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Abstract

Dynamic neural networks (NNs), which can adapt sparsely
activated sub-networks to inputs during inference, have shown
significant advantages over static ones in terms of accuracy,
computational efficiency, and adaptiveness. However, exist-
ing deep learning frameworks and compilers mainly focus on
optimizing static NNs with deterministic execution, missing
optimization opportunities brought by non-uniform distribu-
tion of activation in dynamic NNs. The key to optimizing
dynamic NNss is the traceability of how data are dynamically
dispatched to different paths at inference. Such dynamism
often happens at sub-tensor level (e.g., conditional dispatch-
ing tokens of a tensor), thus hard for existing tensor-centric
frameworks to trace due to misaligned expression granularity.

In this paper, we present Brainstorm, a deep learning frame-
work for optimizing dynamic NNs, which bridges the gap by
unifying how dynamism should be expressed. Brainstorm
proposes (1) Cell, the key data abstraction that lets model de-
velopers express the data granularity where dynamism exists,
and (2) Router, a unified interface to let model developers
express how Cells should be dynamically dispatched. Brain-
storm handles efficient execution of routing actions. This
design allows Brainstorm to collect profiles of fine-grained
dataflow at the correct granularity. The traceability further
opens up a new space of dynamic optimization for dynamic
NN to specialize their execution to the runtime dynamism
distribution. Extensive evaluations show Brainstorm brings
up to 11.7x speedup (3.29 x on average) or leads to 42% less
memory consumption for popular dynamic neural networks
with the proposed dynamic optimizations.

1 Introduction

As deep neural network models become large and complex, it
is more and more challenging to sustain the growth of model
size due to the increased computing requirement. The key

*This work is done while Weihao Cui and Lingji Ouyang are interns in
Microsoft Research

limitation is the static activation of a whole network regard-
less of inputs, which is much less efficient than a human brain
that can dynamically and sparsely activate neurons related to
perceived information. Therefore, there have been numerous
efforts by machine learning researchers to design dynamic
neural networks that can feed inputs into different sub-neural
structures or parameters of a large model during inference.
Dynamic neural networks have shown favorable properties
including efficiency [1-8], adaptiveness [1, 9, 10], general-
ity [1,9, 11, 12], and interpretability [9, 13]. For example, by
designing a large number of expert sub-networks but only
conditionally activating a small subset of them, Mixture-of-
Expert (MoE) has helped to scale Transformer to trillions of
parameters and achieve superior performance [14, 15].

Unfortunately, existing deep learning (DL) frameworks are
not yet effective for running dynamic neural networks. Their
optimization mainly focuses on static neural networks, whose
operator execution order is deterministic for all inputs. It has
been widely studied in compilers for general programs (e.g.,
Java, C#) to leverage runtime characteristics of programs to
dynamically optimize their execution [16, 17]. By analyzing
runtime profiles of dynamism, we find many dynamic NNs
have similar opportunities due to their non-uniform distribu-
tion of branch activation or token dispatching, which can be
further utilized for dynamic optimization.

However, existing tensor-centric programming models can-
not support dynamic optimization well. The major challenge
is the misaligned expression granularity, i.e., tensor-centric
compilers can only trace how data flows at the tensor level
in a static dataflow graph (DFG), but dynamism often hap-
pens at the sub-tensor level in dynamic NNs. For example,
Mixture-of-Experts (MoE) networks use hidden dimensions
within input tensors to represent the concept of “tokens”,
which are dynamically reordered to activate parallel expert
sub-networks with different tokens. It is critical for dynamic
optimizations to collect profiles of dynamism, which is hard
for existing compilers because they have no knowledge about
what “tokens” are and how they are dynamically dispatched.

In this paper, we present Brainstorm, the first framework to
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Figure 1: Examples of dynamic neural networks routing at
token-level, patch-level, and pixel-level.

optimize the execution of dynamic NNs. Brainstorm unifies
the expression of dynamic NN to make their dynamism easy
to trace. At the core of Brainstorm is a new data abstraction
called Cell that lets model developers describe the granularity
of dynamism, e.g., a token inside a tensor. To make Cell-level
dataflow traceable, Brainstorm unifies the Router interface
to let model developers express how Cells should be dynam-
ically dispatched among multiple branches. Brainstorm can
collect the runtime profiles of Routers with negligible over-
head. Inspired by profile-guided optimization of programming
languages [16-20], Brainstorm proposes four dynamic opti-
mizations with statistical analysis of Cell-level dataflow: (1)
by analyzing the number of Cells routed to branches, horizon-
tally fuses multiple branches with GPU kernels optimized for
frequent Cell loads; (2) with cross-layer Cell-level analysis,
optimizes distributed placement of parallel branches to mini-
mize inter-GPU communication; (3) with branch activation
profiles, speculatively launches branch operators to hide rout-
ing overhead; and (4) speculatively preloads branch weights
to save GPU memory.

We implement Brainstorm based on PyTorch by extending
it with Cell and Router. We have implemented 6 state-of-the-
art dynamic NNs using Brainstorm’s APIs, which are exten-
sively evaluated on Nvidia GPUs. With the proposed dynamic
optimizations, our evaluation shows Brainstorm achieves up
to 11.7x speedup (3.29 x on average) or reduces memory con-
sumption by 42%, compared with state-of-the-art solutions.
We open-source Brainstorm to encourage more optimizations
for dynamic NNs'. The key contributions are as follows.

* We identify a new space of optimization for dynamic NNs
by leveraging the statistical profiles of dynamism to spe-
cialize model execution to runtime dynamism distribution.

* We identify the major challenge of optimizing dynamic NNs
in existing DL frameworks is the misaligned granularity
between the tensor-level programming and the fine-grained
dataflow required to trace.

!Code available at https: //github.com/Raphael-Hao/brainstorn

* We unify the programming of dynamic NNs with Cell and
Router abstraction, making dynamism easy to trace.

* We propose multiple dynamic optimization strategies, lever-
aging the Cell-level dataflow analysis, which are shown
effective for popular dynamic NNs.

We explain background and motivation in §2. We introduce
Brainstorm’s key abstraction in §3. Four dynamic optimiza-
tions are proposed in §4. We present Brainstorm’s Cell-level
dataflow analysis in §5. We explain the implementation in §6.
We show the evaluation results in §7. We discuss handling
distribution drift and other opportunities in §8. We compare
with related works in §9. We conclude this paper in §10.

2 Background and Motivation

Dynamic Neural Networks. To mimic how the human
brain works, the machine learning community actively works
on how dynamic NNs should be designed. Various types of
dynamism have been proposed to adapt the model structures
and parameters to different inputs. Figure 1 illustrates repre-
sentative patterns of dynamic NNs. The most common way
of building a dynamic NN is to adaptively dispatch (parts
of) inputs to different sub-networks with a routing mecha-
nism. A common functionality, referred to as a router in this
work, predicts which sub-network the input values should go
through. Many routing policies have been proposed for dif-
ferent tasks, e.g., top-k router [3]. Sub-networks in different
branches could have different weights, architectures, or the
number of parameters to better fit the routed inputs. For exam-
ple, MoE networks train parallel experts and dispatch input
tokens into different expert sub-networks, each of which is ex-
pected to specialize in certain input categories [14, 15,21,22].
ClassSR [10] routes image patches to heterogeneous branches
based on super-resolution difficulty. Skip-Conv [23] routes
new pixels to computation and skips duplicated pixels of pre-
vious frames. Model developers often use a tensor to store
multiple tokens/patches/pixels, and program sub-tensor dy-
namism using data movement operators like einsum [24].

Dynamic optimization opportunities. It has been widely
studied in programming languages [25,26] to leverage sta-
tistical profiles of program dynamism for just-in-time (JIT)
optimization, e.g., HotSpot JVM speculatively trims paths
never executed in collected runs [16]. However, optimizations
in existing DL frameworks mainly focus on static NNs. They
miss a lot of dynamic optimization opportunities brought by
neural network dynamism.

Figure 2 illustrates routing distribution of four dynamic
NNs. Figure 2a and Figure 2b are two dynamic NNs dispatch-
ing tokens and patches to different branches, respectively. We
observe their distribution of tokens/patches is imbalanced:
some branches receive non-negligibly more data than oth-
ers. They have opportunities to tune efficient GPU kernels to
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Figure 2: Distribution of routing in four dynamic NNs.

fit their shapes to load distribution, which could potentially
bring over 10x speedup. Also, these parallel branches can be
horizontally fused for concurrent execution (§4.1).

We also identify optimization opportunities by analyzing
statistics of multi-layer correlation. Figure 2c¢ illustrates the
multi-layer correlation of TaskMoE [27], which is the portion
of tokens from an expert at Layer-0 routed to another expert
at Layer-1. We find the branch activation of two consecutive
layers is correlated, e.g., it has a high probability that Expert-
14/15 of Layer-1 will be activated after Expert-0 of Layer-O0.
Up to 87% of inter-GPU communication can be saved by
co-locating correlated experts on the same GPU (§4.2).

Figure 2d shows branch activation of selected routers from
DynamicRouting [28], which has 186 routers trained to for-
ward images to one or two branches among three branches.
Our measurement shows it spent over 44% time on routing.
However, many routers have a biased distribution that tends to
activate the same branch at different runs. E.g., Router-3 has
a high probability of choosing Branch-1 and Branch-2. They
create an opportunity for speculative execution, e.g., skipping
routing computation to reduce routing overhead (§4.3), or
opportunistically preload weight to GPU memory (§4.4).

Moreover, we find many dynamic NNs can be optimized
by multiple dynamic optimizations simultaneously. The key
requirement of these optimizations is the ability to collect
statistical profiles at the granularity where dynamism happens,
which is not explored by existing DL frameworks.

Misaligned programming model. The misaligned pro-
gramming model is the major obstacle to tracing dynamism
profiles in existing frameworks. As shown in Figure 1, lan-
guage tasks typically route at the granularity of tokens from
input sentences; vision tasks route patches from input images;
video models partially reuse previous pixels depending on
inter-frame similarity. All the dynamism happens inside the
tensor of sentences, images, or frames. Existing frameworks

optimize models with a static dataflow graph, which expresses
only the relation of tensors and operators. They have no abil-
ity to collect necessary profiles at runtime. Without explicit
specification by model developers, they cannot understand
what tokens are and how they are dynamically dispatched,
let alone trace the complex token-level dataflow as Figure 2¢
requires. Moreover, tensor-level programming can only be
applied with operator-level optimization (e.g., operator fu-
sion) without the ability to optimize more fine-grained data
movement or computation. These challenges motivate Brain-
storm to propose a principled design to let model developers
expose the information that needs to be traced and leverage
the collected profiles for dynamic optimizations.

3 Cell and Router as the Core Abstraction

For model developers to express dynamic NNs in a traceable
manner, Brainstorm unifies the model expression with Cell
and Router to build dynamism at the correct granularity.

Cell. To let model developers define the data granularity
where dynamism happens, Brainstorm augments a traditional
tensor with a data abstraction called Cell. The Cell is the
basic unit to be dynamically dispatched among multiple
branches. Model developers can annotate any tensor using the
brt.annotate_cell API to specify the granularity of Cells
in a tensor (brt is the package name of Brainstorm).

brt.annotate_cell (tensor, dims, shape)

Model developers need to specify the values in which dimen-
sions (dims) and which shape (granularity) to route. Figure 3
shows three examples that route values in Cells at the gran-
ularity of token, patch, and pixel, respectively. The first ex-
ample routes a tensor with three tokens located at the O-th
dimension (dims=(0) ), each represented by a vector of 768
float values (shape=(1,768)). The second and third exam-
ples route 32x32 patches (shape=(32,32)) and 1x1 pixels
(shape=(1,1))in a 2D image tensor (dims=(0, 1)).

Router. To dynamically dispatch Cells, Brainstorm intro-
duces a unified Router API that supports customized rules
via router_fn to decide the dynamic placement of Cells
among multiple branches. The API definition of Router and
router_fn are elaborated as follows?.

class Router:

def _ init__ (router_fn : Func)

def forward(x : Tensor, kwargs) : Tuple[Tensor], Routes

def router_fn(x : Tensor, kwargs) : Routes

When initializing a Router, the router_fn should be speci-
fied to define the routing rule, i.e., how Cells should be routed
among multiple branches. The router_fn takes the tensor

2We only show routing Cells of a single tensor. Multi-tensor routing has
similar APIs, which are omitted due to the limited space.
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Figure 3: Examples of routing Cells at token-level, patch-
level, and pixel-level. router_fn generates routing decisions
indicating branch IDs should Cells be routed to (-1 for drop-
ping), collected by the JIT profiler for dynamic optimization.

annotated with Cells as inputs and generates a special ten-
sor Routes, whose value indicates which branch should Cell
go. The shape of Routes has the same layout as Cells of the
source tensor to route. E.g., the second example in Figure 3
has 6 x 4 patches, thus router_fn should also generate 6 x 4
Routes. Auxiliary inputs can be set in kwargs when making
routing decisions. In the forward process of a model, Router
feeds the input tensor to router_fn to get routing decisions
for Cells, then dispatch Cells to corresponding branches. It is
easy to port existing code of dynamic NNs to Brainstorm, e.g.,
we modify only 12 lines of code to port the official PyTorch
implementation of SwitchTransformer [14] to Brainstorm.

Brainstorm’s Router abstraction decouples control-flow of
deciding how Cell should be dynamically dispatched from its
execution. Depending on runtime profiles, the optimal execu-
tion strategy varies greatly. Brainstorm eases model develop-
ers from challenging execution optimizations. They only need
to focus on designing routing logic and leave execution op-
timizations to Brainstorm. The Routes given by router_fn
are collected by JIT Profiler to get statistical profiles. Brain-
storm’s dynamic optimizations analyze these statistics to find
the most efficient execution strategy (§4).

Behind Router are a series of efficient GPU operations to
realize the routing actions specified by router_fn. When
branches receiving Cells are located on the same GPU, Brain-
storm uses an efficient data rearrangement GPU kernel to gen-
erate multiple tensors containing Cells routed to each branch.
Unlike existing solutions that heavily use computation opera-
tors (e.g., einsum) for fine-grained dynamic data rearrange-
ment, Brainstorm uses a GPU kernel to directly move data to
avoid unnecessary computation. When Cells are distributed
to multiple GPUs, Brainstorm has a sparse communication
primitive to efficiently scatter and gather Cells. Compared
with the commonly used all-to-all primitive in existing DL

Single layer Multi-layer Branch
Cell Loads Cell Correlation Activation
Dynamic v
Horizontal Fusion
Profile-Guided Placement 4 4
Speculative Routing v
Speculative Preloading v

Table 1: The statistical information used by different dynamic
optimization strategies in Brainstorm.

frameworks [22,29], Brainstorm’s sparse communication is
more efficient when Cells are routed unevenly to multiple
GPUs because it avoids unnecessary communication due to
padding (refer to §6 for implementation details).

Comparison to IR with control-flow. Different from inter-
mediate representations (IR) of existing DL frameworks that
mix control-flow and dataflow together, Brainstorm chooses
a decoupled design with Router. Brainstorm’s dataflow graph
hides complex control-flow of Router behind router_fn. A
Router can be regarded as a data distribution operator dynam-
ically dispatching Cells of tensors to multiple branches. This
greatly eases the tracing and analysis of Cell-level dataflow be-
cause compilers no longer need to separate dynamism-related
operators from dataflow graphs, which is hard for DL frame-
works [30-32]. Actually, instead of knowing how routing
logic is constructed, it is more useful for compilers to know
statistical information about routing decisions, which is suffi-
cient to be captured by Brainstorm’s Router.

Moreover, Brainstorm further enhances control-flow opera-
tors in existing IR with Cell-level routing ability. Brainstorm’s
Router itself can be regarded as a switch-case operator to route
Cells to different branches for conditionally applying different
functions. Together with a while-loop operator, a dynamic NN
can route some Cells back to loop entry for the next iterations,
and drop others to the output, which is commonly used by
auto-regressive decoding of language tasks.

4 Dynamic Optimizations

Brainstorm analyzes the collected program execution profiles
to improve runtime performance. Different from traditional
dynamic optimization that analyzes the invocation of program
functions or code blocks, the key for optimizing dynamic
NNss is to profile and analyze Cell-level dataflow to specialize
model execution to runtime dynamism distribution. In this
section, we introduce four dynamic optimizations we identi-
fied for dynamic NNs. More optimizations are possible with
Brainstorm’s Cell and Router abstraction.Table 1 lists the
required information to conduct each dynamic optimization.

4.1 Dynamic Horizontal Fusion

Horizontal fusion is a compiler optimization to fuse concur-
rent branches of a model into a fused operator to improve
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GPU Compute Unit (CU) utilization and reduce launching
overhead. Existing approaches [33,34] cannot be applied to
dynamic NN, because they assume a static dataflow graph
whose branches are all activated with the same input. Brain-
storm introduces a dynamic horizontal fusion optimization
that supports dynamically and sparsely activated branches so
that they can be executed on GPU simultaneously.

Especially, as we have shown in Figure 2, the Cell distri-
bution can be very imbalanced for dynamic NNs. Even for
large batch size, it can still accelerate the model execution
by dynamical horizontal fusion of branches receiving a few
numbers of Cells. Brainstorm leverages the profiles collected
from Router to extract the statistical loads of each branch,
i.e., how many Cells are routed to each branch. Brainstorm
finds multiple percentiles (e.g., 50%, 90%, 100%) of the Cell
load distribution, and tunes GPU kernels for these shapes.
All tuned kernels are fused into one operator. At inference,
Brainstorm pads the input of each branch to the nearest tuned
kernel. This requires the traceability of the dynamic Cell-level
dataflow at runtime that we explain how Brainstorm achieves
it in §5.2. Note that the dynamically fused GPU kernel only
uses the weights of activated branches without needing to
load the weights of all branches into the GPU memory.

Figure 4 shows an example of routing 112 Cells among four
parallel branches. Only three of the branches (only known
at runtime) are activated. Before horizontal fusion, the three
activated branches have to be executed sequentially, which
may not saturate the GPU CU utilization. After fusing all
branches into one GPU kernel, GPU can execute the activated
branches simultaneously at a higher CU utilization. Each
branch is executed with the tuned kernel of the least padding
for the most efficient execution. For example, the fused kernel
contains two tuned kernels of Conv 3x3 for 32 Cells and 64
Cells, which is used by the first two Conv 3x3 branches in the
network by padding 4 and 2 Cells, respectively.

4.2 Profile-Guided Model Placement

The cerebral cortex of human brain is organized into distinct
areas, whose neurons of a function are located closely [35].
By analyzing statistical routing decisions, we observe similar
effects in artificially designed dynamic NNs. As shown in Fig-

GPUO

Branch 1 l

Default Placement

Optimal Placement

Figure 5: Profile-guided model placement. The example
shows the default placement has 90% inter-GPU traffic, which
is reduced to 10% by the optimized placement.
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Figure 6: Speculative routing: skip routing computation and
speculatively launch the branch w/ highest probability; unroll
and relaunch to correct branches when mispredicted.

ure 2c, experts from two layers are activated together with a
high probability. The Cell-level communication between these
highly-correlated experts is higher than the others. Figure 5
illustrates an example that, by analyzing the multi-layer corre-
lation, Brainstorm can co-locate correlated sub-networks on
the same GPU to reduce inter-GPU communication. Note that,
in addition to dynamic Cell-level dataflow collected at run-
time, the multi-layer correlation also needs to analyze static
Cell-level dataflow to infer correct placement constraints. Our
analysis in §5.1 shows each Cell of a sentence tensor depends
on all Cells from the previous MoE layer. This implies a
placement constraint that all Cells of a sentence should be
gathered at the same GPU so that its self-attention operator
can generate correct outputs. This presents a challenge requir-
ing both dynamic and static Cell-level dataflow analysis to
understand the inter-layer correlation of Cells. We explain
Brainstorm’s static Cell-level dataflow analysis in §5.1.

In addition to cross-layer analysis, we find single-layer Cell
distribution like Figure 2a can also help model placement.
Some branches could take more Cells than others. Heavy
branches can be co-located with light branches to balance the
overall communication to avoid stalling on some GPUs.

4.3 Speculative Routing

Model developers often build routing logic involving control
flows, which may require CPU processing and incur CPU-
GPU synchronization overhead. Compared to their theoret-
ical performance (based on FLOPs), routing overhead may
dominate the inference latency. Our measurement shows MS-
DNet [1] and DynamicRouting [28] spend 65% and 44%
time in routing. We find these model often has a biased
probability when selecting branches at inference. Our analy-

USENIX Association

17th USENIX Symposium on Operating Systems Design and Implementation 801



CPU Router | Weight Loading |
On-demand GPU @
Loading .

Branch 2
2§
vz

[ Router ]
cPU 47

Speculative
P GPU I Pre-routing IWeightLoadingl%

Loading
— Branch ID

Figure 7: Speculatively preload weights with the highest prob-
ability; fallback to on-demand loading when mispredicted.

Weight Loading

I
!
\,

P(activate)

GPU
Mem
°
-
~

sis of Brainstorm’s Router profiles shows many Routers are
highly predictable. Brainstorm can predict the decisions of
DynamicRouting [28] with an accuracy over 90% by just
choosing the most frequently appeared branches (§7.4.6). As
Figure 6 shows, Brainstorm can predict the routing decisions
of Routers in advance (based on statistical profiles) and skip
router_fn to hide the routing overhead. To guarantee the
correctness, Brainstorm uses a parallel thread to check the
result of router_fn. When misprediction happens, the model
execution will be unrolled to re-execute the correct branch
with negligible misprediction overhead (§7.3).

4.4 Speculative Weight Preloading

To run inference of a large model on a limited size of GPU
memory, it often requires swapping weights of layers between
GPU memory and host memory to reduce the GPU memory
requirement [36]. To hide the memory migration latency, ex-
isting solutions need to know the execution order of layers to
preload necessary weights while executing previous layers in
a pipelined manner [37,38]. However, dynamic NNs do not
have a static order of layer execution. The execution of dy-
namically activated branches is only known when the routing
decisions are made. This makes it hard for existing solutions
to preload weights of dynamic layers. As shown in Figure 7,
similar to speculative routing, Brainstorm leverages the statis-
tical profiles of branch activation distribution to speculatively
preload weights of branches that can be activated with a high
probability. It falls back to on-demand loading with negligible
overhead (§7.3) when the predictive preloading misses.

S Tracing Cell-level Dataflow

To realize optimizations in §4, it is important to understand
how Cells are transmitted along a network so that the com-
piler can leverage the Cell-level dataflow to optimize model
execution. In dynamic NNs, there are two types of Cell-level
dataflow: (1) static dataflow existing in most static operators
(e.g., Conv2D), which is fixed for all inputs; and (2) dynamic
dataflow, which is determined by Routers at runtime. The
former is to understand Cell’s relationship across static layers;
the latter is to identify the Cell routing among branches.
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Figure 8: Different types of static dataflow at Cell-level.

5.1 Static Cell-level Dataflow

Tensor-centric dataflow graphs only preserve relations be-
tween tensors without the information of Cells. To trace all
possible Cell-level dataflow of static operators, Brainstorm
uses symbolic execution at Cell-level to extract finer-grained
relations in ahead-of-time compiling. With the annotated
Cells of a tensor, Brainstorm initializes a symbolic version of
the tensor, whose Cells are symbols. Tensor values belonging
to one Cell share the same symbol. Brainstorm leverages the
tensor expression of operators (widely used in DL compil-
ers [39]) to build computation logic of operators. By checking
the results of symbolic computation, Brainstorm understands
how Cells are transmitted in static operators.

Figure 8a illustrates three examples of matrix multiplica-
tion between a tensor of multiple Cells and a constant matrix.
The tensor has two Cells annotated as A and B. The first pre-
serves Cell positions; the second reorders Cells; the third
mixes all Cells in the output. This example shows the static
Cell-level dataflow could vary when the tensor values are dif-
ferent. It is hard for tensor-level dataflow analysis to obtain
this finer-grained relation. Figure 8b demonstrates the static
Cell-level dataflow of the self-attention operator between two
MOoE layers. Because there is a matrix multiplication between
two tensors in the self-attention operator and both tensors
contain Cells of X;, this self-attention operator mixes all Cells
from input X to generate the output Y. With symbolic execu-
tion of Cells, we can derive the relations between the Cells in
X and Y, i.e., every Cell in Y is derived from all Cells in X.

The static Cell-level dataflow analysis is necessary to de-
rive cross-layer relations of Cells, which is important in data
movement-related optimization. It allows Brainstorm to ex-
plore data movement at the Cell-level, breaking the limitation
of tensor-level data movement when optimizing multi-GPU
execution. For example, if Cells are only reordered without
mixing (e.g., the first two types in Figure 8a), the frame-
work has more freedom to dispatch Cells among multiple
GPUs based on their data locality for better performance. For
MoE-based models, because the tokens are mixed up in the
self-attention layer, it introduces a constraint that requires
aggregating all tokens of a sentence to the same GPU before
self-attention to derive the output. As we have shown in §4.2,
this requirement creates constraints of how Cells should be
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Figure 9: The system architecture of Brainstorm. Shaded
components are introduced by Brainstorm for dynamic NNs.

dynamically placed in optimization, which is only known
after the static Cell-level dataflow is analyzed.

5.2 Dynamic Cell-level Dataflow

In Brainstorm, model developers express dynamism using
Router. The routing logic is defined in router_fn, which
generates routing decisions of Cells at runtime. Brainstorm’s
Router abstraction makes it easy to trace the necessary in-
formation. Similar to dynamic optimization of traditional
programming languages, Brainstorm focuses on collecting
statistical profiles of routing decisions without caring about
how they are generated.

If Cell-level profiling is enabled, when each time a Router
is called, Brainstorm records its routing decision into a buffer.
Brainstorm has a separate thread to stream the buffer to a
profile file. Brainstorm supports multi-level profiling. Some
optimizations only require local statistical profile of Router
(e.g., branch load of Cells). Some optimizations require Cell-
level dataflow across multiple layers, thus needing to dump
raw decisions directly. As control signals, routing decisions
are much smaller than other data tensors in dynamic NNs. Our
evaluation in §7.3 shows the profiling overhead is negligible.

6 Implementation

We implement Brainstorm on Pytorch with 13,000 LOC:
3,000 lines for Brainstorm core abstraction, 3,000 lines for
dynamic optimizations, 3,000 lines of C++ code for kernel
scheduling and sparse Cell communication, and 1,500 lines
for auto-transformation to support dynamic optimizations.
Figure 9 summarizes Brainstorm’s architecture. In addition
to widely-used Tensor and Operator in existing frameworks,
Brainstorm introduces Cell and Router to express dynamic
NN in a unified abstraction (§3). The programmed dynamic
NN will be optimized by the compiler with both static and dy-
namic optimizations (§4). Brainstorm’s dynamic optimization
needs both static and dynamic Cell-level dataflow analysis
(§5). Brainstorm first infers the static Cell-level dataflow in
static operators (§5.1) in an ahead-of-time manner. When
executing the compiled model, a JIT profiler collects Router
profiles for further dynamic dataflow analysis (§5.2).

Efficient Cell routing. Brainstorm is responsible for dy-

Cells on Node1 for Bracnh 0:
Extra Padding: G
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ED) /\ 05 ) Permute (5 12
12 ] 12 ] 0-3 ]
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Dense distributed routing Brainstorm sparse distributed routing

Figure 10: Sparse All-to-All for distributed Cell routing. It
saves redundant communication of extra padding.

namic Cell dispatching that is aware of dynamic optimization
applied, leaving model developers to focus on designing the
routing algorithm. For Cell routing on a single GPU, we
use a custom GPU kernel to rearrange Cells inside a ten-
sor according to the routing decisions. We borrow the idea
from Tutel [22] for MoE models by rearranging Cells for
all branches in parallel with a custom GPU kernel. But our
implementation is general to all dynamic NNs in addition
to MoE models. Moreover, our implementation is aware of
the dynamic optimization applied. For instance, a dynamic
horizontal fused operator may contain GPU kernels of varied
sizes, thus requiring variable padding. For Cell routing across
multiple GPUs, we provide a more flexible sparse commu-
nication primitive. As shown in the left of Figure 10, model
developers often combine dense all-to-all primitive and per-
mutation operations for distributed Cell routing. Its efficiency
is restricted to balanced routing. With Brainstorm’s sparse
communication, it only transmits Cells without extra padding.
The underlying implementation of sparse communication is a
collection of point-to-point communication. However, it can
adapt to the dynamic optimization’s requirements and provide
the most efficient communication mechanism.

Excessive Candidates for Kernel Fusion. Brainstorm
fuses multiple branches into one kernel function, each com-
prising several potential candidates. At runtime, Brainstorm
triggers suitable candidates based on the dispatched Cells.
However, excessive kernel candidates derived from profiling
analysis can lead to considerable time overhead when search-
ing for them using auto-tuning tools [39]. To avoid issues in
this case, Brainstorm only fuses a limited set of candidates
of each branch. Meanwhile, kernel candidates are shared be-
tween branches if the fused branches are homogeneous (the
same operator only with different weights). For instance, since
SwitchTransformer uses the same feed-forward layer for its
experts, Brainstorm only needs six candidate kernels to opti-
mize the execution of 256 experts per layer (§7.4.1).

Optimization Passes. Most automatic transformations in
Brainstorm are implemented with torch.fx. With the
dataflow graph traced by torch.fx, Brainstorm uses the
statistical profiles collected from Routers to manipulate the
dataflow graph for optimization. E.g., in dynamic horizon-
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Model Dataset [ Fusion [ Place [ Route [ Load

Switch [14] MNLI [40] v
TaskMoE [27] Synthetic v
SwinV2-MoE [41] | ImageNet22k [42] v
LiveSR Towa-DOT [43] 4
DRouting [28] Cityscapes [44] v 4
MSDNet [1] Imagenet [42] v v

Table 2: Benchmark specifications. (Fusion: Dynamic Hori-
zontal Fusion; Place: Profile-Guided Placement; Route: Spec-
ulative Routing; Load: Speculative Weight Preloading.)

tal fusion, we replace operators of multiple branches in the
dataflow graph with the generated fused kernel of multiple
shapes and change Router to pad tensors to supported shapes
while routing Cells. For speculative routing, we reorder opera-
tors in the dataflow graph to skip and unroll routing logic. For
speculative weight loading, we collect parameters of branches,
and insert extra operators for loading and unloading them at
runtime. The profile-guided model placement is an excep-
tional case, as the loading of model weights falls outside the
scope of torch. £x. Before inference, Brainstorm loads cor-
responding weights given by the placement plan derived from
the statistical profiles. At runtime, Brainstorm’s Router will
translate routing decisions given by router_fn according to
the placement to route Cells to the appropriate devices.

Selecting Dynamic Optimizations. Given a dynamic
model, we use a rule-based policy to select dynamic opti-
mizations. Dynamic horizontal fusion is used for models with
parallel branches when a single branch cannot saturate GPU
cores. Profile-Guided model placement is used for multi-GPU
inference. Speculative routing and weight preloading are en-
abled when routers block GPU kernel submission. Speculative
weight preloading is used when GPU memory is limited, and
paging is used. Table 2 has listed the dynamic optimizations
applied to each model. For example, LiveSR is a lightweight
super-resolution model, and a single branch may not satu-
rate a GPU. Thus we apply dynamic horizontal fusion to it.
Also, MoE-based models are usually large language mod-
els requiring multi-GPU deployment. Therefore we apply the
placement optimization. The input for TaskMOoE is sufficiently
large for high GPU utilization, thus no need for horizontal
fusion.

7 Evaluation

We evaluate the performance of Brainstorm (BRT) on six repre-
sentative dynamic NNs. We compare Brainstorm with various
approaches to execute and optimize dynamic NN, including
PyTorch-native static optimizations and model-specific opti-
mizations (e.g., Tutel for MoE). Overall, Brainstorm achieves
up to 11.7x speedup (3.29x on average) or reduces GPU
memory usage by 42%.

Model | Switch | TaskMoE | SwinV2-MoE

LOC 12 24 14
Model | LiveSR | DRouting MSDNet

oc [ 6 [ 18 ] 14

Table 3: Lines of code for porting the model to Brainstorm.

7.1 Experimental Setup

Testbed. We evaluate Brainstorm with two separate setups
for single-GPU and multi-GPU experiments. The single-GPU
evaluations use a server with AMD-EPYC-7V13 CPUs and
one NVIDIA A100 (80GB) GPU running CUDA 11.3 and
cuDNN 8.6. The multi-GPU evaluations use a server with
Intel Xeon CPU E5-2690 v4 CPU and eight NVIDIA V100
(32GB) GPUs running CUDA 11.3 and cuDNN 8.2.

Benchmarks and datasets. Our evaluations are performed
to run inference of six representative dynamic NNs, covering
vision and natural language processing (NLP) tasks. Table 2
lists evaluated models, datasets, and dynamic optimizations
we apply in Brainstorm. SwitchTransformer (Switch) [14]
and TaskMOoE [27] are two MoE models for NLP, whose Cells
are defined at token level and sentence level, respectively;
SwinV2-MoE [22, 41], LiveSR, DynamicRouting (DRout-
ing) [28], and MSDNet [1] are four models for vision tasks.
SwinV2-MoE and LiveSR define a Cell at image patch level.
DynamicRouting and MSDnet use an image as a Cell. Statis-
tical profiles used for Brainstorm’s dynamic optimizations are
collected from training datasets and evaluated in test datasets.

Baselines. We mainly compare Brainstorm with PyTorch
and Tutel in all experiments. As far as we know, PyTorch is a
state-of-the-art framework that can flexibly support dynamic
neural networks (thanks to the expressiveness of Python).
The official implementation of all models we evaluated are
based on PyTorch and thus are compared in all evaluations in
this paper. Tutel is designed specifically for MoE. Thus we
only compared Brainstorm with Tutel on MoE-based models.
To evaluate the benefit of the new proposed dynamic opti-
mizations, Brainstorm and all baselines use the same static
optimizations (e.g., vertical kernel fusion) in all experiments.

7.2 Effectiveness of Brainstorm Abstraction

Expressiveness of Brainstorm. Brainstorm’s abstraction
can express various dynamic neural networks in a simple and
concise manner. Table 3 shows the lines of code for porting
the six dynamic neural network models to Brainstorm. Brain-
storm unifies the API of expressing routing logic through
Router and Cell. This only adds a marginal extra coding effort
to porting existing models and building new dynamic models.
Brainstorm eases the programming by providing common
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Figure 11: Latency of Brainstorm with or without profiling.
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Figure 12: Performance comparison of sparse all-to-all be-
tween PyTorch and Brainstorm.

router_fns (e.g., Top-K) and allows model developers to
construct more complex ones atop them.

Overhead of Tracing Dynamic Cell-level Dataflow. This
micro-benchmark presents the overhead of tracing dynamic
Cell-level dataflow. Figure 11 shows the latency variation
when tracing is on and off. The latencies of all models are
almost equal before and after tracing is enabled. The average
overhead is less than 1.0% for all models.

When routing actions are calculated at GPU, major over-
head comes from GPU kernels for statistics. The synchro-
nization overhead is negligible because Brainstorm dumps
profiles to the CPU periodically and asynchronously.

Effectiveness of Cell Routing. Brainstorm’s Router de-
couples routing logic from execution. Brainstorm has effi-
cient implementations to conduct dynamic data movement for
sparse communication. Figure 12 demonstrates two micro-
benchmarks for sparse communication, which is a multi-gpu
experiment. We randomly generate 1024 Cells routed from
one GPU to multiple GPUs. Figure 12a measures the la-
tency of PyTorch’s all-to-all collective (nccl [45] as backend)
and Brainstorm’s sparse communication with varied numbers
of branches and GPUs. Each Cell has 512 Float32 values
(same as TransformerBase [46]). Brainstorm achieves 1.88x
to 2.78 x speedup from 2 to 8 GPUs. Figure 12b shows Brain-
storm’s speedup with a varied Cell size from 32 to 2048
Float32 values, with 4 branches on each GPU. Brainstorm
achieves 2.13x to 2.66x speedup on 2 to 8 GPUs. Overall,
Brainstorm performs better than PyTorch in all experiments.
The root cause is the extra communication for padding us-
ing PyTorch’s all-to-all communication, which is avoided by
Brainstorm’s sparse communication.

10! -|+ Torch % BRT+VF - BRT+HF

Time (ms)

4+ 8 16 32 64
Number of Branches

128 256

I
IS

Figure 13: Latencies of serial execution, vertical fusion, and
dynamic horizontal fusion with variable branches

7.3 Micro Benchmarks

Dynamic Horizontal Fusion. In the micro-benchmark of
Brainstorm’s dynamic horizontal fusion, we build a simple
multi-branch network, each of which contains a Conv2D op-
erator. A Router dispatches 32x32 image patches to different
branches based on image content. Brainstorm tunes kernels
from 4 patches to 9 patches based on the collected Router
profiles. It is conducted on the single-GPU server.

Figure 13 presents the latencies of PyTorch’s serial exe-
cution (Torch), Brainstorm’s serial execution but with tuned
kernels (BRT+VF), and Brainstorm’s dynamic horizontal fu-
sion (BRT+HF).

Vertical fusion (VF) is the commonly used fusion of consec-
utive operators to reduce kernel launching overhead [39,47].
Compared to Torch, BRT+HF achieves up to 41.8 x speedup.
The improvement comes from two sources: the improved CU
utilization with concurrent execution of multiple branches,
and efficient kernels tuned for frequently appeared Cell loads.
By comparing BRT+VF and Torch, we identify the statistically
tuned GPU kernels that bring 13.1x speedup. The concurrent
execution of multiple branches further brings 3.18 x speedup
(BRT+HF/BRT+VF). Since dynamic horizontal fusion has an
overhead of extra GPU kernels to calculate input pointer ad-
dresses, we find BRT+HF performs slightly worse than BRT+VF
(12.3us on average) when the number of branches is small.

Profile-Guided Placement. In §4.2, we show that profile-
guided model placement can save inter-GPU communication
for dynamic NNs. In this micro-benchmark, we compare the
communication latency of default placement in PyTorch with
Brainstorm’s optimized placement. We conduct this experi-
ment on the multi-GPU server. We replace PyTorch’s commu-
nication with Brainstorm’s sparse communication to isolate
the improvement from efficient sparse communication. In the
default placement, each GPU-i routes 1024 tokens to each
branch on GPU-(i + 1) and 10 tokens per each other branch.
In the optimized placement, Brainstorm can route 1024 to-
kens to the same GPU without inter-GPU communication. In
Figure 14a, the Cell size is fixed to 512 Float 32 values for
evaluation with variable branches. Brainstorm achieves 2.45 x
to 6.23x speedup on 2 to 8§ GPUs. In Figure 14b, the number
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Figure 14: Performance comparison of sparse communication
of Brainstorm with (BRT+T) and without (BRT) the placement
optimization.
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Figure 15: Performance comparison of default execution and
hit/miss cases in speculative optimizations.

of branches on a single GPU is fixed to 4 with variable Cell
sizes. Brainstorm achieves 3.89 % to 6.65x speedup on 2 to 8
GPUs. Brainstorm achieves the improvement due to reduced
communication in the optimized placement. More branches
and larger Cell further increase inter-GPU communication
volume amplifying the gap between the default placement
and Brainstorm’s optimized placement.

Hit or Miss of Speculative Optimization. §4.3 and §4.4
introduce two speculative optimizations for dynamic NN,
i.e., speculative routing and weight preloading. The following
two micro-benchmarks demonstrate a comparison between
default execution and Brainstorm’s speculative optimization,
conducted on the single-GPU server. We build a simple net-
work routing an input tensor to 8 branches. Each branch has
20 gemm operators. Brainstorm speculatively executes Branch-
0 or loads Branch-0’s weights in the speculative routing and
weight preloading, respectively. Figure 15a shows inference
time with varied Router latency. When prediction hits, Router
latency can be hidden by gemm operators on the correct branch.
When prediction misses, these gemm operators will be un-
rolled. Brainstorm achieves a constant inference time when
prediction hits, and a similar inference time with the default
execution when prediction misses.

Figure 15b shows weight preloading overhead of the same
model but with varied weight sizes. Since only weights of the
activated branch are loaded, the GPU memory requirement
is reduced by 8x. When Brainstorm’s prediction hits, the

% 202 Toreh ™ Tutel BRT] g
£ 400 7
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Figure 16: Latencies of SwitchTransformer.

weights are speculatively preloaded before Router, whose
latency is hidden by previous computation and Router latency.
When prediction misses, Brainstorm falls back to the default
execution that loads weights of the correct branch. Brainstorm
achieves a consistent latency when prediction hits, and similar
latency with the default execution when prediction misses.

7.4 End-to-end Model Execution
7.4.1 SwitchTransformer

In SwitchTransformer, each expert has a capacity of 64 tokens
for each sentence. By analyzing Router profiles, we find an
imbalanced distribution of the number of tokens routed to
each expert (shown in Figure 2a). This motivates us to apply
dynamic horizontal fusion to execute experts in parallel with
GPU kernels tuned for different loads. We use the official
weights trained by Google with 8 to 256 experts per MoE
layer. The batch size is 8, and each sentence has 128 tokens.
The experiment is conducted on the single-GPU server.

Figure 16 shows latencies of SwitchTransformer with of-
ficial implementation in PyTorch (Torch), replacing MoE
layers with an optimized implementation from Tutel (Tutel),
and Brainstorm with dynamic horizontal fusion. The official
implementation executes experts in serial. Tutel runs experts
concurrently with BatchMatmul, which requires padding to
the same number of tokens for all experts. Brainstorm outper-
forms by 3.63%, and 3.33x compared to Torch, and Tutel,
respectively. The speedup increases with more experts in
each MoE layer. In addition to improved utilization of con-
currently executed experts, Brainstorm also benefits from
imbalanced token distribution. Because many experts only
receive a few tokens, Tutel pads many dummy tokens in all
paths, leading to vast wasted computation on padding. The
excessive padding also uses more GPU memory leading to
out-of-memory in Tutel when there are 256 experts. By
analyzing loads of different branches, Brainstorm compiles
multiple GPU kernels to minimize the padding.

7.4.2 LiveSR

LiveSR is our internal model for super-resolution, which slices
a single image into 32x32 patches and routes them to differ-
ent branches. It uses a ResNet-18 model to extract patterns,
which are then routed by K-nearest neighbor (kNN) to multi-
ple branches. By collecting the routing distribution of patches,
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Figure 17: Latencies of LiveSR in Brainstorm with vertical
fusion and dynamic horizontal fusion.

we find a distribution in the number of patches routed to each
branch (as shown in Figure 2b). This creates the opportunity
for Brainstorm to tune GPU kernels for frequently Cell loads.
Also, since different patches of an image are routed to differ-
ent branches, Brainstorm can horizontally fuse these branches
to concurrently execute them to improve CU utilization.

Figure 17 shows latencies of LiveSR with different opti-
mizations, while being executed on the single-GPU server.
BRT-HF applies dynamic horizontal fusion of both multiple
branches and multiple tuned kernels of different loads. To
dissect the improvement of both types of fusion, we evaluate
BRT-VF that only fuses Conv2D, BatchNorm, and ReLU oper-
ators in each branch but with statistically tuned GPU kernels.
In Figure 17, we vary both the number of branches with a
fixed number (8) of channels and the number of convolution
channels with a fixed number (10) of branches.

Overall, BRT+HF achieves up to 8.62x speedup compared
to BRT. BRT+VF brings a speedup up to 3.5x compared
with BRT. BRT+HF further brings 1.79x to 2.48 x gains over
BRT+VF with an increasing number of branches because of
the improved CU utilization with more branches. When in-
creasing the number of channels, we find the latency of Brain-
stormBRT+HF remains the same until it reaches 20 channels
as it goes beyond the upper bound of GPU CUs.

7.4.3 TaskMoE

TaskMoE routes input tensors at the granularity of the sen-
tence. Each MoE layer has 16 experts. Each sentence is routed
to 2 experts. The key difference of TaskMOoE is its routing
algorithm: it decides expert of a sentence based on task type.
Sentences of the same task will be routed to the same expert
branches. Therefore, as we have shown in Figure 2c, TaskMoE
has a strong inter-layer expert correlation that experts of the
same task are activated together with a high probability, which
brings the opportunity for profile-guided placement.
Brainstorm optimizes placement by reordering experts of
MOoE layers for the most efficient communication. Brain-
storm’s Routers are aware of reordering and dispatch sen-
tences to correct GPUs in the optimized placement. We con-
duct this experiment with three input settings: 256 sentences
on each GPU with 32/64 tokens in each sequence; 512 se-
quences on each GPU with 32 tokens in each sequence. The

256 Segs x 32 Tokens 256 Segs x 64 Tokens 51

2 Segs x 32 Tokens

Throughput (Seq/s)

qe\’“*ﬁe,;e\’“*ﬁe\")ﬂe
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Figure 18: Throughput of TaskMoE. Torch: routing with Py-
Torch’s native communication primitive. BRT: routing with
Brainstorm’s sparse communication primitive. BRT+P: place-
ment optimized routing over BRT.
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Figure 19: Throughput of SwinV2-MoE. G: the number of
GPUs. E: the number of experts per GPU.

task ID of each sequence is randomly generated. Since routing
of TaskMoE only works on task ID, the synthetic dataset does
not affect the optimal placement and evaluation conclusion.
Figure 18 shows the per-GPU throughput on 2-8 GPUs.
The experiment is conducted on the multi-GPU server. Com-
pared with Torch, BRT first brings up to 1.17x speedup with
efficient sparse communication. The speedup of BRT grows
with more GPUs because of the increased data volume for
inter-GPU transmission. Brainstorm’s sparse communication
saves unnecessary communication due to padding. On top
of this, BRT+P further achieves up to 1.34x speedup with the
optimized placement. The optimized placement derived from
runtime profiles helps BRT+P to reduce 42 ~ 87% inter-GPU
communication, speeding up routing of MoE layers.

7.4.4 SwinV2-MoE

SwinV2-MoE is the MoE-version of SwinTransformer [41]
for image tasks, introduced in Tutel [22]. It defines tokens as
Cells, each of which contains 384 f1oat32 values tokenized
from a 48x48 image patch. SwinV2-MOoE uses a capacity
factor to control the number of patches each expert receives.
When the capacity is exceeded, extra patches are dropped dur-
ing routing. The capacity factor varies in [1.25,2.0,3.0,4.0]
in the experiments. We evaluate SwinV2-MoE with 16 ex-
perts on the multi-GPU server by evenly placing the experts
on 2 GPUs, 4 GPUs, and 8 GPUs, respectively. The batch size
per GPU is 128 images for each inference.

Figure 19 shows throughput of four approaches: a PyTorch
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Figure 20: Gaps between the best and the worst placement
for MoE Layers in SwinV2-MoE with varied capacity factors.

implementation using DeepSpeed-MoE [48] (DeepSpeed),
optimized version with Tutel’s MoE kernels [22] (Tutel),
optimized version with Brainstorm’s Router (BRT), and
Brainstorm’s profile-guided placement optimization (BRT+P).
Brainstorm’s efficient Router first brings up to 5.04x and
1.52x speedup over DeepSpeed and Tutel, respectively.
Both BRT and Tutel use custom GPU kernels for efficient
routing inside a GPU, thus greatly outperforming DeepSpeed,
which uses einsum. With an increased capacity factor, BRT
brings higher speedup over Tutel because of saved inter-GPU
communication due to increased padding.

By optimizing expert placement via runtime profiles, we
find BRT+P only brings marginal improvement. After us-
ing Brainstorm’s efficient Router, SwinV2-MoE model only
spends up to 35% of time on inter-GPU communication,
which reduces the potential by further reducing communica-
tion overhead. Similar to TaskMoE, we do observe different
expert placements have greatly varied efficiency. Figure 20
shows our evaluation of a single SwinV2-MOoE layer to com-
pare the performance of the best placement and the worst
placement with 8 GPUs and 2 experts per GPU. The gap is up
to 1.26x speedup for ten SwinV2-MokE layers. The smaller
the layer id is, the more imbalance appears in token distri-
bution, creating more space for improvement by placement.
It shows great potential for larger MoE models with more
experts, whose communication latency dominates [22].

7.4.5 MSDNet

MSDNet [1] is a dynamic network that can adapt this exe-
cution path to the computational resource limits at test time.
The network contains 5 exits that allow the inference of an
image to end in the middle, if the output quality is higher than
the predefined thresholds. Users can configure the thresh-
old of each exit to control the inference cost. For instance,
[0,0,0,0.4,0.6] represents that 40% of the inferences in the
dataset end at the 4th exit and 60% end at the last exit. There
are no inferences ending at the other exits.

Figure 21 shows the experiment results with 6 kinds of
exit configurations applying different optimizations, running
on the single-GPU server. We set the batch size to a single
image at inference. We first tune the GPU kernels with verti-
cal fusion (BRT+VF) as the baseline. On top of that, we first

BRT+VF
- BRT+SP
BRT+HF

[0.0, 0.0, 0.0, 0.0, 1.
[0.0, 0.0, 0.0, 0.4, 0.
[0.0, 0.0, 0.3, 0.3,
[0.1,0.1,0.2, 0.3, 0.
[0.5,0.2,0.2, 0.1, 0.
[0.5,0.3,0.2, 0.0,
[0.5, 0.5, 0.0, 0.0, 0.

[1.0, 0.0, 0.0, 0.0,
Exit Portion

Figure 21: Latencies of MSDNet with vertical fusion, specu-
lative routing, and dynamic horizontal fusion.
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Figure 22: Latencies of DynamicRouting.

apply speculative routing (BRT+SP) and then dynamic hori-
zontal fusion (BRT+HF) to evaluate the benefits of dynamic
optimizations. Compared with BRT+VF, Brainstorm achieves
up to 8.44x, 11.7x speedup by BRT+SP and BRT+HF, respec-
tively. We observe BRT+SP reduces higher latency when the
inferences end at either very early exists or very last exits,
due to the speculative routing making more correct predic-
tions. If the inference has a similar opportunity to end at
each exit, BRT+SP has a similar performance with BRT+VF
(e.g., for [0.1,0.1,0.2,0.3,0.3]). For dynamic horizontal fu-
sion (BRT+HF), Brainstorm performs better when the infer-
ences prefer ending at the last exits, further bringing up to
1.57x gain over BRT+SP. The root cause is the uncertain
routers break many horizontal fusion opportunities. MSDNet
has some operators that can be executed in parallel if the in-
ference does not end at an exit. If a Router may terminate in
the middle, Brainstorm cannot determine whether it is safe to
horizontally fuse them, thus falling back to BRT+VF.

7.4.6 DynamicRouting

DynamicRouting [28] is a semantic segmentation model
for images that introduces a lot of Routers. It contains 186
Routers and 186 computation operators, leading to a very high
routing overhead. At each Router, input images are routed
to 1 or 2 branches among 3 designed branches with convolu-
tion operators for down-sampling, up-sampling, or keeping-
resolution, respectively. DynamicRouting proposes four ar-
chitecture configurations (&, B, C, and Raw for short, in order
of growing computation). By analyzing Routers’ runtime pro-
files collected by Brainstorm, we find many Routers exhibit a
high probability of making consistent routing decisions, which
brings opportunities for speculative optimizations. The fol-
lowing experiments are conducted on the single-GPU server.
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Figure 23: Speculative weight preloading of DynamicRouting
with variable model architectures.

Figure 22 presents the latency of four configurations opti-
mized by Brainstorm’s speculative routing (BRT+SP), where
batch size is set to a single image. Brainstorm achieves up
to 1.7 speedup compared to the official implementation in
PyTorch (Torch). BRT+SP achieves 1.7x, 1.58 %, 1.57 %, and
1.29x speedup compared with Torch in the four architecture,
respectively. With statistical distribution derived from the run-
time profiles, BRT+SP can predict the routing decisions of the
186 routers with an accuracy of 90% ~ 95%. This greatly
reduces the routing overhead in the four model architectures.
As we have shown in the micro-benchmark of Figure 15a, the
overhead of speculative routing is negligible even when the
prediction is wrong.

Figure 23 shows the inference latency and the GPU mem-
ory usage of DynamicRouting optimized by Brainstorm’s
speculative weight preloading. In the baseline (on-demand
loading), Brainstorm only loads the weight of a branch after
the routing decision is made. Brainstorm will preload the
weights of the branch to be activated with the highest proba-
bility, and falls back to on-demand loading if the prediction is
wrong. Because the weight loading latency is hidden, Brain-
storm’s speculative optimization can accelerate the model
inference by up to 1.97 x than on-demand loading. Moreover,
the official implementation needs to load all model weights to
the GPU memory for single-image inference (i.e., 604.5MB
of Original in Figure 23). With on-demand loading and
speculative preloading, memory usage is greatly reduced by
50.7% and 43.5%, respectively. This creates the opportunity
to infer large models on GPUs with limited GPU memory.
Brainstorm’s speculative weight preloading requires slightly
lower GPU memory than on-demand loading. This is because
speculative weight preloading also releases some GPU mem-
ory in advance speculatively.

8 Discussion

Handling distribution drift. The profiling data is ana-
lyzed offline by dynamic optimization policies. Profiling data
should be statistically representative of reality; otherwise, it
could mislead Brainstorm’s optimization and result in reduced
or even negative gain. As shown in Figure 24, the impact de-

-+ 32 Branches
4t % 64 Branches
S 7w -o- 128 Branches
23
[0]
Q.
n ol

0 02 0.4 06 0.8 1
Distribution Drift Ratio

Figure 24: Speedup of Brainstorm’s dynamic horizontal fu-
sion when the distribution of branch loads drifts from the
statistics used for tuning GPU kernels.

pends on the models and the degree of drifts.

Figure 24 evaluate the impact of distribution drift on dy-
namic horizontal fusion. Based on the collected profiles,
Brainstorm only tunes Conv2D kernels with 4 and 27 patches.
Therefore, when a branch receives more than 4 patches, it
needs to be padded to 27 patches running with the non-optimal
27-patch kernel. An initial dispatch of 4 patches per branch
is made so that no padding is needed. To simulate increasing
distribution drift, we add loads of some branches to 8 patches,
which are less frequently appearing in the profile and thus not
tuned by Brainstorm. We define the distribution drift ratio as
the fraction of branches whose received patches differ from
the tuned shapes (4 and 27 in this experiment). In Figure 24,
we find the speedup of Brainstorm’s dynamic horizontal fu-
sion BRT+HF diminishes with an increasing drift ratio, from
4.65x to 2.11x, compared with applying only vertical fusion.
This is due to the wasted computation from the padding on
branches receiving 8 patches.

The optimization policy needs to monitor profiles contin-
uously collected by Brainstorm and triggers re-optimization
when distribution drifts. It takes time for re-optimization (usu-
ally a few minutes), e.g., searching for a new placement, and
tuning new GPU kernels. Therefore, during cold-start or re-
optimization, the model execution does not use dynamic opti-
mization. Currently, Brainstorm focuses on the mechanisms
of enabling dynamic neural optimizations. We hope to inspire
more advanced solutions to be robust to distribution drifts.

More dynamic optimization opportunities. Brainstorm
can also be applied to training. When fine-tuning MoE-based
Large Language Models, the statistics of expert activation
can be leveraged similarly with inference, e.g., re-arranging
the expert placements across GPUs to reduce communication
volume. Moreover, many algorithms in Neural Architecture
Search also design dynamic architectures (e.g., DARTS [49],
SPOS [50]), whose activation is known only at runtime. Their
latter stage of training may show more stable branch activa-
tion, which can be potentially exploited by Brainstorm.

To support training, there are still some engineering ef-
forts that need to be resolved. Firstly, backward propagation
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is needed for automatic differentiation in training, which is
missed in the current implementation. Secondly, some oper-
ators may invalidate Brainstorm’s tracing for dynamic opti-
mization. For instance, Bat chnorm performs cross-Cell com-
puting different from the Cell-level computation at inference,
which requires manual specification.

Brainstorm can also be applied to dynamic sparsity, which
uses different value/block-level sparsity patterns for differ-
ent inputs (e.g., Longformer). To optimize their execution,
Brainstorm needs to collect pattern statistics at a fine granu-
larity. Then we can compile multiple specialized GPU kernels
for different sparsity patterns (e.g., using SparTA [51]), and
activate the most efficient one at runtime.

9 Related Works

Deep Learning Frameworks for Dynamic NNs. Popu-
lar DL frameworks can express dynamic neural networks
via control-flow operators in static DFGs (e.g., TensorFlow
1.x [52]) or Python native control-flows (e.g., PyTorch [32],
JAX [53], TensorFlow Eager [54]). They are capable of ex-
pressing dynamic neural networks in very flexible ways. How-
ever, their tensor-centric DFGs are hard to be analyzed at the
sub-tensor level. As shown in §5.1, many dynamic NNs re-
quire Cell-level dataflow analysis, which the tensor-centric
programming model misses. Brainstorm unifies how dynamic
NN should be expressed so that the required information for
dynamic optimization can be easily traced.

Optimization of dynamic NNs has also been studied in
recent years, which mainly focuses on specific types of dy-
namism. Cavs [55], DyNet [56], BatchMaker [57], TensorFlow
Fold [58], DVABatch [59], ICE [60], and PAME [61] focus
on dynamic batching [62] for the cases when the batch size
is dynamic. Cortex [63] is a framework for recursive neural
networks with compiler optimization. DietCode [64] is an
auto-scheduler framework for optimizing dynamic shapes.
Nimble [65] and DISC [66] are compilers to express and exe-
cute dynamic neural networks. Brainstorm is orthogonal to
them by exploring a new optimization space that leverages
runtime statistics of Cell-level dynamism.

Optimization of deep neural networks. Most optimiza-
tions of existing DL compilers and frameworks are proposed
for optimizing static neural networks. TVM [39] expresses
operators as loop optimization schedule primitives and search
for efficient kernels. Ansor [67] enlarges the search space via
a hierarchical representation of the search space. Roller [68]
uses a cost model to reduce the overhead of searching efficient
kernels. XLA [47], Rammer [33], TASO [69], Tacker [70],
TVM [39] also performs graph-level optimization on static
DFGs, e.g., operator fusion. Pathways [71] proposes asyn-
chronous distributed dataflow for large-scale distributed train-
ing. Brainstorm differs from these works in that it introduces

new optimization spaces for dynamic NNs through sub-tensor-
level profiling. Brainstorm’s dynamic optimizations focus on
exploring the runtime dynamism distribution of dynamic NNs,
which are orthogonal to these works.

Moreover, Brainstorm’s Router separates the dynamic con-
trol flow from the dataflow graphs, which makes it easier to
extract the static sub-networks for applying existing static
optimizations. Brainstorm focuses on optimizing dynamic
fragments in dynamic NNs and leaving optimizations of static
sub-networks to existing compilers. With statistics of sub-
tensor-level profiles, Brainstorm employs TVM [39] for ker-
nel autotuning. Brainstorm can also leverage Pathways [71]
to build an efficient execution plan to better fit the runtime
dynamism, e.g., partition models with better affinity.

Profile-guided optimization in modern programming
languages. Compilers for programming languages, e.g.,
HotSpot JVM [16], Dot-Net Core 2.0 [17], Clang [25], have
supported dynamic optimization by collecting runtime statis-
tics of programs and then compiling new optimized versions
for future execution. Brainstorm is inspired by them and iden-
tifies new dynamic optimizations specific for dynamic NNs.

10 Conclusion

In this paper, we identify a new space of dynamic optimiza-
tions for dynamic NNs by collecting and analyzing runtime
profiles to specialize the model execution to dynamism distri-
bution. We propose Brainstorm, the first deep learning frame-
work that optimizes the execution of dynamic NNs. The core
of Brainstorm is Cell and Router, that lets model develop-
ers express dynamic NNs at the granularity of dynamism
so that the necessary information for dynamic optimizations
can be traced. Model developers can focus on designing the
dynamic model architecture while leaving the optimization
to the Brainstorm framework. In Brainstorm, we propose
four dynamic optimizations leveraging the runtime profiles at
different granularity. Our evaluation shows Brainstorm can
accelerate popular dynamic neural networks by up to 11.7x
(3.29x on averge) or reduces GPU memory usage by 42%.
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A Artifact Appendix

Abstract

Brainstorm unifies the progrming of dynamic NNs with Cell
and Router abstraction which enables a new space of dy-
namic optimizations for dynamic NNs. This artifact repro-
duces the main results of the evaluation in both single-GPU
and multiple-GPU environments.

Scope

This artifact will validate the following claims:

1. Effectiveness of Brainstorm Abstraction: By reproduc-
ing the experiments of Figure 12, we can validate the
effectiveness of Brainstorm’s abstraction.

2. Micro Benchmarks: By reproducing the experiments of
Figures 13—15, we can validate the proposed dynamic
optimizations with micro benchmarks.

3. End-to-end Model Execution: By reproducing the exper-
iments of Figures 16-23, we can validate the end-to-end
latency of Brainstorm claimed in §7.

Contents

In this artifact, we will reproduce the Figures 12-23. Each
figure has a shell script to reproduce and visualize the eval-
uation results automatically. In addition, we also provide a
pre-built Docker image hosted on Github Container Registry.
Users can quickly initiate a container with this image, which
has preconfigured experimental environments.

Hosting

The artifact is hosted at https://github.com/Raphael-
Hao/brainstorm/tree/osdi2023ae. To get the code, please
git clone the Brainstorm repository and checkout to the
0sdi2023ae branch.

Requirements

1. Hardware Requirements: Figures 13, 15-17 and 21—
23 requires a server with a NVIDIA A100 (80GB) GPU,
Figures 12, 14 and 18-20 requires a server with eight
NVIDIA V100 GPUs.

2. Software Requirements: Please use docker to build
the docker/Dockerfile.update to setup the environ-
ment for single and multiple-GPU experiments. A one-
click script python scripts/docker_gh_build.py -
-type latest is also provided to build the image.

3. CUDA Driver: Larger than 11.3

Tutorial

Please follow the instructions in README . md to reproduce the
main results.
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