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Abstract
Homomorphic encryption (HE) is a privacy-preserving tech-

nique that enables computation directly on encrypted data.

Despite its promise, HE has seen limited use due to perfor-

mance overheads and compilation challenges. Recent work

has made significant advances to address the performance

overheads but automatic compilation of efficient HE kernels

remains relatively unexplored.

This paper presents Porcupine, an optimizing compiler

that generates vectorized HE code using program synthesis.

HE poses three major compilation challenges: it only sup-

ports a limited set of SIMD-like operators, it uses long-vector

operands, and decryption can fail if ciphertext noise growth

is not managed properly. Porcupine captures the underlying

HE operator behavior so that it can automatically reason

about the complex trade-offs imposed by these challenges

to generate optimized, verified HE kernels. To improve syn-

thesis time, we propose a series of optimizations including a

sketch design tailored to HE to narrow the program search

space. We evaluate Porcupine using a set of kernels and show

speedups of up to 52% (25% geometric mean) compared to

heuristic-driven hand-optimized kernels. Analysis of Porcu-

pine’s synthesized code reveals that optimal solutions are

not always intuitive, underscoring the utility of automated

reasoning in this domain.
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1 Introduction
Homomorphic encryption (HE) is a rapidlymaturing privacy-

preserving technology that enables computation directly on

encrypted data. HE enables secure remote computation, as

cloud service providers can compute on data without view-

ing the data’s contents. Despite its appeal, two key chal-

lenges prevent widespread HE adoption: performance and

programmability. Today, most systems-oriented HE research

has focused on overcoming the prohibitive performance over-

heads with high-performance software libraries [36, 44] and

custom hardware [40, 42]. The performance results are en-

couraging with some suggesting that HE can approach real-

time latency for certain applications with sufficiently large

hardware resources [40]. Realizing the full potential of HE

requires an analogous compiler effort to alleviate the code

generation and programming challenges, which remain less

explored.

Modern ring-based HE schemes pose three programming

challenges: (i) they only provide a limited set of instructions

(add, multiply, and rotate); (ii) the ciphertext operands are

long vectors, on the order of thousands; (iii) ciphertexts have

noise that grows as operations are performed and causes

decryption to fail if too much accumulates. For instance,

the Brakerski/Fan-Vercauteren (BFV) crpytosystem [18] op-

erates on vectors that pack multiple data elements into a
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single ciphertext to improve performance. Instructions op-

erating on packed-vector ciphertexts can be abstracted as

a SIMD (single instruction, multiple data) instruction set,

which introduces vectorization challenges.

To target the instruction set, the programmer must break

down an input kernel into SIMD addition, multiply, and ro-

tation instructions, while minimizing noise accumulation.

These challenges introduce a complex design space when im-

plementing HE kernels. As a result, HE kernels are currently

written by a limited set of experts fluent in “HE-assembly”

and the details of ciphertext noise. Even for experts, this pro-

cess is laborious. As a result, hand-writing HE programs does

not scale beyond a few kernels. Thus, automated compiler
support for HE is needed for it to emerge as a viable solution
for privacy-preserving computation.

A nascent body of prior work exists and has investigated

specific aspects of compiling HE code. For example, prior

work has shown HE parameter tuning, which determines the

noise budget, can be automated and optimized to improve

performance [3, 12, 15, 16]. Others have proposed mecha-

nisms to optimize data layouts for neural networks [16]. Prior

solutions have also used a mix of symbolic execution [3] and

rewrite rules [7, 12, 15] for code generation and optimiza-

tions for logic minimization (e.g., Boolean logic minimiza-

tion [12, 28]. Each of these lines of work have advanced the

field and addressed notable HE compilation challenges. In

contrast to related work (see Section 8), we are the first to

automate compiling and optimizing vectorized HE kernels.

In this paper, we propose Porcupine, a synthesizing com-

piler for HE. Users provide a reference implementation of

their plaintext kernel, and Porcupine synthesizes a vectorized

HE kernel that performs the same computation. Internally,

Porcupine models instruction noise, latency, behavior, and

HE program semantics with Quill, a novel HE DSL. Quill

enables Porcupine to reason about and search for HE kernels

that are (verifiably) correct and minimizes the kernel’s cost,

i.e., latency and noise accumulation. With Porcupine and

Quill, we develop a synthesis procedure that automates and

optimizes the mapping and scheduling of plaintext kernels

to HE instructions.

Porcupine uses syntax-guided synthesis [2], and operates

by completing a sketch, or HE kernel template. We intro-

duce a novel local rotate sketch that treats ciphertext rota-

tion as an input to HE add and multiply instructions rather

than an independent rotation instruction; this makes the

synthesis search more tractable by limiting the space of pos-

sible programs. Furthermore, we develop several HE-specific

optimizations including rotation restrictions for tree reduc-

tions and stencil computations, multi-step synthesis, and

constraint optimizations to further improve synthesis run

time (details in Section 6).

We evaluate Porcupine using a variety of image process-

ing and linear algebra kernels. Baseline programs are hand-

written and attempt to minimize multiplicative and logi-

cal depth, the current best practice for optimizing HE pro-

grams [3, 12, 28]. For small kernels, Porcupine is able to find

the same optimized implementations as the hand-written

baseline. On larger, more complex kernels, we show Porcu-

pine’s programs are up to 52% faster. Upon further analysis,

we find that Porcupine can discover optimizations such as

factorization and even application-specific optimizations in-

volving separable filters. Our results demonstrate the efficacy

and generality of our synthesis-based compilation approach

and further motivates the benefits of automated reasoning

in HE for both performance and productivity.

This paper makes the following contributions:

1. We present Porcupine, a program synthesis-based com-

piler that automatically generates vectorized HE pro-

grams, and Quill, a DSL for HE. Porcupine includes a

set of optimizations needed to effectively adopt pro-

gram synthesis to target HE.

2. We evaluate Porcupine using nine kernels to demon-

strate it can successfully translate plaintext specifica-

tions to correct HE-equivalent implementations. Por-

cupine achieves speedups of up to 52% (25% geometric

mean) over hand-written baselines implemented with

best-known practices. We note situations where opti-

mal solutions cannot be foundwith existing techniques

(i.e., logic depth minimization), further motivating au-

tomated reasoning-based solutions.

3. We develop a set of optimizations to improve Porcu-

pine’s synthesis time and compile larger programs.

First, we develop a domain-specific local rotate sketch

that considers rotations as inputs to arithmetic instruc-

tions, narrowing the solutions space without compro-

mising quality.We further restrict HE rotation patterns

and propose a multi-step synthesis process.

2 Homomorphic Encryption Background
This section provides a brief background on homomorphic

encryption. We refer the reader to [8–10, 18, 21] for the more

technical details of how HE works.

2.1 Homomorphic Encryption Basics
Homomorphic encryption enables arbitrary computation

over encrypted data or ciphertexts [20]. This enables secure

computation offload where an untrusted third party, such

as a cloud provider, performs computation over a client’s

private data without gaining access to it.

Figure 1 shows a canonical HE system for secure cloud

compute. First, the client locally encrypts their data asset

𝑥 using a private key 𝑘 . The resulting ciphertext 𝑥 ′ is then
sent to the cloud where an HE function 𝑔′ is applied to it.

The output of the computation 𝑔′(𝑥 ′) is then sent back to
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Figure 1. HE system for to an untrusted third party cloud.

A plaintext data asset 𝑥 is encrypted with a key 𝑘 to gen-

erate ciphertext 𝑥 ′ and transmitted to the cloud. The cloud

service applies HE computation 𝑔′ to the ciphertext without
decrypting the data. The result 𝑔′(𝑥 ′) is transmitted back to

client where decryption yields the result 𝑔(𝑥). Lemur image

©Skip Brown, Smithsonian’s National Zoo.

the client and decrypted using the same key 𝑘 to reveal the

plaintext output: 𝑔(𝑥). HE allows us to define a function 𝑔′

that operates over ciphertext 𝑥 ′ = encrypt(𝑥, 𝑘) such that:

decrypt(𝑔′(𝑥 ′), 𝑘) = 𝑔(𝑥)

The private key 𝑘 never leaves the client, ensuring the

client’s data asset is secure throughout the computation.

Additionally, the client does not learn 𝑔, which could be a

secret that the cloud wants to protect. Porcupine’s goal is to

synthesize 𝑔′ given a definition of the kernel 𝑔.

This paper focuses on the BFV cryptosystem, a specific

HE scheme that targets integers [18]. In the remainder of

this section, we provide an overview of the BFV scheme

and focus on the vector programming model, instructions,

and noise considerations it exposes. For a more technical

description see [1, 18].

2.2 BFV
BFV is an HE scheme that operates over encrypted integers.

In BFV, integers are encrypted into a ciphertext polynomial

of degree 𝑁 with integer coefficients that are modulo 𝑞. A

key property of BFV is batching; this allows a vector of up

to 𝑁 integers to be encrypted in a single ciphertext with

operations behaving in a SIMD manner.

For the most part, ciphertext polynomials behave as a vec-

tor of 𝑁 slots with bitwidth 𝑞. 𝑁 and 𝑞 are BFV HE parame-

ters set to provide a desired security level and computational

depth, not the number of raw integers that are encrypted.

Regardless of whether we encrypt a single integer or 𝑁 in-

tegers in a ciphertext, a vector of 𝑁 slots is allocated for

security purposes. 𝑁 is required to be a large power of two

and is often in the tens of thousands, which makes batching

crucial to efficiently utilizing ciphertext space.

Instructions. BFV provides three core ciphertext instruc-

tions that behave like element-wise SIMD instructions: SIMD

add, SIMD multiply, and SIMD (slot) rotate. Additionally,

BFV supports variants of add and multiply that operate on a

ciphertext and plaintext instead of two ciphertexts.

Consider two vectors of integers 𝑋 = {𝑥0, 𝑥1, ..., 𝑥𝑛−1}
and 𝑌 = {𝑦0, 𝑦1, ..., 𝑦𝑛−1} with ciphertext representation 𝑋 ′

and 𝑌 ′ respectively. SIMD add and multiply both perform

element-wise operations over slots. SIMD add computes

𝑎𝑑𝑑 (𝑋 ′, 𝑌 ′) such that decrypt(𝑎𝑑𝑑 (𝑋 ′, 𝑌 ) ′), 𝑘) = {𝑥0+𝑦0, 𝑥1+
𝑦1, ..., 𝑥𝑛−1 +𝑦𝑛−1}, where 𝑘 is the key used for encryption of

𝑋 ′ and𝑌 ′. Similarly, the SIMDmultiply instruction processes

𝑚𝑢𝑙 (𝑋,𝑌 ) so that decrypt(𝑔′(𝑋 ′, 𝑌 ′), 𝑘) = {𝑥0 × 𝑦0, 𝑥1 ×
𝑦1, ..., 𝑥𝑛−1 ×𝑦𝑛−1}. Note that the underlying operations that
implement 𝑎𝑑𝑑 (𝑋 ′, 𝑌 ′) and𝑚𝑢𝑙 (𝑋 ′, 𝑌 ′) over the ciphertext
representations are not simple vector addition or multiplica-

tion instructions.

Rotate. Additionally, HE provides rotate instructions that

circularly shift slots in a ciphertext by an integer amount

(similar to bitwise rotations). Rotations occur in unison:

given a rotation amount, all slots shift by the same amount

in the same direction and the relative ordering of slots is pre-

served. For example, rotating a ciphertext𝑋 ′ = {𝑥0, 𝑥1, 𝑥2, ...,
𝑥𝑛−1} by one element to the left returns {𝑥1, 𝑥2, ..., 𝑥𝑛−1, 𝑥0}.

Note the ciphertext is not a true vector, so slots cannot

be directly indexed or re-ordered. Slot rotation is necessary

to align slot values between vectors because add and multi-

ply instructions are element-wise along the same slot lanes.

For example, reductions that sum many elements within

a ciphertext will need to rotate slots so that elements can

be summed in one slot. Arbitrary shuffles also have to be

implemented using rotates and multiplication with masks,

which can require many instructions and quickly become

expensive to implement.

Noise. During encryption ciphertexts are injected with

random noise to prevent threats such as replay attacks [48].

During computation this noise grows. The ciphertext bitwidth

𝑞 needs to be large enough to contain this noise growth or

else the ciphertext becomes corrupted and upon decryp-

tion returns an random value (i.e., garbage value). However,

larger values of𝑞 increase thememory footprint of ciphertext

and requires more compute resource to perform the larger

bitwidth arithmetic calculations that back HE instructions.

Specifically, add and rotate additively increase noise, and

multiplication multiplicatively increases noise. Because mul-

tiplication dominates noise growth, the multiplicative depth

of a program can be used as a guide to select 𝑞 or as a mini-

mization target.

3 HE Compilation Challenges
Handwriting efficient HE kernels is a tedious and error-prone

process as HE provides limited instructions, intra-ciphertext

data movement must be done using vector rotation, and the

noise budget adds additional sources of error. As a result, HE

code is today is typically written by experts [16, 27, 40].
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Figure 2. HE vectorized dot product implementation. Given

an encrypted input from the client (A), the server performs

an element-wise multiplication with server-local data (B). A

reduction is performed using a combination of rotation and

add instructions. The resulting ciphertext is then returned

the client for decryption.

Porcupine’s goal is to automate the generation of vec-

torized HE kernels to lower HE’s high barrier-to-entry to

non-experts as well as time-to-solution for experts. This

section motivates the need for automated reasoning in HE

compilers using a vectorized dot product (see Figure 2) as a

running example.

3.1 Data Packing
To compute an HE dot product, a client sends an encrypted

vector of elements to be computed with a server’s vector; the

encrypted result is then sent back to the client. A client could

encrypt each element of the input vector into individual

ciphertexts, but this uses only a single slot of each ciphertext

vector, wasting the other slots. Another solution is to batch

𝑁 independent tasks into a single ciphertext to amortize the

cost of the ciphertext and HE program. However, HE vectors

can hold tens of thousands of elements and most applications

cannot rely on batching of this scale.

Instead, a client can pack the input data vector in a single

ciphertext, as shown in Figure 2. In our example of a four

element dot product, this requires only one ciphertext, not

four. Porcupine assumes kernels operate over packed inputs to
efficiently utilize memory.

3.2 HE Computation
One of the key challenges for building optimized HE kernels

is breaking down scalar computation to efficiently use the

limited HE instruction set. In ciphertext vectors, the rela-

tive ordering of packed data elements is fixed; thus, while

element-wise SIMD addition and multiplication computation

is trivial to implement, scalar-output calculations such as

reductions require proper alignment of slots between cipher-

text operands. The only way to align different slot indices

between two ciphertexts is to explicitly rotate one of them

such that the desired elements are aligned to the same slot.

Figure 2 illustrates how this is done for an HE dot prod-

uct reduction operation using packed vectors. The client’s

and server’s ciphertext operands are multiplied together and

reduced to a single value. The multiplication operation is

element-wise, so it can be implemented with a HE SIMD

multiply operation. However, the summation within the vec-

tor must be performed by repeatedly rotating and adding

ciphertexts together such that the intermediate operands are

properly aligned to a slot in the vector (in this case the slot

at index 0). The rotations and arithmetic operations are inter-

leaved to take advantage of the SIMD parallelism and enable

reduction to be computed with only two HE add operations

for four elements.

For more complex kernels, simultaneously scheduling

computations and vector rotations is non-trivial to imple-

ment efficiently. Arbitrary slot swaps or shuffles (e.g., in-

structions like _mm_shuffle_epi32) that change the relative
ordering of elements in a vector are even more tedious to im-

plement. While these arbitrary shuffles can be implemented

in HE by multiplying with masks and rotation operations,

this is undesirable since it requires dramatically increasing

the multiplicative depth and hence noise budget require-

ments.

3.3 Performance and Noise
The vectorization challenges are further complicated by HE’s

compound-cost model that must consider both performance

and noise. Performance and noise costs cannot be reasoned

about independently; the performance cost must be aware of

the noise growth since the noise budget parameter 𝑞 defines

the bitwidth precision of the underlying mathematical HE

instruction implementations. Thus, a larger 𝑞 increases the

latency cost of each HE instruction. This means any sort of

optimization objective for program synthesis will have to

consider both noise and performance together.

4 Porcupine Compiler and Synthesis
Formulation

This section introduces the Porcupine compiler, Quill DSL,

and the program synthesis formulation used to optimize HE

kernels.

4.1 Compiler Overview
Porcupine is a program synthesis-based compiler that searches

for HE kernels rather than relying on traditional rewrite
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!ill HE DSL
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add-ct-ct(a,b)  a+b
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. . .
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def gx(img gx heigh width)
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    for kh in 0 to 3
      for kw in 0 to 3
        result[h,w] += img[h+kw,w+kw] * filter[kh, kw]
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  // initializations
  ...
  ev.rotate_rows(c0, -5, gal_keys, c1);
  ev.add(c0, c1, c2);
  ev.rotate_rows(c2, 5, gal_keys, c3);
  ev.add(c2, c3, c4);
  ev.rotate_rows(c4, -1, gal_keys, c5);
  ev.rotate_rows(c4, 1, gal_keys, c6);
  ev.sub(c6, c5, c7);
}

Reference Implementation
rot-ct c1 c0 20
add-ct-ct c2 c0 c1
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Figure 3. The Porcupine compiler. The user provides: (a) a kernel specification and (b) a kernel sketch with ?? denoting holes

in the sketch. (c) The Quill DSL encodes the semantics of the HE instruction set and noise models. (d) Porcupine’s synthesis

engine completes the sketch and synthesizes a program that implements the specification using the Quill DSL. Porcupine

uses an SMT solver to automatically solve the vectorization and scheduling challenges so that (e) the synthesized program is

optimized. (f) The optimized HE kernel is consumed by code generation to target the SEAL library [44]. Lemur image ©Skip

Brown, Smithsonian’s National Zoo.

rules. By searching for programs, Porcupine can discover op-

timizations that are potentially difficult to identify by hand.

At a high level, Porcupine takes a kernel specification (Fig-

ure 3a) and sketch (Figure 3b) as input, and outputs an op-

timized HE kernel (Figure 3f). Section 4.2 defines our Quill

DSL (Figure 3c) which is used to model the noise and la-

tency semantics of each HE instruction. Section 4.3 defines

what composes the specification that Porcupine as input

(Figure 3a). Section 4.4 explains our sketch formulation and

design decisions behind them (Figure 3b). Section 5 details

our synthesis engine [2] which takes the specification, sketch,

and HE kernel, and emits a synthesized HE kernel (Figure 3)
.
.

4.2 Quill: A DSL for HE

The Quill DSL serves as a specification for HE programs

and models HE ciphertexts, instructions, and their latency-

noise behavior. This enables Porcupine to reason about HE

instruction behavior as well as verify correctness. When

synthesizing an HE kernel, Porcupine first synthesizes a

Quill kernel which is then translated into code for an HE

library such as SEAL. Quill currently supports BFV [18] HE,

however the techniques are general and can be extended to

other ring-based HE schemes, e.g., BGV [10] and CKKS [13].

Quill is used to describe straight-line HE programs that

manipulate state initially defined by input vectors (either

ciphertext and plaintext) and returns a ciphertext. Figure 4

⟨kernel⟩ ::= (list ⟨instr⟩+) | ⟨instr⟩

⟨instr⟩ ::= ⟨ct⟩

⟨pt⟩ ::= ⟨vector of integers⟩

⟨x⟩ ::= ⟨integer⟩

⟨ct⟩ ::= (add-ct-ct ⟨ct⟩, ⟨ct⟩) | (add-ct-pt ⟨ct⟩, ⟨pt⟩)
| (sub-ct-ct ⟨ct⟩, ⟨ct⟩) | (sub-ct-pt ⟨ct⟩, ⟨pt⟩)
| (mul-ct-ct ⟨ct⟩, ⟨ct⟩) | (mul-ct-pt ⟨ct⟩, ⟨pt⟩)
| (rot-ct ⟨ct⟩, ⟨x⟩)

Figure 4. The Quill DSL. A Quill kernel is made up of a

list instructions that produce a final ciphertext (ct). Each

instruction produces a ciphertext and takes as input at least

one ciphertext and possibly a plaintext (pt) or integer.

defines Quill’s grammar. Quill programs are behavioral mod-

els and not true HE programs. The ciphertext operands are

implemented as unencrypted vectors that can only be manip-

ulated according to HE instruction rules, which are captured

by Quill’s semantics. This provides the benefit that we can

compile code without considering the implementation de-

tails of true HE.

State in Quill. In a Quill program, state is defined by

plaintext and ciphertext vectors. All ciphertexts are associ-

ated with metadata that tracks each operand’s multiplicative

depth, which models noise accumulation. An input or fresh

ciphertext has zero multiplicative depth and increases each
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time a multiplication is performed. We track only multiplica-

tive depth as it simplifies the objective of noise minimization

without sacrificing accuracy as other instructions - add and

rotate - contribute relatively negligible noise.

The Quill Instructions. Quill supports a SIMD instruc-

tion set with a one-to-one mapping to BFV HE instructions.

Table 1 describes each instruction’s type signature and how

they transform state. Instructions include addition, multi-

plication, and rotations of ciphertext instructions as well as

variants that operate on ciphertext-plaintext operands, e.g.,

multiplication between a ciphertext and plaintext. Each in-

struction is associated with a latency derived by profiling its

corresponding HE instruction with the SEAL HE library [44].

4.3 Kernel Specification
A specification completely describes a target kernel’s func-

tional behavior, i.e., it defines what the synthesized HE kernel

must compute. In Porcupine, a specification comprises a ref-
erence implementation of the computation (in plaintext) and

vector data layout that inputs and outputs must adhere to.

Reference Implementation. Reference implementations

are programs written in Racket [38] that define the plain-

text computation. We later use Rosette [49] to automatically

lift the Racket program to a symbolic input-output expres-

sion that defines the program’s behavior. An example refer-

ence implementation for the 𝐺𝑥 kernel is shown below. The

code takes as input a 2D gray-scale image and calculates the

x-gradient by summing and weighting neighboring pixels

according to a 3×3 filter.
(define (Gx img height width filter):

for h in 0 to height
for w in 0 to width:

for kh in 0 to 3:
for kw in 0 to 3:

result[h,w] += img[h+kw, w+kw] *
filter[kh, kw]

Porcupine uses the reference implementation to verify

synthesized ones are correct; the quality of the reference

program does not impact synthesized code quality. As a

result, users can focus on writing correct code without the

burden of performance tuning.

To work correctly, the implementation must describe com-

putation that is directly implementable in HE. Implementa-

tions cannot contain data dependent control flow such as

conditional statements or loops that depend on a ciphertext,

since we cannot see the values of encrypted data. This is a

limitation of HE, and while it is possible to approximate this

behavior, e.g., using a polynomial function, this is beyond

the scope of our work.

Data Layout. A data layout defines how the inputs and

outputs are packed into ciphertext and plaintext vectors.

In the 𝐺𝑥 example, we pack the input and output image

into one ciphertext as a flattened row-order vector with zero-

padding around the borders. The data layout is an input to the

synthesizer only, and the reference implementation does not

need to consider it. Together, the reference implementation

and data layout define the inputs and outputs to the HE

program, and Porcupine will synthesize an HE program that

achieves that transformation.

4.4 Sketch
The user also provides a sketch, which is a template for de-

scribing partial Quill kernels that are used to guide the syn-

thesis engine towards a solution. It allows the user to ar-

ticulate required features of the HE kernel to the synthesis

engine while leaving other components unspecified as holes,
indicated by ??, for the engine to fill in. The synthesizer

then completes the sketch by filling in the holes to match the

functionality of the reference implementation. We introduce

a local rotate sketch to help the user convey hints about

ciphertext rotations. An example of a local rotate sketch for

the 𝐺𝑥 kernel is shown below:

; Program sketch of L components
; ct0 is a ciphertext input
(define (Gx-Sketch ct0 L)

; choose an existing ciphertext
(define (??ct) (choose* ct))

; choose a rotation amount in range (0,N)
(define (??r)

(apply choose* (range 0 N)))

; choose a rotation of an existing ciphertext
(define (??ct-r)

(rot-ct ??ct ??r))

; choose an opcode with operand holes
(for/list i = 1 to L

(choose*
(add-ct-ct (??ct-r) (??ct-r))
(sub-ct-ct (??ct-r) (??ct-r))
(mul-ct-pt (??ct) [2 2 ... 2]))))

The sketch describes a kernel template that takes as input

a single ciphertext (encrypted image) and applies a kernel

composed of L components or arithmetic instructions. In this

example the components are: add two ciphertexts, subtract

two ciphertexts or multiply a ciphertext by a plaintext of 2s.

Each component contains holes for their instruction depen-

dent operands. Specifically, ??ct is ciphertext hole that can

be filled with the ciphertext input or a ciphertexts generated

by previous components. ??ct-r is a ciphertext-rotation

that introduces two holes: a ciphertext hole and a rotation

hole. The ciphertext hole can be filled with any previously

generated ciphertexts and the rotation hole indicates the

ciphertext can be rotated by any legal amount (1 to 𝑁 − 1)
or not at all. Ciphertext-rotation holes indicate the kernel

performs a reduction operation over elements and requires

rotation to align vector slots.

Writing sketches of this style is relatively simple, with

most sketches taking only a few minutes to write and debug.

The arithmetic instructions can be extracted from the specifi-

cation. In this case add, subtract, andmultiplication by 2were

used in the reference implementation. The set of arithmetic

instructions is treated like a multiset of multiplicity 𝐿, and
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Table 1. Quill instructions and their affect on the data (denoted by .𝑑𝑎𝑡𝑎) and multiplicative depth (denoted by .𝑑𝑒𝑝𝑡ℎ) of the

resulting ciphertext.

Instruction Computation Description Multiplicative depth

Add(𝑐𝑡𝑥 , 𝑐𝑡𝑦)→ 𝑐𝑡𝑧 𝑐𝑡𝑥 .𝑑𝑎𝑡𝑎 + 𝑐𝑡𝑦 .𝑑𝑎𝑡𝑎 Adds two ciphertexts 𝑚𝑎𝑥 (𝑐𝑡𝑥 .𝑑𝑒𝑝𝑡ℎ, 𝑐𝑡𝑦 .𝑑𝑒𝑝𝑡ℎ)
Add(𝑐𝑡 , 𝑝𝑡 )→ 𝑐𝑡𝑧 𝑐𝑡 .𝑑𝑎𝑡𝑎 + 𝑝𝑡 .𝑑𝑎𝑡𝑎 Adds a ciphertext and plaintext 𝑐𝑡 .𝑑𝑒𝑝𝑡ℎ

Subtract(𝑐𝑡𝑥 , 𝑐𝑡𝑦)→ 𝑐𝑡𝑧 𝑐𝑡𝑥 .𝑑𝑎𝑡𝑎 − 𝑐𝑡𝑦 .𝑑𝑎𝑡𝑎 Subtract two ciphertexts 𝑚𝑎𝑥 (𝑐𝑡𝑥 .𝑑𝑒𝑝𝑡ℎ + 𝑐𝑡𝑦 .𝑑𝑒𝑝𝑡ℎ)
Subtract(𝑐𝑡 , 𝑝𝑡 )→ 𝑐𝑡𝑧 𝑐𝑡 .𝑑𝑎𝑡𝑎 − 𝑝𝑡 .𝑑𝑎𝑡𝑎 Subtract a plaintext from a ciphertext 𝑐𝑡 .𝑑𝑒𝑝𝑡ℎ

Multiply(𝑐𝑡𝑥 , 𝑐𝑡𝑦)→ 𝑐𝑡𝑧 𝑐𝑡𝑥 .𝑑𝑎𝑡𝑎 × 𝑐𝑡𝑦 .𝑑𝑎𝑡𝑎 Multiple two ciphertexts 𝑚𝑎𝑥 (𝑐𝑡𝑥 .𝑑𝑒𝑝𝑡ℎ, 𝑐𝑡𝑦 .𝑑𝑒𝑝𝑡ℎ) + 1
Multiply(𝑐𝑡 , 𝑝𝑡 )→ 𝑐𝑡𝑧 𝑐𝑡 .𝑑𝑎𝑡𝑎 × 𝑝𝑡 .𝑑𝑎𝑡𝑎 Multiply a ciphertext and plaintext 𝑐𝑡𝑥 .𝑑𝑒𝑝𝑡ℎ + 1

Rotate(𝑐𝑡 , 𝑥 )→ 𝑐𝑡𝑧
𝑐𝑡 .𝑑𝑎𝑡𝑎[𝑖] ←

𝑐𝑡 .𝑑𝑎𝑡𝑎[(𝑖 + 𝑥)𝑚𝑜𝑑𝑁 ] Rotate a ciphertext 𝑥 slots to the left 𝑐𝑡 .𝑑𝑒𝑝𝑡ℎ

the synthesizer will determine which instructions and how

many are needed. In other words, the sketch does not have to

be exact as the synthesizer can choose to ignore instructions;

this once again eases the burden on the user. Additionally,

the user must specify whether instruction operands should

be ciphertexts or ciphertext-rotations, and what rotations

are allowed. As a fall back, all ciphertext holes can be made

ciphertext-rotation holes; however, this will increase solv-

ing time as the sketch describes a larger space of programs.

Furthermore, the effort of sketch writing can potentially be

amortized by re-using or tweaking a sketch from a kernel

with similar compute patterns. For example, when writing a

sketch for a different 2D convolution, we could start from

this Gx-sketch and either re-use it or change the plaintext

constants.

A key feature of our sketches is that we treat rotation as

an input to arithmetic instructions rather than a component

of the sketch. This is because rotations are only useful when

an arithmetic instruction needs to re-align operands; in iso-

lation, rotations do not perform meaningful computation.

This excludes programs that contain nested rotations since

rotations can be combined. For instance, we disallow (rot

(rot c0 1) 2) since this can be more succinctly expressed as

(rot c0 3).

The sketches must describe loop-free programs so that

Quill can interpret them. Porcupine requires sketches to be

parameterized by the number of components in the program.

Porcupine first explores small (in terms of L) programs and

iteratively explores larger programs by incrementing L until

a solution is found.

Solution. A solution is a completed sketch that matches

the behavior of the reference implementation. Porcupine’s

synthesis engine generates solutions by filling instruction

and operand holes such that the resulting program satis-

fies the specification and optimizes the objective functions

(minimize instruction count and noise). The solution Porcu-

pine synthesizes for the above example uses three arithmetic

instructions and four rotations
1
:

Ciphertext c1 = (add-ct-ct (rot-ct c0 -5) c0)
Ciphertext c2 = (add-ct-ct (rot-ct c1 5) c1)
Ciphertext c3 = (sub-ct-ct (rot-ct c2 1)

(rot-ct c2 -1))

5 Synthesis Engine
This section describes how Porcupine’s synthesis engine

(see Algorithm 1) searches the program space described by

our local rotate sketch to find an optimized HE solution

that satisfies the kernel specification. Porcupine’s synthesis

engine operates by first synthesizing an initial solution. It

then optimizes the solution by iteratively searching for better

solutions until either the best program in the sketch is found

or a user-specified time out is reached.

Porcupine’s synthesis engine is a counter-example guided

inductive synthesis (CEGIS) loop [26, 46]. The engine lever-

ages Rosette’s built-in support for translating synthesis and

verification queries to constraints that are solved by an SMT

solver.

5.1 Synthesizing an Initial Solution
The first step in Porcupine’s synthesis procedure is to synthe-

size an initial program that satisfies the user’s specification.

In particular, Porcupine first attempts to complete a sketch

𝑠𝑘𝑒𝑡𝑐ℎ𝐿 that encodes programs using 𝐿 components. Specif-

ically, Porcupine searches for a solution 𝑠𝑜𝑙0 contained in

𝑠𝑘𝑒𝑡𝑐ℎ𝐿 that minimizes 𝐿 and satisfies the specification for

all inputs. We follow a synthesis procedure similar to those

proposed in [23, 26, 46], and avoid directly solving the above

query because it contains a universal quantifier over inputs.

Instead, we synthesize a solution that is correct for one ran-

dom input then verify it is correct for all inputs, applying

feedback to the synthesis query if verification fails.

1
Rotation amounts are adjusted to be relative in example.
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Synthesize. The engine starts by generating a concrete

input-output example, (𝑥0, 𝑦0), by evaluating the specifica-

tion using a randomly generated input, 𝑥0 (line 6). The engine

attempts to synthesize a program that transforms 𝑥0 into

𝑦0 by completing the sketch and finding a binding for the 𝐿

arithmetic instructions and operand holes (line 10). We gen-

erate a synthesis query expressing 𝑠𝑜𝑙𝑣𝑒 (𝑠𝑘𝑒𝑡𝑐ℎ𝐿 (𝑥0) = 𝑦0),
which is then compiled to constraints and solved by an SMT

solver.

Verify. If successful, the synthesis query described above

returns a program that satisfies the input specification for

the input 𝑥0, but not necessarily for all possible inputs. To

guarantee that the solution is correct, Porcupine verifies the

solution matches the specification for all inputs. Porcupine

leverages Rosette’s symbolic evaluation and verification ca-

pabilities to solve this query. First, a formal pre-condition and

post-condition is lifted from reference specificationwith sym-

bolic execution, capturing the kernel’s output for a bounded

set of inputs as a symbolic input-output pair (𝑥,𝑦). Rosette
then solves the verification query 𝑣𝑒𝑟 𝑓 𝑖𝑦 (𝑠𝑜𝑙 (𝑥) = 𝑠𝑝𝑒𝑐 (𝑥)).

Retry with Counter-example. If verification fails, it re-

turns a counter-example, (𝑥1, 𝑦1), that causes the synthe-

sized kernel to disagree with the specification. Porcupine

then makes another attempt to synthesize a program; this

time trying to satisfy both the initial example and counter-

example. This process repeats until Porcupine finds a correct

solution.

If the engine cannot find a solution, indicated when the

solver returns unsat for any synthesis query, the engine

concludes that for the given sketch, a program that imple-

ments the specification with 𝐿 components does not exist.

The engine tries again with a larger sketch 𝑠𝑘𝑒𝑡𝑐ℎ𝐿+1 that
contains one more component and this process repeats un-

til a solution is found. By exploring smaller sketches first,

our algorithm ensures that the solution using the smallest

number of components is found first.

5.2 Optimization
Once an initial solution is found, Porcupine’s synthesis en-

gine attempts to improve performance by searching for bet-

ter programs contained in the sketch. Programs are ranked

according to a cost function that Porcupine attempts to min-

imize.

Cost Function. Porcupine uses a cost function that mul-

tiplies the estimated latency and multiplicative depth of the

program: 𝑐𝑜𝑠𝑡 (𝑝) = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝)×(1+𝑚𝑑𝑒𝑝𝑡ℎ(𝑝)).We include

multiplicative depth to penalize high-noise programs, which

can lead to larger HE parameters and lower performance.

Cost Minimization. Once a solution 𝑠𝑜𝑙0 with cost 𝑐𝑜𝑠𝑡0
is found, we iteratively search for a new program with lower

cost (line 19), as described in [45]. Porcupine does this by

re-issuing the successful synthesize query with an additional

Algorithm 1 Synthesis engine

1: Input
2: 𝑠𝑝𝑒𝑐 Kernel reference program

3: 𝑠𝑘𝑒𝑡𝑐ℎ Partial HE program

4: Synthesize first solution
5: function synthesize

6: 𝑦0 ← 𝑠𝑝𝑒𝑐 (𝑥0) ⊲ Random input-output example

7: 𝑦 = 𝑠𝑝𝑒𝑐 (𝑥) ⊲ Symbolic input-output

8: examples = [(𝑥0, 𝑦0)]
9: while true do
10: sol← solve(sketch s.t. 𝑦=sketch(𝑥 ))

11: if sol is unsat then
12: return False ⊲ Sketch too restrictive

13: cex← verify(𝑦 = 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑥))
14: if cex = unsat then
15: return sol

16: (𝑥,𝑦) ← extract(cex) ⊲ Get counterexample

17: examples.append((𝑥,𝑦))
18: Minimize cost
19: function optimize

20: 𝑠𝑜𝑙 ← synthesize()

21: 𝑐 ′← cost(sketch)

22: 𝑠𝑜𝑙 ′← 𝑠𝑜𝑙

23: while 𝑠𝑜𝑙 ′ is sat do
24: 𝑐 ← cost(𝑠𝑜𝑙), 𝑠𝑜𝑙 ← 𝑠𝑜𝑙 ′

25: 𝑠𝑜𝑙 ′← solve(sketch s.t. 𝑦=sketch(𝑥 ) & 𝑐 ′ < 𝑐)

26: <verify 𝑠𝑜𝑙 ′ and add cex if needed>
27: return 𝑠𝑜𝑙

constraint that ensures a new solution 𝑠𝑜𝑙1, has lower cost:

𝑐𝑜𝑠𝑡1 < 𝑐𝑜𝑠𝑡0 (line 25). This process repeats until the solver

proves there is no lower cost solution and it has found the

best solution or the compile time exceeds the user-specified

time out. The initial solution is only used to provide an

upper-bound on cost and is not used during the optimization

synthesis queries. This forces the engine to consider com-

pletely new programs with different instruction mixes and

orderings. In practice, we find that initial solutions perform

well given the savings in compile time (see Section 7.4 for

discussion).

5.3 Code Generation
The synthesis engine outputs a HE kernel described in Quill

and Porcupine then translates the Quill program into a SEAL

program [44]. SEAL is a HE library that implements the BFV

scheme. Quill instructions map directly to SEAL instruc-

tions, so this translation is simple, but the code generation

handles a few post-processing steps. For example, Porcu-

pine inserts special relinearization instructions after each

ciphertext-ciphertext multiplication. Relinearization does

not affect the results of the HE program but is necessary to

handle ciphertext multiply complexities.
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6 Synthesis Formulation Optimizations
Scaling Porcupine to handle larger kernels requires optimiz-

ing the synthesis formulation. Since the search space grows

super exponentially, it quickly becomes intractable—a five

instruction HE program can have millions of candidate pro-

grams. This section describes optimizations developed to

scale up our formulation and their impact on the results.

6.1 Rotation Restrictions
HE Rotation instructions are used to align different vector

slots within a ciphertext to perform computation such as

reductions. Ciphertext slots can be rotated by up to 𝑁 , the

size of the ciphertext vector, which introduces a large number

of possible rotations for the synthesizer to select from. In

practice, we observe that of all possible rotations only a

few patterns are ever used. For example, in our 𝐺𝑥 kernel

each output element only depends on its neighbors in the

3×3 window, implying rotations that align input elements

from outside this window are not necessary. By restricting

rotations, we can scale up the synthesis process by pruning

away irrelevant potential programs.

To optimize for this, we introduce two types of rotation

restrictions for tree reductions and sliding windows. For

sliding window kernels, which are commonly used in im-

age processing, we use the restriction described above to

restrict rotation holes ??rot to align elements covered by

the window. The tree reduction restricts rotations to powers

of two and is used for kernels that implement an internal

reduction within the ciphertext. For example, in a dot prod-

uct elements in the vector are summed to produce one value.

Restricting the rotations to powers of two constrains the

output programs to perform the summation as a reduction

tree.

6.2 Constraint Optimizations
We also apply a number of common constraint optimiza-

tion techniques to improve synthesis speed and scalability.

We employ symmetry breaking to reduce the search space

for add, multiply, and rotate. For example, the programs

𝑎 +𝑏 and 𝑏 + 𝑎 are functionally equivalent but appear as two

unique solutions to a solver. Restricting operands to occur in

increasing order eliminates redundant candidate solutions

and improves synthesis speed. For rotations we impose sym-

metry breaking by forcing only left rotations, since a left

rotation by 𝑥 is equivalent to a right rotation by 𝑛 − 𝑥 . We

also enforce solutions use static single assignment to instill

an ordering and break symmetries between programs that

are functionally equivalent but write to different destination

ciphertexts.

Our synthesis formulation also uses restricted bitwidth

instead of full precision bit vectors to reduce the number

of underlying variables the solver needs to reason about.

Ordinarily, the number of solver variables scales linearlywith
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Figure 5. Speedup of Porcupine synthesized kernels com-

pared to the baseline, results are averaged over 50 runs. Ker-

nels in blue are directly synthesized while kernels in orange

use multi-step synthesis.

bitwidth; however, we do not need the bit accurate behavior,

only the operator functionality, so this optimization does not

affect correctness of the solution.

6.3 Multi-step Synthesis
One of the limitations of program synthesis is its inability

to scale to large kernels [24]. With the above optimizations,

Porcupine scales to roughly 10-12 instructions, but beyond

that the program space becomes intractable to search. Many

applications in image processing, neural networks, and ma-

chine learning have natural break points. For instance, an

image processing pipeline may have cascaded stencil compu-

tations for sharpening, blurring, and edge detection which

have natural boundaries. To scale beyond the limitations of

program synthesis, we leverage these natural breakpoints to

partition larger programs into segments and synthesize them

independently. In Section 7, we show how this partitioning

into a multistep synthesis problem can allow Porcupine to

scale to longer kernels.

7 Evaluation
This section evaluates Porcupine’s synthesized programs

and compares them against expert-optimized baselines (see

Section 7.2). We also report how long Porcupine takes to

synthesize kernels (see Section 7.4). We find that Porcupine

is able to synthesize a variety of kernels that are at least as

good or better than an expert-written version, and in most

cases can synthesize a kernel in a few minutes.

7.1 Methodology
Porcupine is implemented with Rosette v3.1 [49], and con-

figured to use Boolector [11] as its backend SMT solver. Syn-

thesized kernels are compiled down to SEAL v3.5’s BFV

library [44]. When running Porcupine’s kernels, security

383



PLDI ’21, June 20–25, 2021, Virtual, Canada M.Cowan, D.Dangwal, A.Alaghi, C.Trippel, V.T. Lee, and B. Reagen

Table 2. A comparison of instruction count, multiplicative

depth (M. Depth), and logical depth (L. Depth) of synthesized

and baseline kernels.

Kernel Synthesized/Baseline

Instr. M. Depth L. Depth

Box Blur 4/6 0/0 4/3

Dot Product 7/7 1/1 7/7

Hamming Distance 9/13 1/1 9/9

L2 Distance 7/7 1/1 7/7

Linear Regression 4/4 1/1 4/4

Polynomial Regression 7/9 2/2 5/5

Gx 7/12 0/0 4/4

Gy 7/12 0/0 4/4

Roberts Cross 10/10 1/1 5/5

Sobel 19/25 1/1 9/7

Harris 43/59 3/3 17/14

parameters are set to guarantee a 128-bit security level; both

baseline and synthesized kernels use the same settings. All

experiments are conducted on a 3.7 GHz Intel Xeon W-2135

CPU with 64 GB of memory.

Workloads. We evaluate Porcupine using common ker-

nels found in linear algebra, machine learning, and image

processing listed in Table 3. Since there is no standardized

benchmark for compiling HE kernels, we attempt to be as

diverse and representative in our selection as possible. For

example, dot product, L2 distance, and linear and polynomial

regression kernels are building blocks of machine learning

applications, while the x/y-gradient (𝐺𝑥 /𝐺𝑦) and Roberts

Cross kernels are used in image processing applications.

Kernels are modified to omit operations not directly sup-

ported by HE. For instance, the canonical L2 distance kernel

uses a square root, but many applications (e.g., k-nearest

neighbors) can use squared distance with negligible effect

on accuracy [31]. Finally, because BFV cannot directly imple-

ment data-dependent branches or conditionals, applications

that require these operations are calculated up to a branch.

For example, our Harris corner detector implementation re-

turns an image of response values that the user must decrypt

and apply a threshold over to detect the corners.

Baselines. We compare Porcupine’s code quality against

an expert’s hand-written implementation that seeks to first

minimize multiplicative, then logical depth. Minimizing mul-

tiplicative depth was chosen to reflect the state-of-the-art

solution that was recently proposed for optimizing HE ker-

nels under Boolean HE schemes [28]. The paper suggests

that optimizing multiplicative depth also minimizes noise, as

fewer successive operations compound less noise between

any input-output. Since some of our baseline kernels require

few or no multiplications, the baselines further minimize

noise growth by minimizing logical depth after multiplica-

tive depth. To minimize depth, these programs attempt to

perform as much computation as possible in early levels of

the program and implement all reductions as balanced trees.

In addition, all our baseline implementations use packed

inputs (i.e., are not scalar implementations) to minimize la-

tency.

7.2 Synthesized Kernel Quality
To understand the quality of Porcupine’s synthesized pro-

grams, we compare instruction count, multiplicative depth,

logical depth, and run time against the hand-optimized base-

line. We report run time speedups in Figure 5, with all times

averaged over 50 independent runs and instruction counts

in Table 2.

The results show that Porcupine’s kernels have similar
or better performance compared to the hand-written base-

lines. For some kernels such as dot product, L2 distance, and

Roberts Cross, Porcupine generates roughly the same kernel

as the hand-written implementation. The synthesized and

baseline implementations may have different orderings of

independent instructions, resulting in small performance

differences.

For more complex kernels (𝐺𝑥 , 𝐺𝑦), polynomial regres-

sion, and box blur), we observe Porcupine’s programs have

notably better run times, up to 52% and use fewer instruc-

tions. Our speedups are a result of Porcupine being able to

identify different types of optimizations. For example, our

synthesized polynomial regression kernel found an alge-

braic optimization that factored out a multiplication similar

to 𝑎𝑥2 + 𝑏𝑥 = (𝑎𝑥 + 𝑏)𝑥 , resulting in a kernel that used 7

instructions instead of 9 and was 28% faster than the baseline.

We analyze more of these optimizations in Section 7.3.

For these kernels, each handwritten baseline took on the

order of a few hours to a day to implement, debug, and

verify; for a non-expert unfamiliar with HE and SEAL, this

would take much longer. The results show that Porcupine

can effectively automate the tedious, time-consuming task

of handwriting these kernels without sacrificing quality.

Multi-step Synthesis Evaluation. We also used Porcu-

pine’s synthesized kernels to compile larger HE applications.

Specifically, Porcupine’s 𝐺𝑥 and 𝐺𝑦 kernels are used to im-

plement the Sobel operator, and𝐺𝑥 ,𝐺𝑦 , and box blur kernels

were used to implement the Harris corner detector, shown

in orange in Figure 5. By leveraging Porcupine synthesized

kernels, our Sobel operator and Harris corner detector were

4% and 15% faster than the baseline, and used 10 and 16

fewer instructions respectively. These results show that we

can speedup larger applications by synthesizing the core

computational kernels these applications rely on.
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c0

c1 c2 c3

c4 c5

c6

c0

c1

c2

c3

c4

c1 = rot c0 1
c2 = rot c0 5
c3 = rot c0 6
c4 = c1 + c0
c5 = c2 + c3
c6 = c4 + c5

c1 = rot c0 1
c2 = c0 + c1
c3 = rot c2 5
c4 = c2 + c3

Synthesized Baseline

(a) (b)

Figure 6.HEkernels for box blur. (a) Synthesized kernel with
minimal number of instruction (b) Hand-optimized minimal

depth kernel. Porcupine achieves a much higher perform-

ing kernel by separating kernels and use fewer instructions

which, even though the logical depth increases, results in a

39% speedup.

7.3 Analysis of Synthesized Kernels
We now analyze the synthesized and baseline implementa-

tions of the box blur and𝐺𝑥 kernels to demonstrate the trade-

offs explored by Porcupine. Figure 6 compares Porcupine’s

and the baseline’s box blur. The baseline implements this

kernel in six instructions with three levels of computation.

In the first level, elements are aligned in the window with

rotations and then summed in a reduction tree. Porcupine’s

synthesized kernel uses four instructions with five levels;

decomposing the 2D convolution into two 1D convolutions

to perform the same computation with fewer instructions.

Furthermore, despite having a greater logical depth, the syn-

thesized solution consumes the same amount of noise as

the baseline. By focusing on minimizing logical depth, the

baseline misses the separable kernel optimization because it

was not the minimum depth solution.

We observe similar results for the𝐺𝑥 kernel and show the

synthesized and baseline programs in Figure 7. The depth-

optimized baseline applies the same strategy as the box blur

kernel, first aligning elements in the sliding window then

combining them in a balanced reduction tree. The 𝐺𝑥 ker-

nel weights some of the neighbor elements by two, and the

baseline substitutes the multiplication with a cheaper addi-

tion (operand c11 in Figure 7b). The synthesized 𝐺𝑥 kernel

has a very different program structure from the baseline.

Porcupine discovers the filter is separable and decomposes

the kernel into two 1D filters, requiring a different set of

rotations and schedule to implement correctly as depicted

in Figure 8. Porcupine’s synthesized solutions automatically

also substitutes the multiplication by two with an addition

which is performed at c4 in Figure 8 in parallel with other

additions.

While minimizing for logical depth is a good guideline for

minimizing noise in scalar HE programs, our results show it

is not guaranteed to find the optimal implementations for

vector HE constructions, like BFV, and can leave significant

c0

c1

c2 c3

c4

c5 c6

c7

Synthesized Baseline

c1 c6

c7

c0

c2 c3 c4 c5

c8 c9

c10 c11

c12

c0 = image
c1 = rot c0 -5
c2 = c0 + c1
c3 = rot c2 5
c4 = c3 + c2
c5 = rot c4 -1
c6 = rot c4 1
c7 = c6 - c5

c0 = image
c1 = rot c0 1
c2 = rot c0 5
c3 = rot c0 6
c4 = rot c0 -1
c5 = rot c0 -4
c6 = rot c0 -6
c7 = c1 + c2
c8 = c3 + c4
c9 = c5 + c6
c10 = c7 + c8
c11 = c9 + c9
c12 = c10 + c11

(a) (b)

Figure 7. (a) Synthesized and (b) baseline 𝐺𝑥 kernel. The

synthesized kernel uses 7 instructions while the baseline

uses 12 instructions. The synthesized kernel optimizes the

computation to separate the 2D convolution into two 1D

convolutions and interleaves rotation and computation. Ci-

phertexts generated by rotations are marked in green and the

ciphertext where multiplication by 2 is implemented with

an addition is in red.

c0,0 c1,0 c2,0 00

c0,1 c1,1 c2,1 00

c0,2 c1,2 c2,2 00

0 0 0 0 0

0 0 0 0 0

C2 = C0 + C1

C1 = Rotate C0 by 5 

c1,1  + c1,2

c0,1  + c1,1

c0,1 + 2 x c1,1 + c2,1  

c0,1 + 2c0,2 + c0,3  - c2,1 - 2c2,2 - c2,3  

C3 = Rotate C2 by -5 

C6 = Rotate C4 by -1

C5 = Rotate C4 by 1

Gx = C5 - C6

C4 = C2 + C3

C0

c0,0 + 2c1,0 + c2,0

c2,1 + 2c2,2 + c2,3  

c0,1 c1,1 c2,10 0c1,0 c2,0 0 c1,2c0,2c0,0 0

c1,1 c2,1 0 c0,2 c1,2 c2,20c0,1

c2,2

Figure 8. Porcupine optimized 𝐺𝑥 kernel. An optimized im-

plementation packs the entire image into one ciphertext and

schedules computation with rotations. Purple slots contain

elements that are used to compute the final red slot. The

value contained in the red slot are tracked on the right hand

side.

unrealized performance (e.g., up to 52% for𝐺𝑦). Because Por-

cupine searches for vectorized implementations, and tracks

program latency and multiplicative depth it can outperform

the heuristic for programs with more complex dependencies.
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Table 3. Synthesis time and number of examples used by Porcupine. Initial time is the time to synthesize a solution and total

time includes time spent optimizing. Reported values come from the median of three runs.

Kernel Examples Initial Time (s) Total Time (s) Initial Cost Final Cost

Box Blur 1 1.99 9.88 1182 592

Dot Product 2 1.27 15.16 1466 1466

Hamming Distance 10 38.98 77.21 3428 1658

L2 Distance 2 27.57 114.28 1436 1436

Linear Regression 2 0.50 0.69 878 878

Polynomial Regression 2 24.59 47.88 2631 2631

Gx 1 14.87 70.08 1357 975

Gy 1 9.74 49.52 1773 767

Roberts Cross 1 212.52 609.64 2692 2692

7.4 Synthesis Time
Table 3 reports the median time it took to synthesize each

kernel over three runs. We report how long it took to find

an initial solution and the cumulative time it took to find an

optimized solution. For most of the kernels we were able to

synthesize an initial solution in under 30 seconds and syn-

thesize an optimized solution under 2 minutes. The Roberts

Cross kernel required more time, taking over 2 minutes to

synthesize an initial solution and in total to 27 minutes to

optimize. This is because the Roberts Cross kernel required

a sketch with 10 instructions, which took longer to search

over. Additionally, the optimization phase of the synthesis

engine must prove it found the best solution contained in the

sketch, requiring the SMT solver explore the entire search

space.

In terms of input-output examples required by Porcupine

during the synthesis process, we typically only require one

example to synthesize a solution; however, for some kernels

such as Hamming distance we required up to 10 input-output

examples be generated during synthesis. We find kernels

that produce a single-valued output, like Hamming distance,

require more examples than kernels that produce a vector

output (e.g., image processing kernels). This is because the

synthesis engine can find many input-dependent (but not

general) programs.

Cost Trajectory. Table 3 also reports the cost of the initial
and final solutions found by Porcupine. For some kernels,

the initial and first solution Porcupine finds are the same.

This indicates that either there was only one correct solution

in the minimum 𝐿-sized sketch, or that Porcupine found the

best solution on the first try. The time between Porcupine

reporting the initial and final solution is spent proving that

it found the best solution in the sketch. After the initial

solution is found, users can terminate Porcupine early to

shorten compile times.While this does not guarantee the best

solution was found, it will minimize arithmetic instructions.

Local Rotate Sketch Analysis. Our local rotate sketches
treat rotations as operands instead of components. We could

have alternatively required users explicitly add rotations to

the list of components supplied in the sketch (which we refer

to as explicit rotation sketches). However, explicit rotation

sketches describe a larger space of programs that includes

the space described by our local rotate sketches.

In small kernels, e.g., box blur, the synthesis time using

local rotate sketches was slower than the explicit rotation

sketch; the explicit rotation sketch took only 3 seconds to

synthesize verses 10 seconds when using a local rotate sketch.

However, when we synthesize larger programs the explicit

rotation sketch scales poorly. Using the explicit rotation

sketch, synthesizing the 𝐺𝑥 kernel took over 400 seconds to

find an initial solution then over 30 minutes total. On the

other hand, the local rotate sketches found the same solution

in about 70 seconds total, showing that local rotate does

improve synthesis scalability and search time.

8 Related Work
8.1 Compilers for Homomorphic Encryption
Recent work proposes domain-specific and general compil-

ers for HE [3, 7, 12–16]. Prior work such as CHET [16] and

nGraph-HE [7] are domain-specific HE compilers for deep

neural networks (DNNs). CHET optimizes the data layout

of operations in DNNs while nGraph-HE added an HE ex-

tension to an existing DNN compiler with new graph-level

optimizations. Cingulata [12] and Lobster [28] target Boolean

HE schemes and propose compilation strategies that rely on

multiplicative depth minimization and synthesizing rewrite

rules.

Other HE compilers such as EVA [15] and Alchemy [14]

automate parameter selection and placement of low-level

scheme specific HE instructions that control ciphertext prop-

erties necessary for correctness, but have no affect on the

result of computation (e.g., mod-switch). For example, EVA

achieves this for the CKKS scheme using custom rewrite
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rules but requires a hand-crafted HE kernel as input. On

the other hand, Porcupine tackles an orthogonal problem of

synthesizing vectorized kernels and optimizes the computa-

tional instructions.

The closest work to ours is Ramparts [3] which is a HE

compiler that translates plaintext Julia programs to equiva-

lent HE implementations. Unlike Porcupine, Ramparts does

not support packed vectorization (i.e., one task cannot use

multiple slots in a ciphertext) which is required for taking

advantage of SIMD parallelism within a task and improving

latency. In contrast, Porcupine supports packed data inputs

and can generate kernels with rotations. Furthermore, Ram-

parts relies on the structure of the input Julia program to

serve as the seed for symbolic execution-based methodology

which produces a computational circuit that is optimized

and lowered to HE instruction with rewrite rules. In contrast,

Porcupine places essentially no constraints on the structure

of the programs it synthesizes other than the number of in-

structions it can contain. This enables Porcupine to consider

a wider range of programs when optimizing.

Overall, Porcupine is the first compiler that applies pro-

gram synthesis to optimize vectorization for integer HE con-

structions.

8.2 Compilers for Privacy-Preserving Computation
Compiler support has also been proposed for other privacy-

preserving techniques, such as differential privacy (DP) [17]

and secure multi-party computation (MPC) [22, 51] to auto-

matically enforce or reason about restrictions and constraints

by these technologies. For instance, DP requires adding noise

to the algorithm and deriving that the effect of an individ-

ual’s information is in fact differentially private (i.e., has

indistinguishable effect on the aggregate data). In DP, there

are proposals for using type systems to enforce differen-

tial privacy [19, 32, 41]. Other programming language tech-

niques [5] include dynamic approaches [29, 30, 43], static

checking [19, 33, 41], and machine-checked proofs [6]. A

similar trend is occurring in MPC where implementations

must also comply with design constraints to collaboratively

compute functions while still protecting private inputs from

other users. Recent work by [25, 39, 47, 50, 52] proposes

and/or evaluates general-purpose compiler for MPC.

8.3 Synthesizing Kernels
Prior work has shown program synthesis to be effective for

compiling and optimizing programs for various goals and tar-

gets. For example, Chlorophyll [35] introduced a synthesis-

based compiler that targets a scalar spatial architecture with

a stack-based language. By pairing a naive code generator

with a synthesis based superoptimizer they were able to

quickly build an optimizing compiler. Spiral [37] generates

optimized DSP kernels using both inductive and deductive

synthesis techniques

Swizzle Inventor [34] synthesized optimized data move-

ment for GPU kernels from a sketch that specified that com-

putation strategy and left data movement unspecified. Be-

cause their objective only optimized data movement, they

relied on canonicalization for verification (not an SMT solver)

which does not allow their synthesis formulation to optimize

algebraic expressions but improves synthesis time. On the

other hand, our synthesis formulation needs to optimize alge-

braic expressions as part of selecting arithmetic instructions

so requires an SMT solver.

Program synthesis has also been used for automatically

vectorizing code. For example, Barthe et al. introduced an

auto-vectorization method [4] that transformed scalar loops

into SIMD implementations (Intel SSE4) by restructuring

loops to expose parallelism and then synthesizing a straight-

line SIMD loop body using an enumerative search.Porcupine

does not rely on a loop restructuring phase and our synthesis

procedure optimizes the entire kernel, allowing us to handle

nested loops. Furthermore, our search optimizes an HE cost

model that accounts for multiplicative depth and handles

vectors larger than four lane CPU SIMD vectors.

9 Conclusion
We presented Porcupine, a program synthesis-based com-

piler that automatically generates vectorized HE kernels.

Porcupine automatically performs the instruction selection

and scheduling to generate efficient HE kernels andminimize

the HE noise budget. By automating these tasks, Porcupine

abstracts away the details of constructing correct HE compu-

tation so that application designers can concentrate on other

design considerations. HE is still a rapidly maturing area

of research and there is limited related work in this space.

As a result, we expect that in future work we will see rapid

improvements to compilation infrastructure such as ours.
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