support. Due to limited memory
on our AArch64 machine, we could only run one of the refer-
ence executions of SPEC 557.xz on AArch64. We report the
median from three compilations/executions of the reference
workload in Fig. 5. All results have a standard deviation of
less than 5% for both dimensions with all approaches.

Our approach generates code one to two orders of magni-
tude faster than LLVM, while execution time is 2–3x slower
than LLVM -O0. In particular, our register caching optimiza-
tion strongly impacts these benchmarks, leading to a run-
time improvement of nearly 2x.

On AArch64, the relative compile-times closely follow the
ones on x86-64, while the execution time slowdowns are
slightly higher on AArch64 for 525.x264 and 548.exchange2.

7.5 Compile-time Analysis

7.5.1 Template Generation. Template generation hap-
pens ahead-of-time and is therefore not considered to be
time-critical. Table 1 lists the numbers, sizes, and genera-
tion times of templates used for previous evaluations. They
were obtained by timing the template generation stage and
inspecting the resulting template library.

8

Fast Template-Based Code Generation for MLIR CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

X86-64

10−2

10−1

100

n
o
rm

a
li
z
e
d

c
o
m
p
il
e
ti
m
e

7.0x

AArch64

10−2

10−1

100

9.5x

505.mcf
525.x264

548.exchange2
557.xz

CoreMark
Geomean

2
4
6
8

10
12
14

n
o
rm

a
li
z
e
d

e
x
e
c
u
ti
o
n
ti
m
e 14.98

0.4x

O2 O0 Ours without register caching

505.mcf
525.x264

548.exchange2
557.xz

CoreMark
Geomean

2
4
6
8

10
12
14

0.4x

24.36 20.29

Figure 5. Results for the CoreMark and SPECint 2017 benchmarks — normalized to LLVM -O2.

Table 1.Metrics of the ahead-of-time template generation
stage for the individual benchmarks. Size is raw code size,
metadata includes information on patch locations and types.

Count Size Metadata Generation
[:�] [:�] Time [B]

Microbench. 72 1 20 < 1

PolyBenchC 411 8 112 2
LingoDB 1735 11 466 10
SPEC 5033 122 1390 37

The number of templates for the SPEC benchmark suite
seems comparably high but mainly consists of 1400 func and
1300 call templates, whose signature contains the respec-
tive symbol names, as well as 2000 getelementpr templates,
as constant indices are stored as properties of the instruc-
tion. By providing a custom template implementation for
getelementpr and ignoring the symbol name — only one
template for all functions with the same function signature
— for func (reduced to 280) and call (reduced to 400), we
could reduce the number of required templates down to
about 1000.

Compared to [42], we generate a lot less templates, as we
only generate a single variant for one instruction signature,
contrary to multiple variations as required for their register
allocation scheme and supernode construction. Additionally,
their reported template generation time is in the order of
minutes, signi�cantly slower than our approach.

7.5.2 Run-timeCompilation. At its core, template-based
code generation strives for very low compilation times. To
provide further insights into where the time of the time-
critical compilation stage is spent, we instrumented our com-
piler with additional time measurements — Figure 6 shows
the most apparent components. The most signi�cant part is
spent on the template instantiation (cf. Sec. 4.2), followed by
template selection (cf. Sec. 4.1). The latter could be avoided

completely by directly mapping the input MLIR instructions
to their corresponding signatures. This mapping could be
done using perfect hashing (used by [42]); however, this
would preclude dynamically adding further templates. Track-
ing the current storage location for each value via a hash
map is also comparably expensive; this could be optimized
by storing the location inline with the value, but MLIR does
not support attaching custom information to a value. Finally,
evaluating global constants also takes up some compilation
time because they must be evaluated before generating code
for them, as described in Sec. 3.5.

Runtime Compilation Split [%]

21% 15% 14% 6%

Instantiation

Selection

Storage Tracking

Global Evaluation

Figure 6. Breakdown of run-time compilation on SPEC
benchmarks. The remaining time is spent on the con�g-
uration of template instantiation.

The remaining time is spent re�ecting for each input MLIR
instruction on its type, the input operands, the result values
and regions to con�gure template instantiation correctly.
Operands must be put into the expected register, or its stor-
age o�set must be recalled, result values are assigned to
slots, stored and cached in registers, and the memory o�sets
for region arguments, as well as terminator operands, must
be recorded. Pro�ling indicates that a substantial portion is
spent directly on the MLIR re�ections. This can be avoided
by statically providing the information during the compila-
tion of the framework, which is only possible for a restricted,
previously known domain, contrary to what MLIR provides.
In summary, taking advantage of the �exibility provided

by MLIR comes with some costs and currently limits ma-
jor compile-time improvements, motivating further perfor-
mance improvements in MLIR in the future.

9

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Florian Drescher and Alexis Engelke

8 Discussion and Future Work

The results show that our approach achieves an order of
magnitude faster compile-times than LLVM -O0. Although
execution times are 3x higher on some benchmarks, they
are fairly close to and sometimes even as fast as the existing
baselines on other benchmarks. Notably, the combination of
massively reduced startup time with not too much slower
execution enables e�ective use as baseline JIT compiler.

Using MLIR as a starting point allows us to target a contin-
uously growing and open ecosystem, reducing complexity as
higher-level optimization (e.g., supernodes) can easily be re-
�ected in MLIR’s multi-level approach. Automated template
generation obviates the required e�ort for implementation
and maintenance without compromising on the promised
run-time to compile-time tradeo�. MLIR’s �exibility, how-
ever, does come at some cost: the compilation times cannot
always keep up with a previously presented Copy-and-Patch
approach [42], which compiles roughly between 2x slower
to 10x faster. Nevertheless, we argue that the minimal di�er-
ences— in absolute terms— hardly result in reduced latencies
in end-to-end scenarios and, therefore, are not worth the
e�ort of manual template construction. In turn, our code can
keep up with — if not improve on — execution speed.

Additionally, our approach is not limited to JIT use cases:
we can provide a reasonable compile- to run-time tradeo�
for almost arbitrary dialect inputs, including LLVM-IR. Our
approach can o�er a fast compilation tier that is at least
applicable in development scenarios, where most of the time
is spent on compiling code, of which only a small snippet is
ever executed. However, to fully cover this scenario, there is
some work to do on emitting debug information and adding
supported binary formats (e.g., Mach-O and PE).
In all cases, our approach is applicable without major

changes to the currently existing MLIR infrastructure: it uses
the same input representation that is also used for regular
compilation, and all dialects with a lowering to LLVM-IR can
be, at the very least, supported on LLVM-IR dialect level.

9 Related Work

The most recent and most similar stand-alone, template-
based compiler implementation [42] uses templates writ-
ten in C++, which are precompiled to machine code using
LLVM.When compiling a program, the framework combines
the templates for the operations and applies some cheap
optimizations (e.g., jump elimination). For further perfor-
mance improvements, they employ a simple register alloca-
tion schema limited to usage inside expressions by providing
templates for multiple possible register assignments. Our
approach, in contrast, generates templates automatically in-
stead of manual C++ programming. Furthermore, our reg-
ister caching is generally more �exible and not limited to
expressions. Therefore, it is more e�ective beyond micro
benchmarks and improves the execution of large programs.

Historically, one main application of template-based code
generation was dynamic code optimization on run-time in-
variants. Vcode [16] was one of the �rst template-based code
generation systems focusing on fast compilation. It provides
a reduced platform-agnostic instruction set that is translated
to machine code by merely combining hand-assembled tem-
plates for each of their operations. It was employed in the
TCC compiler [17, 35] for dynamic run-time compilation. An-
other approach [6] also targeted dynamic code specialization,
which combines prepared machine code templates and �lls
missing holes for dynamic constants during run-time compi-
lation. Consel et al. [12, 32] generated templates from C code
in combination with the code required for their instantiation.
They located patchpoints in the object �les using block labels
and introduced the idea of using external symbol addresses to
model unknown run-time constants [32]. These approaches
target computationally intensive kernels and require hand-
written templates, annotations, or specialized compilers. Our
approach does not prioritize run-time performance and is
functional without o�ine program preparation.
A more recent application of template-based code gener-

ation is found in the initial version of QEMU [8]. Guest in-
structions were mapped to a set of micro-operations, which
were implemented as hand-crafted templates that can be
combined to generate target code. Templates were written
in GNU C, making use of special GCC �ags for specialized
register assignments; they reused the idea of external sym-
bol addresses for run-time constants [18]. Nonetheless, this
approach was later dropped in favor of raising the input
instructions to the TCG intermediate representation [9].
Template-based code generation is nowadays present in

baseline compilers for adaptive execution [5, 7, 41] or light-
weight assemblers [3, 23, 33]. Both applications di�er from
our approach as they operate on byte or native code inputs,
whereas we generate code from a high-level representation.

10 Summary

In this paper, we outlined a template-based code generation
approach for MLIR. Our template generation leverages ex-
isting lowerings of MLIR instructions through LLVM and
thereby overcomes the limitations of state-of-the-art ap-
proaches, which require explicit handwritten templates.
Our results show performance improvements regarding

compile-time compared to the existing LLVM -O0 pipeline in
the 10–30x range. Run-time is typically slower by 1–3x, but
it even provides comparable or improved performance on a
few programs. Our approach can be integrated into existing
MLIR work�ows with moderate e�ort and provides a fast
compilation tier with only slightly slower execution.

Data Availability Statement

The sources for our template-based MLIR compiler and the
respective benchmark data are available in Zenodo [15].

10

Fast Template-Based Code Generation for MLIR CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

References
[1] EEMBC 2009. CoreMark Benchmark. EEMBC. Retrieved 2023-08-30

from h�ps://www.eembc.org/coremark/

[2] SPEC 2017. SPEC CPU 2017. SPEC. Retrieved 2023-08-30 from
h�ps://www.spec.org/cpu2017/

[3] Free Software Foundation 2022. GNU lightning. Free Software Foun-
dation. Retrieved 2023-08-29 from h�ps://www.gnu.org/so�ware/

lightning/manual/lightning.html

[4] LLVM 2023. Flang. LLVM. Retrieved 2023-08-30 from h�ps://github.

com/llvm/llvm-project/tree/main/flang/

[5] Mozilla Foundation 2023. SpiderMonkey. Mozilla Foundation. Re-
trieved 2023-08-25 from h�ps://spidermonkey.dev/

[6] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers,
and Brian N. Bershad. 1996. Fast, E�ective Dynamic Compilation. In
Proceedings of the ACM SIGPLAN 1996 Conference on Programming

Language Design and Implementation. 149–159. h�ps://doi.org/10.

1145/231379.231409

[7] Clemens Backes. 2018. Lifto�: a new baseline compiler for WebAssembly

in V8. Retrieved 2023-08-28 from h�ps://v8.dev/blog/li�o�

[8] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
In USENIX annual technical conference, FREENIX Track. California,
USA, 46.

[9] Fabrice Bellard. 2009. Tiny Code Generator. Retrieved 2023-08-28 from
h�ps://github.com/qemu/qemu/blob/v4.2.0/tcg/README

[10] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasi-
lache, Bixia Zheng, and Fredrik Kjolstad. 2022. Compiler Support for
Sparse Tensor Computations in MLIR. ACM Trans. Archit. Code Optim.

(2022). h�ps://doi.org/10.1145/3544559

[11] Kevin Casey, David Gregg, M Anton Ertl, and Andrew Nisbet. 2003.
Towards Superinstructions for Java Interpreters. In Software and Com-

pilers for Embedded Systems: 7th International Workshop, SCOPES 2003,

Vienna, Austria, September 24-26, 2003. Proceedings 7. Springer, 329–343.
h�ps://doi.org/10.1007/978-3-540-39920-9_23

[12] Charles Consel and François Noël. 1996. A General Approach for
Run-Time Specialization and Its Application to C. In Proceedings of the

23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. 145–156. h�ps://doi.org/10.1145/237721.237767

[13] Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias
Boehm, Philippe Bonnet, Florina Ciorba, Mark Dokter, Pawel Dow-
giallo, Ahmed Eleliemy, Christian Färber, Georgios Goumas, Dirk
Habich, Niclas Hedam, Marlies Hofer, Wenjun Huang, Kevin Innereb-
ner, Vasileios Karakostas, Roman Kern, Tomaž Kosar, and Xiao Zhu.
2022. DAPHNE: An Open and Extensible System Infrastructure for
Integrated Data Analysis Pipelines. In Conference on Innovative Data

Systems Research.
[14] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin

Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Heka-
ton: SQL server’s memory-optimized OLTP engine. In Proceedings of

the 2013 ACM SIGMOD International Conference on Management of

Data. 1243–1254. h�ps://doi.org/10.1145/2463676.2463710

[15] Florian Drescher and Alexis Engelke. 2024. Artifact for CC’24 paper
on Fast Template-Based Code Generation for MLIR. h�ps://doi.org/

10.5281/zenodo.10571103

[16] Dawson R. Engler. 1996. VCODE: A Retargetable, Extensible, Very Fast
Dynamic Code Generation System. In Proceedings of the ACM SIGPLAN

1996 Conference on Programming Language Design and Implementation.
160–170. h�ps://doi.org/10.1145/231379.231411

[17] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. 1996.
’C: A Language for High-Level, E�cient, and Machine-Independent
Dynamic Code Generation. In Proceedings of the 23rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. 131–144.
h�ps://doi.org/10.1145/237721.237765

[18] Nathaniel Wesley Filardo. 2007. Porting QEMU to plan 9: QEMU inter-

nals and port strategy. Retrieved 2024-01-19 from h�ps://www.contrib.

andrew.cmu.edu/user/nwf/paper-strategy.pdf

[19] Google. 2023. What is V8? Retrieved 2023-04-28 from h�ps://v8.dev

[20] Tian Jin, Gheorghe-Teodor Bercea, Tung D Le, Tong Chen, Gong
Su, Haruki Imai, Yasushi Negishi, Anh Leu, Kevin O’Brien, Kiyokuni
Kawachiya, et al. 2020. Compiling ONNX Neural Network Models
using MLIR. arXiv:2008.08272 (2020).

[21] Michael Jungmair, André Kohn, and Jana Giceva. 2022. Designing
an Open Framework for Query Optimization and Compilation. Proc.
VLDB Endow. (2022). h�ps://doi.org/10.14778/3551793.3551801

[22] Minhaj Ahmad Khan, H-P Charles, and Denis Barthou. 2007. An e�ec-
tive automated Approach to Specialization of Code. In International

Workshop on Languages and Compilers for Parallel Computing. Springer,
308–322. h�ps://doi.org/10.1007/978-3-540-85261-2_21

[23] Petr Kobalicek. 2014. AsmJIT Project. Retrieved 2023-08-29 from
h�ps://asmjit.com/

[24] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky,
Casey Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht,
Matthew Jacobs, Ishaan Joshi, Lenni Ku�, Dileep Kumar, Alex Leblang,
Nong Li, Ippokratis Pandis, Henry Robinson, David Rorke, Silvius
Rus, John Russell, Dimitris Tsirogiannis, Skye Wanderman-Milne, and
Michael Yoder. 2015. Impala: A Modern, Open-Source SQL Engine for
Hadoop. In Conference on Innovative Data Systems Research.

[25] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International

Symposium on Code Generation and Optimization (CGO). h�ps:

//doi.org/10.1109/CGO.2004.1281665

[26] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infras-
tructure for Domain Speci�c Computation. In 2021 IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization (CGO). 2–14.
h�ps://doi.org/10.1109/CGO51591.2021.9370308

[27] Hsin-I Cindy Liu, Marius Brehler, Mahesh Ravishankar, Nicolas Vasi-
lache, Ben Vanik, and Stella Laurenzo. 2022. TinyIREE: An ML Ex-
ecution Environment for Embedded Systems From Compilation to
Deployment. IEEE Micro (2022), 9–16. h�ps://doi.org/10.1109/MM.

2022.3178068

[28] Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. 2017. Relaxed
Operator Fusion for In-Memory Databases: Making Compilation, Vec-
torization, and Prefetching Work Together At Last. Proceedings of

the VLDB Endowment (2017), 1–13. h�ps://doi.org/10.14778/3151113.

3151114

[29] William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zi-
nenko. 2021. Polygeist: Raising C to Polyhedral MLIR. In 2021 30th

International Conference on Parallel Architectures and Compilation Tech-

niques (PACT). 45–59. h�ps://doi.org/10.1109/PACT52795.2021.00011

[30] William S. Moses, Ivan R. Ivanov, Jens Domke, Toshio Endo, Jo-
hannes Doerfert, and Oleksandr Zinenko. 2023. High-Performance
GPU-to-CPU Transpilation and Optimization via High-Level Parallel
Constructs. In Proceedings of the 28th ACM SIGPLAN Annual Sym-

posium on Principles and Practice of Parallel Programming. 119–134.
h�ps://doi.org/10.1145/3572848.3577475

[31] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based
System with In-Memory Performance. In Conference on Innovative

Data Systems Research. h�ps://api.semanticscholar.org/CorpusID:

209379505

[32] F. Noel, L. Hornof, C. Consel, and J.L. Lawall. 1998. Automatic,
Template-based Runtime Specialization: Implementation and Experi-
mental Study. In Proceedings of the 1998 International Conference on

Computer Languages (Cat. No.98CB36225). 132–142. h�ps://doi.org/10.

1109/ICCL.1998.674164

[33] Mike Pall. 1999. DynASM. Retrieved 2023-08-29 from h�ps://luajit.

org/dynasm.html

11

https://www.eembc.org/coremark/
https://www.spec.org/cpu2017/
https://www.gnu.org/software/lightning/manual/lightning.html
https://www.gnu.org/software/lightning/manual/lightning.html
https://github.com/llvm/llvm-project/tree/main/flang/
https://github.com/llvm/llvm-project/tree/main/flang/
https://spidermonkey.dev/
https://doi.org/10.1145/231379.231409
https://doi.org/10.1145/231379.231409
https://v8.dev/blog/liftoff
https://github.com/qemu/qemu/blob/v4.2.0/tcg/README
https://doi.org/10.1145/3544559
https://doi.org/10.1007/978-3-540-39920-9_23
https://doi.org/10.1145/237721.237767
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.5281/zenodo.10571103
https://doi.org/10.5281/zenodo.10571103
https://doi.org/10.1145/231379.231411
https://doi.org/10.1145/237721.237765
https://www.contrib.andrew.cmu.edu/user/nwf/paper-strategy.pdf
https://www.contrib.andrew.cmu.edu/user/nwf/paper-strategy.pdf
https://v8.dev
https://doi.org/10.14778/3551793.3551801
https://doi.org/10.1007/978-3-540-85261-2_21
https://asmjit.com/
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/MM.2022.3178068
https://doi.org/10.1109/MM.2022.3178068
https://doi.org/10.14778/3151113.3151114
https://doi.org/10.14778/3151113.3151114
https://doi.org/10.1109/PACT52795.2021.00011
https://doi.org/10.1145/3572848.3577475
https://api.semanticscholar.org/CorpusID:209379505
https://api.semanticscholar.org/CorpusID:209379505
https://doi.org/10.1109/ICCL.1998.674164
https://doi.org/10.1109/ICCL.1998.674164
https://luajit.org/dynasm.html
https://luajit.org/dynasm.html

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Florian Drescher and Alexis Engelke

[34] Filip Pizlo. 2020. Speculation in JavaScriptCore. Retrieved 2023-20-04
from h�ps://webkit.org/blog/10308/speculation-in-javascriptcore/

[35] Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek.
1997. Tcc: A System for Fast, Flexible, and High-Level Dynamic
Code Generation. In Proceedings of the ACM SIGPLAN 1997 Confer-

ence on Programming Language Design and Implementation. 109–121.
h�ps://doi.org/10.1145/258915.258926

[36] L.-N. Pouchet and T. Yuki. 2015. PolyBench: The Polyhedral Bench-

marking suite. Retrieved 2024-01-19 from h�ps://web.cs.ucla.edu/

~pouchet/so�ware/polybench/

[37] Todd A. Proebsting. 1995. Optimizing an ANSI C Interpreter with
Superoperators. In Proceedings of the 22nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. 322–332. h�ps:

//doi.org/10.1145/199448.199526

[38] Gerald Sussman and Guy Steele. 1998. Scheme: A Interpreter for
Extended Lambda Calculus. Higher-Order and Symbolic Computation

(12 1998), 405–439. h�ps://doi.org/10.1023/A:1010035624696

[39] Transaction Processing Performance Council. 2023. TPC Benchmark

H. Technical Report. Transaction Processing Performance Council.
[40] Nicolas Vasilache, Oleksandr Zinenko, Aart J. C. Bik, Mahesh Ravis-

hankar, Thomas Raoux, Alexander Belyaev, Matthias Springer, Tobias
Gysi, Diego Caballero, Stephan Herhut, Stella Laurenzo, and Albert
Cohen. 2022. Composable and Modular Code Generation in MLIR: A
Structured and Retargetable Approach to Tensor Compiler Construc-
tion. CoRR (2022).

[41] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Daynès, and Douglas Simon. 2013. Maxine: An Ap-
proachable Virtual Machine for, and in, Java. ACM Trans. Archit. Code

Optim. (2013). h�ps://doi.org/10.1145/2400682.2400689

[42] Haoran Xu and Fredrik Kjolstad. 2021. Copy-and-Patch Compilation: A
Fast Compilation Algorithm for High-Level Languages and Bytecode.
Proc. ACM Program. Lang. (2021). h�ps://doi.org/10.1145/3485513

Received 13-NOV-2023; accepted 2023-12-23

12

https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://doi.org/10.1145/258915.258926
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://doi.org/10.1145/199448.199526
https://doi.org/10.1145/199448.199526
https://doi.org/10.1023/A:1010035624696
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/3485513

	Abstract
	1 Introduction
	2 Background: MLIR
	3 Template Generation
	3.1 Instruction Prerequisites
	3.2 Capturing Instruction Semantics
	3.3 Lowering & Compilation
	3.4 Binary Format
	3.5 Case Study: Templates for the LLVM Dialect

	4 Run-time Compilation of Templates
	4.1 Selection
	4.2 Instantiation
	4.3 Fixup and Wrapper Function

	5 Optimizations
	5.1 Constant Evaluation
	5.2 Template Calling Convention
	5.3 Register Caching
	5.4 Higher-Level Optimizations

	6 Target Architecture Considerations
	7 Evaluation
	7.1 Impact of Optimizations
	7.2 LingoDB — an MLIR-based Database Engine
	7.3 PolyBenchC
	7.4 CoreMark and SPECint 2017
	7.5 Compile-time Analysis

	8 Discussion and Future Work
	9 Related Work
	10 Summary
	References

