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Iteration Point Difference Analysis is a new static analysis framework that can be used to determine the
memory coalescing characteristics of parallel loops that target GPU offloading and to ascertain safety and
profitability of loop transformations with the goal of improving their memory access characteristics. This
analysis can propagate definitions through control flow, works for non-affine expressions, and is capable of
analyzing expressions that reference conditionally defined values. This analysis framework enables safe and
profitable loop transformations. Experimental results demonstrate potential for dramatic performance im-
provements. GPU kernel execution time across the Polybench suite is improved by up to 25.5X on an Nvidia
P100 with benchmark overall improvement of up to 3.2X. An opportunity detected in a SPEC ACCEL bench-
mark yields kernel speedup of 86.5x with a benchmark improvement of 3.3x. This work also demonstrates
how architecture-aware compilers improve code portability and reduce programmer effort.
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1 PORTABLE PERFORMANCE DEMANDS STRONGER PROGRAM ANALYSES

High-Performance Computing (HPC) demands highly expressive, scalable parallel programming
models. Prescriptive models such as Open Multi-Processing (OpenMP) have increasingly become
the go-to solution to achieve these goals. The paradigm shift toward heterogeneous platforms with
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accelerator devices adds an additional dimension to the portable code generation problem. The
OpenMP 4.0 standard allows programmers to offload regions of code for execution on a coproces-
sor, making no assumptions about its memory or execution model [26]. Accelerator architectures
operate on different assumptions of memory layout and locality, each requiring highly specialized
program code.

Common pitfalls in GPU programming can be avoided when generating code from high-level
languages through code analysis and transformation that would be difficult in lower-level pro-
gramming models. For instance, coalescing of memory accesses leads to higher performance when
threads in a warp access memory locations that map to few cache lines so these accesses can be
satisfied with fewer requests to the memory subsystem. A naive mapping of parallel loop nests to
data-parallel code often results in non-coalesced accesses. A sufficiently capable optimizing com-
piler must be able to detect such code patterns and be able to reshape loop nests such that the
resulting mapping exhibits better memory access characteristics.

This article introduces Iteration Point Difference Analysis (IPDA), which is able to capture
OpenMP parallel loop access stride information and enable safety and profitability analyses that
guide automatic interchange and collapse of loop nests. Loop-nest reshaping, informed by the
results of IPDA, can yield dramatic performance improvements, demonstrated with an achieved
speedup of up to 25.5% for a loop nest in the Polybench benchmark suite and up to 86.5% for a
loop nest from the SPEC ACCEL suite. This new analysis builds on the ideas proposed in a novel
static analysis framework called Arithmetic Control Form (ACF) [16]. ACF is unique in its ability
to handle control-flow conditionals symbolically and statically determine access stride patterns
in CUDA code. The IPDA framework introduces the ability to discover cross-iteration symbolic
differences statically. Stronger data-access analysis also enables the generation of efficient paral-
lel code without requiring programmers to provide hints to the compiler. The performance study
in this article demonstrates that removing collapse clauses from OpenMP 4.x programs can in-
crease performance across diverse accelerator architectures if the compiler is capable of inferring
the profitability of loop collapsing automatically.

This article also demonstrates the versatility of the analysis framework by building a loop-
dependence test based on IPDA: the IPDA Test is introduced as an Data Dependence Graph (DDG)
pruning algorithm that enables safety proofs on more loop nests than originally possible in the
experimental compiler setup. This article makes the following contributions: i) IPDA —A static
analysis framework for the computation of cross-iteration symbolic differences among expressions
contained in loops; ii) A novel DDG pruning technique based on constructing inequality proofs
over symbolic iteration-point algebraic difference equations; iii) A static analysis that identifies
inter-thread memory access stride of addressing expressions contained in parallel OpenMP loops;
iv) Safety and profitability analyses to guide loop collapse and interchange transformations on
OpenMP parallel loops intended for GPU execution.

2 PROGRAMMING MODEL, PROGRAM ANALYSIS, AND EXECUTION PLATFORM

GPUs are composed of a large number of Streaming Multiprocessors (SMs),! each capable of
executing thousands of threads in parallel. Such massive parallelism requires a strict Single
Instruction, Multiple Thread (SIMT) data-parallel programming model to achieve performance.
The Nvidia V100 is a state-of-the-art Nvidia GPU for high-performance computing composed of
80 SMs. Each SM can issue an instruction for 128 threads per cycle [22]. The V100 has enough
resources to maintain the state of thousands of threads, which gives each SM the ability to
context-switch between threads with zero penalty—a key instruction-latency hiding mechanism.

INvidia-specific terms such as warp and SM are used throughout this article for the sake of clarity and consistency.
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GPU threads are grouped into warps: all the threads that comprise a warp execute either the
same instruction in lock-step or no instruction at all. Lock-step execution reduces the overhead
of scheduling work across a large number of threads. Threads are further grouped into thread
blocks. All threads within a thread block must execute on a single SM. They can both share
intermediate results via access to SM’s shared memory banks and synchronize their execution.
Threads from different thread blocks have no means of direct communication or synchronization.

2.1 Memory Coalescing

In a typical data-parallel kernel, thread identifiers are used in memory-access addressing expres-
sions to load/store the data items for each thread. The number of memory requests issued by a
warp in a given cycle can be as large as the number of threads in a warp (32 in current architec-
tures), because the threads belonging to it execute the same instruction simultaneously. The GPU
global memory subsystem has a limited amount of bandwidth available. As a means to reduce the
overall number of requests, the GPU coalesces multiple same-cycle accesses to memory within the
same cache line into a single request. Coalescing memory accesses into fewer requests can dramat-
ically improve memory throughput, because no thread in a warp can continue execution until the
memory accesses of all threads have completed. Each global memory request requires hundreds of
cycles to be completed; thus, structuring GPU programs to avoid non-coalesced memory accesses
is paramount for performance [2].

2.2 Arithmetic Control Form Analysis

The ACEF static analysis framework, introduced by Lloyd et al., is a way to capture linear and non-
linear relationships between program statements [16].> ACF’s main approach is to combine data
and control flow by computing symbolic values for expressions of interest. Similarly to the work
by Ferriere and Stoutchinin on ¢-nodes [30] and prior efforts in if-conversion [18], ACF converts
conditionally executed statements into predicated statements, capturing definitions across all po-
tential traces through the program. Resulting ACF expressions consist of binary operations on
constants and symbols representing compile-time unknowns.

In the context of data-parallel programs, ACF’s key strength lies in its ability to compute an
algebraic difference on the symbolic representation of a statement. For instance, consider a state-
ment S that is executed by different threads, and assume that S contains an addressing expression
ALf (1)1, where i is the identifier of a thread executing the code. ACF constructs an algebraic ex-
pression for the difference between the symbolic value of the function f computed by two distinct
threads. Then, by substituting actual constant thread identifiers into symbolic expressions, ACF
can determine the memory-access stride between threads by solving the difference to a constant.

ACF replaces variable references with their dominating definitions wherever possible during the
construction of symbolic expressions. ACF can perform this replacement without any additional
considerations for potential performance impact of this replacement, because ACF expressions
are symbolic and are not actual Intermediate Representation (IR) of the program that will undergo
transformation and code-generation.

2.3 OpenMP and Accelerator Programming

Directive-based programming models abstract accelerator hardware specifics from the developer.
Being platform-agnostic, these models promise code portability across existing and future acceler-
ators. The programmer specifies a target region, directing the compiler to offload the region to an
accelerator device. The target region directive is annotated with data-transfer map clauses that in-
dicate which arrays must be transferred to and from the device data environment. Full assortment

2 ACF source code is available online [1].
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of OpenMP parallelism constructs are supported inside target regions; however, task-level paral-
lelism maps poorly to data-parallel devices such as GPUs. Thus, performance considerations limit
the expression of parallelism in OpenMP for execution in GPUs to parallel and loop constructs.

OpenMP can express three levels of parallelism inside a target region: the teams construct
declares a region of code to be executed by a league of threads, the parallel construct declares a
task to be executed in parallel by threads within a league, and the simd construct declares vector-
based execution of a loop. The first two provide a natural mapping to the GPU’s notions of thread
blocks and threads, respectively. Both teams and parallel constructs have associated loop work-
distribution clauses: teams distribute and parallel for.

2.4 OpenMP 4.x GPU Code Generation

As implemented in OpenMP 4 for LLVM/Clang as well as in the IBM XL C/C++/Fortran compil-
ers, target regions are outlined into separate procedures. The outlined procedure is cloned into
two versions: a device version and a host fallback version. CPU code is generated for the fallback
variant. A kernel suitable for GPU execution is generated for the device version. To best take ad-
vantage of the GPU, data-parallel code is generated in place of parallel loops. The resulting device
kernel is translated into Nvidia’s Parallel Thread Execution (PTX) pseudo-assembly language, using
Nvidia’s proprietary PTXAS assembler. The host code that previously contained the target region
is rewritten to invoke the outlined device kernel through a runtime method call. The runtime per-
forms the required setup and data transfer. Finally, the GPU runtime compiles the PTX code into
machine instructions and launches kernel execution.

3 LOOP ITERATION POINT ALGEBRAIC DIFFERENCES

The Iteration Point Difference Analysis can symbolically calculate the difference in the expres-
sion’s value across iterations of a loop and is especially useful for analysis of induction-value-
dependent addressing expressions. A compiler can use the results of IPDA to make decisions
regarding both safety and profitability of classical loop transformations. IPDA can improve the
generation of code that will execute either in the CPU or the GPU.

IPDA uses an ACF-like approach to compute the loop access stride of an addressing expres-
sion. While ACF relies strictly on the presence of a direct source of thread-dependent behavior
in the expression, IPDA uses the induction variables to examine iteration-point differences. In
its evaluation prototype, ACF is applied to CUDA programs and is limited to stride-access anal-
ysis and branch-divergence detection on explicitly data-parallel programs. In that prototype, re-
sults are strictly used to advise CUDA programmers about potential opportunities for performance
improvement.

Given a thread-dependent memory-addressing expression, IPDA computes the cross-iteration
access stride. For instance, consider the code snippet in Figure 1.

As described in Section 2.2, and demonstrated in Figure 2, conditional expressions are encoded
into the symbolic values as a sum of products of predicates multiplied by the value they imply.
The symbolic expression computed for the address expression of the memory reference B[idx] in
line 8 is:

IPD(BLidx]) = ([i] < 32) x ([&B1 + 8 x (64 + [i]))
+([i] >=32) x ([&B]1 + 8 x [i]),

where references to idx were replaced with their definition in terms of i, which is the source of
induction-variable-dependent behavior. Symbolic propagation allows the analysis to compute the
cross-iteration memory access stride by substituting constant parameters in place of induction
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1| #define TSIZE 64

2| for (int i = 0; i < N; ++i) {
3 int idx = 0;

4| if (i < (TSIZE / 2))

5 idx = TSIZE + i

6| else

7 idx = i

8| B[idx] = foo()

9y

Fig. 1. Example loop to be analyzed by IPDA with a conditionally defined indexing expression.
v
i >= (64/2)

i < (64/2)

[BLidxJ= 8B + 8 * (64 + i) | [B[idx]= &B + 8 * i

Fig. 2. Pictorial representation of ACF predicate encoding into a symbolic value.

variable identifiers and performing algebraic simplification:
IPD{(BLidx]) — IPDy(B[idx]) = (1 < 32) X ([&] + 8 X 65) + (1 >=32) x ([&B] +8 x 1)
—(0 < 32) x ([&B] + 8 x 64) + (0 >=32) x ([&] + 8 X 0)
= ([8B] + 520) — ([&B] + 512)
= 8.

Inter-thread memory access stride is determined to be 8 bytes. In this example, constant iteration
values of 0 and 1 are used. The actual analysis computes this difference for a sufficiently large
number of iterations to arrive at a memory-access stride description. For example, when applying
the analysis to calculate the inter-thread access stride of a GPU parallel loop, a number of iterations
equal to the GPU thread-block size is tested. Existing OpenMP GPU runtimes select fixed-sized
thread-block sizes based on the target GPU architecture (e.g., 128 for Pascal [17]).

A major strength of the IPDA framework is its reliance on symbolic value computation, which
makes it highly independent of the transformation phase ordering: the analysis is likely to produce
equally accurate results regardless of the current state of the loop code (e.g., before or after loop-
invariant code motion). This has the effect of not only increasing the overall analysis accuracy but
also its applicability at different stages of the compilation process.

Furthermore, IPDA’s innovations make ideas first proposed in ACF relevant for non-data-
parallel programs. Detection of induction-variable-dependent behavior is also particularly use-
ful for the analysis of parallel OpenMP loops, because in such loops different iterations might be
scheduled to be executed by different threads, affecting cache behavior.

3.1 Focusing on Loop-specific Analysis Demands

The transformation of loop nests often requires an analysis that can compute an induction-value-
dependent difference between distinct addressing expressions computed at different iteration
points of a loop nest. In contrast, the original design of ACF was intended only to compute the
differences between the same expression as evaluated by multiple threads to detect divergent
behavior. For example, let Es be the expression used to compute the address of the source of a
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loop-carried dependence relation that exists in the compiler’s DDG and let E; be the expression
for the target of the same dependence. In many loops, Es and E,; are similar enough that the
difference between the ACF symbolic representations of E; and Es produces a simplified AE
expression that yields useful information about potentially overlapping access ranges of the two
statements. Such information can often enable a multitude of compiler transformations previously
prevented by a conservative or insufficiently capable safety analysis. Moreover, for the cases
where the symbolic difference simplification framework does not provide information to increase
the precision of the dependence relations, it does not affect the soundness of the results. In the
case of a AE expression that could not be simplified or does not provide meaningful access range
insights, the dependence is left as-is in the DDG.

4 SYMBOLIC REPRESENTATION

IPDA computes the algebraic difference of expression instances as accessed in different loop itera-
tions. It models each access as a tree of symbolic values consisting of constants, statically unknown
values, and operators. The symbolic representation for an expression is constructed in a way that
lends easily into computing differences across iterations. For instance, whenever possible, a load
is replaced directly with its reaching definition.

An addressing expression of an arbitrary level of indirection is representable symbolically in a
fashion similar to that of building an AST by traversing each index operation and creating offset
addition operators for element accesses. Consider a data access expressed in C such as A[4].x[2]—
the symbolic-expression tree is built by taking sums of each index operation (three in this case),
each of which are offsets to the specified element.

Whenever there are multiple reaching defining expressions for a variable that is used in an IPDA
address expression, a separate term is created for the IPDA expression for each reaching definition.
Each term is multiplied by the set of predicates, extracted from the conditional statements along
the path where the reaching definition lies, that must be true for that definition to reach the IPDA
address expression. During the execution of the program, only one such path can be executed, and
therefore only one such set of predicates can be true.

4.1 Algebraic Difference Cancellation

The following are the steps taken to compute a difference between two address expressions, which
are now represented as canonicalized symbolic-expression trees:

(1) A new binary tree root is created, joining the two trees with a subtraction operator.

(2) The canonical sum-of-products form allows for a simple way to split each of the two
subtraction operands into a series of constituting product summands to identify common
expressions on both sides that can be cancelled.

(3) Once the cancelled sub-expressions are removed from the summand lists, the remaining
expressions are rebuilt back into a canonical-form tree that is further simplified by apply-
ing various common expression-factoring techniques.

If the resulting tree has been resolved to a constant value, then IPDA returns the number of
requests to global memory that an expression will incur.

4.2 Compiler Implementation

The IPDA analysis framework was implemented in the IBM XL C/C++/Fortran compiler’s opti-
mizer component. The backbone of the framework are the symbolic expression builder and sim-
plifier components.
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The builder constructs symbolic expressions for statements in the compiler’s IR on-demand
(e.g., when queried for an indexing expression of a memory access). The compiler’s data-flow and
control-flow graphs are used together to propagate dominating definitions where possible and
create symbolic unknown symbols otherwise. Symbolic representation of conditionally defined
values occurs when constructing a symbolic form for a value whose definition corresponds to
a ¢ node in the data-flow graph. In this case, the framework computes the predicates of all the
predecessor blocks of the ¢ and creates an expression tree consisting of the sum of predicates
multiplied by their corresponding definition. The resulting symbolic value is a binary operation
tree with constants and symbolic unknowns at the leafs. The builder also allows the framework to
manipulate existing and construct arbitrary new symbolic expressions from scratch and based on
existing IPDA values. For example, the framework’s user may wish to manually create a difference
of two existing symbolic values and pass the result on to the simplifier.

The symbolic expression simplifier is a custom-built collection of algorithms that implements
basic algebraic rules and applies them to reduce a given IPDA expression. To ease the simplifier’s
job, symbolic expressions are first converted into a canonical sum-of-products form. The simpli-
fication algorithms range from capturing simple constant-value operations, such as division by
1 or multiplication by 0, to a fixed-point search for more complex constant-folding opportuni-
ties (e.g., (2 + x) X 4 — 8 X 4x). Special-purpose routines are implemented in the framework to
handle reduction of difference expressions. These routines canonicalize the difference operands
and attempt to cancel out the operands’ common sub-expressions. Difference reduction is also a
fixed-point algorithm.

The aforementioned components are further abstracted via purpose-specific analyses. For ex-
ample, the memory access coalescing analysis, described in Section 6, is simply queried with a
load/store of interest. The analysis interacts with the IPDA framework: building symbolic expres-
sions, instantiating iteration-point specific symbolic values, creating difference expressions, pass-
ing them on to the symbolic simplifier, and capturing the result. Such analysis is then used by other
relevant compiler components; for example, a profitability analysis for a transformation such as
the ones described in Section 7 need not be aware of the IPDA framework, because they query the
coalescing analysis instead.

5 DATA DEPENDENCE GRAPH PRUNING WITH ITERATION POINT DIFFERENCES
5.1 Value Range Overlap Analysis

The IPDA test constructs address value ranges that encompass the full scope of memory locations
accessed by a potential dependence source and sink expressions across all dimensions of the iter-
ation space. Consider a potential dependence in a given single loop where the dependence source
is a store instruction to a memory location whose address is bounded by Es,. = [a, b]. Similarly,
the sink of the dependence is a load instruction whose address is in the range Eg;,r = [c, d]. If the
ranges Eg,. and Eg;,; do not overlap, then IPDA determines that source and sink operations do
not create a dependence; thus, the potential dependence is false and can be pruned from the DDG.

To determine the value range of an address expression, IPDA propagates the value ranges of
individual variables up the expression trees. Let R1 =[a, b] and R2 =[c, d] be two ranges. The fol-
lowing list outlines the various operations on ranges and how IPDA evaluates them to produce a
resulting range:

R1+R2=[a+cb+d]

R1-R2=[a—d,b—c]

R1 X R2 = [min(min(ac, ad), min(bc, bd)), max(max(ac, ad), max(bc, bd))]
R1+R2=(a>=0ADb>=0)X[a/d,b/c]+(a < 0V b < 0)X[minInt, maxInt]
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for (i=0; i<6; i++) {
AL(i+8)*N] = A[ixN] + x;
X = ...

}

P R

Fig. 3. Example loop array access with a potential dependence.

R1%R2 = (a >= 0 A ¢ >= 0)X[0,d]+(a < 0 V ¢ < 0)X[minInt, maxInt]
R1 and R2 = [max(a, ¢), min(b, d)]

R1 or R2 = [min(a, ¢), max(b, d)]

Ri=|#|<|<|>|=R2=[0,1].

The result range computations for arithmetic operators are trivial. For Boolean or, the result
range computation is simplified to computing a union, with the lower bound being the minimum
of the operands’ lower bounds and the upper bound being the maximum of the operands’ upper
bounds. Similarly, Boolean and result range computation is similar to that of computing an interval
intersect.

We outline the procedure IPDA uses to verify dependencies in non-nested loops, then describe
the more complex case of nested loops. Figure 4 summarizes the steps of the algorithm.

5.2 Single-loop Dependence Checking

Let i and i’ be two distinct values for the induction variable of a single-nested loop. The source
and sink expressions of a potential dependence are formalized as functions of the loop induction
variable. IPDA constructs symbolic, canonicalized expressions for f(i) and g(i’) for the source
and sink expressions, respectively. Functions f and g map the induction variable to an interval of
memory addresses that may be accessed by the source and the sink. Therefore, IPDA difference
f (i) — g(i’) is the interval difference of memory accesses by the source and the sink. If the differ-
ence is an empty interval, then distinct ranges of memory addresses are accessed by the source and
by the sink and there is no real dependence. However, if the difference is resolved to a non-empty
interval, then a range overlap exists.

Consider the illustrative example in Figure 3, where A is an array of integers and the value of x
is reassigned in the body of the loop. There is a potential dependence whose source is the write of
an element of A on the left-hand side of the first statement in the loop body and whose sink is the
read of an element of A on the left-hand side of the same statement. IPDA begins by identifying the
source and the sink of a dependence, then constructs their symbolic representations as explained
in Section 4 (constructSymbolicVal method in Figure 4). The symbolic difference f (i) — g(i")
is constructed and then factored such that the induction variables appear exclusively as a term
of difference on each other: (i’ — i) (lines 6-8 in Figure 4(a)). The difference simplification and
factoring of the induction variable differences constitute the following algebraic manipulations:

f(i) = IPD(AL(i+8)*N]) = [&A] + 4 X (i +8) x [N]
= [&A] + (4i + 32) x [N]
= [&A] + 4i[N] + 32[N]

g(i’) = IPD(ALi"*N]) = [&A] + 4i'[N]

£i) = g(i") = ([&AT + 4i[N1 + 32[N]) — ([&A] + 4i'[N])

= 4i[N] + 32[N] — 4i’[N]
=4[N1(i —i") + 32[N]
= 4[NJAi + 32[N].
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1 Function PruneLoopDep(sourceExpr, sinkExpr, i) 1 Function PruneNestDep(sourceExpr, sinkExpr, Loops)

2 leti’! =1; 2 prune < TRUE;

3 F < constructSymbolicVal(sourceExpr); 3 Llv+{};

4 G < constructSymbolicVal(sinkExpr); 4 LIV’ < {};

5 replaceSymbollnExpr(G, i, 1’); 5 for Loop L € Loops do

6 diffExpr < (F — G); 6 i < L.index;

7 factoredDiff < factorIVDelta(diffExpr, i,1’); 7 leti’! =1i;

8 LO, RO, Op «+ 8 Llv.append(i); LIv’.append(i’);
splitByTopOperator(factoredDiff); 9 F < constructSymbolicVal(sourceExpr);

9 LOR « computeRange(LO); 10 G < constructSymbolicVal(sinkExpr);

10 ROR < computeRange(RO); 1 for loopIndex € 0...LIv.size() do

11 return verifyNoOverlap(LOR, ROR, Op); 12 replaceSymbollnExpr(G, LIv[loopIndex],

LIv’[loopIndex]);

13 diffExpr < (F — G);
14 /1 Nig = (i, — i},)
15 factoredDiff <— factorIVDelta(diffExpr, Llv, LIv’);
16 for S € P(Loops) do

17 for] € Loops[] ¢ S do
18 ‘ replaceSymbollnExpr(factoredDiff, A J.index, 0);
19 LO, RO, Op < splitByTopOperator(factoredDiff);
20 LOR ¢ computeRange(LO);
21 ROR < computeRange(RO);
22 prune & = verifyNoOverlap(LOR, ROR, Op);
23 return prune;
(a) Single-loop dependence checking (c) Loop-nest dependence checking

Fig. 4. Data Dependency Graph pruning algorithm summary.

With the simplified symbolic difference, the analysis verifies whether the difference can pos-
sibly equal to zero. The equation is rewritten into an inequality, as follows for our example:
4[NJAi + 32[N] # 0. Should this equation possibly have solutions, then a dependence exists be-
cause f (i) overlaps with g(i’), i.e., f(i) — g(i") # 0. IPDA rewrites the inequality by splitting the
equation into a right operand (RO) and a left operand (LO) and isolating either into one side of
the inequality (splitByTopOperator method in Figure 4). In particular, the three cases that are
checked by splitting into the two operands are as follows:

RO+LO+#0 = RO#-LO
RO-LO#0 = RO=#LO
ROXLO#0 = RO#0ARO#0.

In the example, the inequality 4[NJAi + 32[N] # 0 is evidently true iff 4LNJAi # —32[N]. Observe
that if N equals 0, the inequality is proven to be false and a dependence exists. Suppose N is the
size of a dimension of the array in question; then, a value range analysis would determine that the
range of N is, conservatively [1, maxint]. This fact allows IPDA to further simplify the inequality
into: Ai # —8. By definition of normalized loops, the induction variables initialize at 0 and exclu-
sively increment. Should IPDA be able to statically determine the upper bounds of the loop, it can
substitute in ranges for induction variables i and i’. Since the range is [0, 5] for i in our example,
then the value range of (i —i’) is either [1, 5] or [-5, —1], by construction of i’. The range of the
right-hand-side expression scalar value is [—8, —8]. The dependence check is then reduced to veri-
fying whether ranges [1,5] and [-8, —8] or [-5, —1] and [—8, —8] overlap. This verification can be
performed via a simple bounds check. Arbitrary precision integers are used in our implementation
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for (i = 0; 17 < Ni; i1++) {
for (i, = 0; i2 < Np; ix++) {

for (in = @; in < Nn; in++)
x = A[i1*N7 + ... + ip*Nj]
6 Alsrc] = x

Fig. 5. Example n-degree loop nest with a potential loop dependence.

to handle various maxint range scenarios. In the case of intra-iteration dependencies, IPDA will
not be concerned, because loop-independent dependencies may be executed in parallel and are
therefore not tested by the analysis.

5.3 Loop-nest Dependence Checking

When dependence relation source and sink are contained in a loop nest, the IPDA Test must en-
sure that their access ranges do not overlap in any two points of the iteration space. To do so,
IPDA repeatedly applies the access overlap test described in Section 5.1 to differences across all
combinations of loops that contain the dependence (verifyNoOverlap method in Figure 4).

IPDA collects all induction variables, along with their upper bounds whenever possible, to create
aset] = {iy, iz, ...,in}. Anothersetl’ = ({i], i}, ..., i, }|i; # ix), holds the set of induction variables
that represent arbitrary values for the induction variables in the n-dimensional iteration space. The
subscript indicates the IV of a specific loop in the loop nest.

In the same manner that functions f and g are used in Section 5.2, let f(iy,is,...,i,) and
g(ij, iy, ..., i) be functions that map arbitrary iteration points to the location in memory being
accessed by the source and sink, respectively. IPDA constructs symbolic, canonicalized expressions
for f and g, joined by a symbolic subtraction operator that represents f — g. This total expression
is factored such that each iy and i; term appears exclusively as a difference Aix = (ix — i}).

To prove that f and g do not map to the same memory location in any two iterations, IPDA
evaluates the access range overlap across every dimension in the iteration space as well as every
combination of dimensions. Consider the n-degree loop in Figure 5. The iteration space is com-
posed of n axes: iy, iy, . . . ip. A trivial example of data dependencies arises if the source expressions
access memory at A[i;*Nj + -+ +i,"N,-1]. In such a case, the next iteration in the innermost
loop depends on its previous iteration, but the IV value for every other loop is constant. Consider
also that a source could access memory across dimensions, unlike the previous example where the
source and sink occur only in a single dimension (the innermost loop). Since dependencies may
occur across any possible combination of dimensions in a nested parallel loop, IPDA performs
range-overlap analysis (Section 5.1) on each combination by fixing the Aij values to 0 for each
loop at depth k, which does not participate in the dependencies for the combination.

The power-set (D) is the set of all subsets of D. For each set S € P (D), each Aix € D A Aiy ¢ S
indicates a loop at depth k that is fixed (Aix = 0), so all Aix € S identify the combination of loops
in S that are part of the current iteration space being evaluated for memory-access overlap. IPDA
fixes Aix values not in a given S by substituting a value of zero for the difference that appears as
(ix — iz) in the symbolic expression. The resulting reduced difference expression is then evaluated
with the range analysis overlap method, as discussed in Section 5.2. If and only if, for every S, the
analysis is able to prove via the range overlap analysis that the difference expression is never equal
to zero, then the dependence relation is pruned from the DDG.
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1| For(§=1;3<NI-1;++3){ for (CIVJ=0; CIVI<NI-2; ++CIVI){ for (CIVJ=0; CIVI<NI-2;++CIVI){

2| for(i=1;i<NI-1;++i){ j = CIVI+1; 3 = CIVI+1;

3 for (k=1;k<NK -1;++k){ for (CIVI=0; CIVI<NI-2;++CIVI){ for (CIVI=0; CIVI<NI-2;++CIVI){
4 BLi* (NK*NJ)+j*NK+k] i = CIVI+1; i = CIVI+1;

5 = foo(j,i, (CIVK+1)); for (CIVK=0; CIVK<NK-2;++CIVK){ for (CIVK=0; CIVK<NK-2; ++CIVK){
6 } k = CIVK+1; BLi% (NK*NJ)+3*NK+(CIVK+1)]
7y BLi% (NK*NJ)+j*NK+k] = foo(j,i, (CIVK+1));
5|3 = foo(3, i, (CIVK+1)); }

9 ¥ 3

10 } }

11 }

(a) Original Source Code (b) After Loop-Normalization (c) After Copy-Propagation

Fig. 6. Example Loop Nest at various stages of compilation/optimization.

5.4 Symbolic Differences of Control-dependent Expressions Improve
Dependence Testing

The IPDA Test’s ability to incorporate conditionally defined values into symbolic expressions,
means to perform algebraic simplification on differences of such expressions, and ability to prop-
agate variable definitions to their uses across control flow distinguishes it from other symbolic
analyses.

Many competing analyses require the dependence source and sink expressions to be defined in
terms of the induction variables of their containing loops. However, this reliance is often broken by
other compiler transformations, such as the ones that canonicalize the representation of loops. For
instance, Figure 6(b) shows the normalized version of a loop. After normalization, the addressing
expressions are no longer expressed in terms of the canonical loop induction variables. Some com-
pilers may rely on expression re-materialization to obtain the expressions in terms of the canonical
induction variables; however, a cost function may prevent the propagation of expressions into the
body of a hot loop. The result is addressing expressions still expressed in terms of a mix of both
original and canonical induction variables. Such mixed indexing expressions may stymie depen-
dence analyses, as is the case in the example in Figure 6(c), where propagating CIVJ+1 and CIVI+1
to the indexing expression in place of i and j would hurt performance. IPDA’s symbolic propaga-
tion of variable definitions to their references eliminates the problem.

Common loop dependence analysis algorithms have difficulty processing addressing expres-
sions with non-constant induction-variable coefficients. Consider the loop nest in Figure 8(a), and
suppose NI, NJ, and NK are runtime parameters. The Greatest Common Divisor (GCD) Test, for
example, checks dependences by verifying that the induction variable coefficients divide the con-
stant factor of the respective Diophantine equation [33]. This test cannot be performed if one of
its operands is an unknown runtime value. Similarly, the Banerjee Test is not able to compute
the coefficient sums to evaluate the constraint condition inequality [3]. However, the dependence
source and sink are often likely to contain the same induction-variable coefficients, and there-
fore the IPDA’s difference calculation engine will factor and cancel them, leaving the resulting
expression in terms of the induction variables and other constants.

5.5 Prototype Implementation Demonstrates that the IPDA Test Is Essential

for Safety Analysis
The IPDA Test was implemented on top of the software framework described in Section 4.2. As in
LLVM, XL’s loop dependence analysis is based almost entirely on the seminal work by Goff et al.
[10] and includes an assortment of exact and approximate tests such as the Lamport Test [14], the
GCD Test [33], the Banerjee Test [3], and the Delta Test [10]. The IPDA Test is appended as an
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additional step in the DDG pruning pipeline. The test’s implementation re-uses symbolic expres-
sion infrastructure, augmenting it with specific expression manipulation primitives for construct-
ing iteration point differences and a value range analysis. As it stands, the execution of the IPDA
Test is highly specific to the compiler infrastructure it is built within. Thus, the only comparison to
this first prototype is the original XL loop dependence analysis, which is a mature infrastructure
from a major vendor. The IPDA Test became an essential component of the safety analysis for the
loop transformations described in Section 7, reducing the DDG further than the compiler’s exist-
ing analyses and allowing transformations previously deemed unsafe. The techniques described
here are applicable in a much wider variety of applications. We invite researchers and developers
to explore those.

6 IPDA GPU GLOBAL MEMORY COALESCING ANALYSIS ON PARALLEL
OPENMP LOOPS

Equipped with the ability to calculate cross-iteration access stride of addressing expressions, the
compiler can infer the inter-thread access pattern of an addressing expression contained in a paral-
lel loop. If the loop in question is destined for GPU offloading, then the inter-thread access pattern
can be used to determine the coalescing characteristics of the memory access. The original ACF, as
implemented in GPUCheck, utilized explicit sources of thread dependence (i.e., thread identifiers)
to examine the degree of coalescing in a given memory access operation. ACF employed taint
analysis, where thread identifiers and their propagated uses were marked so thread-dependent
accesses to global memory could be analyzed and therefore inform the programmer of possible
non-coalesced accesses. The IPDA test makes use of a similar approach but with regards to mem-
ory accesses within the body of parallel loops.

Only OpenMP loops that specify a schedule clause set to static with a compile-time-known
chunk size parameter are analyzed. In practice, this restriction does not seriously limit the use-
fulness of the analysis, because loops without a user-specified schedule are common and can be
treated as having a schedule that the compiler deems beneficial. OpenMP requires that the parallel
loop counts be known at runtime. Thus, the prototype only considers regular loops. This, how-
ever, is not a limitation of the analysis itself, because cross-iteration value differences can also be
computed for loop nests with irregular geometry.

Taking the schedule chunk size into account, IPDA maps the induction variable of a parallel
OpenMP loop to threads and employs a similar coalescing analysis as ACF. The analysis collects
load and store instructions in the body of a given loop nest that are marked as tainted and outputs
the number of memory requests that are required per warp to satisfy the memory access. Each
tainted access instruction in a given loop is represented as a symbolic expression E. The difference
E; — Ey, as computed by IPDA for thread ¢, indicates the memory access stride for the instruction of
interest. Algebraic simplification and difference cancellation techniques outlined in Section 4.1 are
applied in an attempt to simplify inter-thread difference results to constant values. For instructions
where IPDA is successfully able to compute constant-value access strides, the analysis employs the
algorithm outlined in Figure 7 to greedily fit the solved results into a memory request.

The IPDA test creates a list holding potential constant symbolic differences and keeps a count
of non-constant instances. The list Requests indicates the overall requests to global memory in
the loop body, where each individual element depicts the range of accesses that compose a sin-
gle coalesced access. An insertion into Requests creates an access of stride sizeof (accesstype)
bytes, with a limit of 256, the size of the cache line in the current generation of Nvidia cards.
This approach allows the analysis to account for varying access strides within a warp. For in-
stance, if the constant-value difference between threads 0 through 15 of the warp differs from the
constant-value difference between threads 16 through 31, the coalescing analysis would still com-
pute the correct number of required hardware requests.
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1 Constants < {};

2 Unknowns < 0;

3 for instruction I € loop body do

4 E < symbolic(I);

5 for thread t € num(threads) do

6 if diff.isConstant() then

7 ‘ Constants.append(diff);

8 else

9 ‘ Unknowns += 1;

10 Function numRequests(Constants, Unknown)

1 Requests < { };

12 forc € Cdo

13 fit « false;

14 for r € Requests do

15 if ¢ > rlow && ¢ < rhigh then

16 ‘ fit < true;

17 else if ¢ > rhigh - 256 && ¢ < rhigh then
18 rlow < c;

19 fit < true;

20 else if ¢ < rlow + 256 && ¢ > rlow then
21 rhigh < ¢+ 8;

22 fit < true;

23 if fit # true then

24 ‘ Requests.append( (low: c, high: c+8) );

25 return (Requests.size, Requests.size + Unknown);

Fig. 7. Computing the number of coalesced accesses.

For symbolic differences that cannot be solved to a constant value, IPDA coalescing analysis
conservatively assumes distinct requests. For instance, no static analysis can deduce a value that
is only known at runtime. It is possible to use the IPDA framework and determine the memory
stride by evaluating the pre-computed symbolic differences at runtime. Such an approach could be
used in a Just-in-Time compiler or in an inspector-executor framework where one among various
versions of the code is selected at runtime. Implementation and evaluation of such approaches are
left for future investigation.

7 IMPROVING GPU MEMORY ACCESS PATTERNS WITH LOOP
TRANSFORMATIONS

Naively translating parallel OpenMP loops directly into data-parallel code can lead to an inefficient
kernel that poorly utilizes the GPU memory subsystem. Consider the OpenMP target region ex-
tracted from the GEMM benchmark from the Polybench suite shown in Figure 8(a). The iteration
space of the i loop is first divided into chunks in conformance with the teams distribute con-
struct directive, and iterations of each chunk are then scheduled to run in parallel, as prescribed
by the parallel for construct. Each thread executing an iteration of the i loop sequentially exe-
cutes the j, kloop nest. In this example, for a given memory access, the inter-thread stride is the
size of each array, which result in an inter-thread stride of 4,096 bytes and none of the accesses
can be coalesced.
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1| #pragma omp target teams distribute parallel for #pragma omp target teams distribute parallel for
2| for (1 = 0; i <NI; i++) { for (c = 9; ¢ < NI * NJ; ct+) {
31 for (j = 0; j <NJ; j+t) { i=c/ NI
4 CLi*NJ + j] *= BETA; j =c%NI;
5 for (k = 0; k < NK; ++k) { CLi*NJ + j] *= BETA;
6 CLi*NJ + j] += ALPHA x A[i*NK + k] for (k = 0; k < NK; ++k) {
7 * B[k*NJ + j1; CLi*NJ + j] += ALPHA * A[i*NK + k]
8 3} * BLkx*NJ + j1;
of 3 3}
0]} }
(a) Original benchmark source code (b) Collapsed i-j nest.

Fig. 8. Example target region from GEMM benchmark.

Memory access patterns for a GPU kernel that uses high-dimensional data structures or oth-
erwise non-trivial addressing expressions are often not obvious even to experienced developers
and require expert knowledge of the compiler’s code-generation scheme and mapping from loop-
parallel to data-parallel code. A particular loop layout may also benefit one accelerator architecture
over others, leading to loss of performance portability no matter which selection is made. IPDA’s
memory-access analyses enable and guide loop transformations that improve GPU memory uti-
lization by increasing access coalescing.

7.1 Loop Collapse

The OpenMP collapse(n) clause merges n nested loops into a single parallel iteration space. Col-
lapsing parallel loops for execution on a GPU has two performance-sensitive effects: the number
of parallel work items to be scheduled increases, and the thread memory access pattern changes.

e Increased parallelism
The total number of iterations of the collapsed parallel loop is equal to the product of the trip
counts of all the loops in the collapsed nest, increasing the amount of parallelism available.
Figure 9 shows an example parallel loop nest and the mapping of iterations to units of
parallel work and sequential iterations.

e Improved memory access pattern
Collapsing changes the inter-thread access stride, because the outer loop induction variable
no longer maps to the thread identifiers. If the sequential execution order of the collapsed
loops is used to determine the order of the iterations in the collapsed iteration space, then
the stride of the innermost collapsed loop becomes the inter-thread access stride.

Collapsing can be beneficial even when no collapse clause is present. For example, in the loop
shown in Figure 8(a), consecutive iterations of the j loop access adjacent elements of arrays C at
line 4, C at line 6, and B at line 7 and have an inter-thread stride of 4,096 bytes with no coalescing.
After collapsing the i-j loop nest (Figure 8(b)) all accesses are perfectly coalesced.

7.1.1  Loop Collapse Safety. In the absence of a collapse clause, the compiler must prove that
collapsing is safe for a loop nest of depth n with a parallel outermost loop. Such a nest must satisfy
the following conditions to be safely collapsed:

o It must be perfect: all statements must be inside the innermost loop.

e Loop boundaries for all loops must not change after entry into the loop nest.

e There must be no loop-carried dependencies among iterations of any of the loops in the
nest.
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Original Loop Original Loop

#pragma omp parallel for . )
for(i = 1; i < UI; ++1) -. B

for(j = 1; j < UJ; ++j) fh ifbi o :fhi
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Fig. 9. Pictorial representation of a parallel loop nest’s iteration space.
[ ]- Loop iterations comprising units of parallel work.

T~ I-Loop iterations executed sequentially.
Original Loop Collapse(2)

#pragma omp parallel for #pragma omp parallel for
for(i = 1; i < UI; ++1) for(c = 1; c < UL * UJ; ++c)
for(j = 1; j < UJ; ++3) i=c/UJ;, j=c%UJ;

A[i * UI + j] = .. A[i * UI + j] =
j j
e
—— to t1t2 t3 t4 t5 ..
t0 » | 9x000 0x000
t1 >| 0x040 0x040
t2 > | 0x080 0x080
i|t3 >| 0x6co 4 0x0c0o
ta »>| 0x100 0x100
t5 »| 0x140 0x140
v v A v v v

Fig. 10. Pictorial representation of a parallel loop nest’s memory access pattern.

A parallel loop contained in a target region follows aliasing restrictions on data mapped into the
device data environment. These restrictions often make dependence analysis feasible where it
would not be for an identical loop not contained within a target region. For a given loop nest, all
possible collapse depths are tested for safety. For the set of provably safe collapse depth levels,
profitability analysis determines which, if any, should be performed by the compiler. Figure 10
illustrates how this collapse enables coalescing by changing the access to a two dimensional array
from row-major order to column-major order.

7.1.2  Loop Collapse Profitability. The main performance benefit of loop collapse stems from
improved access patterns. Thus, the reduction in the number of memory requests executed per
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warp can be used to estimate the profitability of collapsing a loop nest. Using the IPDA framework,
the profitability is computed as follows:

(1) Compute the number of memory requests for every access in the original loop nest.

(2) For each nest level k, compute the number of memory requests for every access in the
nest by rewriting the addressing expressions to emulate the effect of collapsing the nest
to that level.

(3) A collapse is profitableif, for any nest level, the total number of memory requests per warp
in the kernel is reduced.

These steps are performed for all collapse depth levels considered safe, and the most profitablelevel
is chosen for actual code transformation. The current implementation of the analysis is focused on
optimizing only parallel loops that target GPUs. While the results of the analysis can be adapted to
guide a profitability heuristic targeting multicore CPUs, this target is not currently supported. Such
a heuristic would place opposite demands on inter-thread access stride (minimize false-sharing and
maximize each thread’s locality).

7.2 Loop Interchange

Loop interchange is a classical loop transformation wherein the order of two iteration variables
in a loop nest is exchanged. The aim of loop interchange here is to improve access coalescing
by changing the mapping of loop induction variable differences to inter-thread memory access
stride. For example, consider the loop nest excerpt shown in Figure 12. IPDA memory coalescing
analysis finds that the resulting inter-thread stride leads to non-coalesced accesses. It also shows
that loop i, when used as a source of thread-dependence (i.e., when iteration-point differences
of the i-loop are treated as thread-difference values for addressing expressions), would result in
perfectly coalesced loads and stores. However, the loop nest cannot be collapsed to a depth of three,
as described previously, because it contains a loop-carried dependence across iterations of the j
loop. An alternative method to achieve a mapping to data-parallel code that distributes individual
iterations of the i loop to GPU threads, loops i and j can be first interchanged without affecting
the semantics of the program. Post-interchange, the outermost two-dimensional k-i loop nest can
be collapsed, according to the collapse profitability analysis outlined above.

7.2.1  Loop Interchange Safety. The proposed interchange applies to a loop nest where the out-
ermost loop is labeled as parallel by a programmer and consists of moving a loop from inside
that nest to the outermost level. Thus, the two outermost loops of the transformed nest can be
collapsed, as described in Section 7.1. Finding loops within a given loop nest for which this trans-
formation is legal requires finding loops within the nest that are independent. Moving an inde-
pendent loop to the outermost level preserves loop-carried dependencies of all other loops in a
nest. Similar to the analysis performed for loop collapse, aliasing restrictions on data mapped to
the target region data environment often results in a more precise dependence analysis. In both
collapse and interchange safety analysis, the compiler uses the IPDA Test to further reduce the
DDG. Every loop found to be independent in a parallel loop nest is considered a candidate for loop
interchange.

7.2.2  Loop Interchange Profitability. For all candidates, profitability is computed in a fashion
identical to the profitability of collapsing the nest to depth of up to and including the loop in
question. The profitability of loop interchange takes into account the subsequent collapse trans-
formation, which is required to create a mapping from induction variable differences in addressing
expressions to inter-thread stride that results in better coalescing characteristics. The most prof-
itable of the candidate loops is selected for actual code transformation.
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Fig. 11. Benchmark execution time speedup with automatic loop interchange and collapse-enabled com-
pared to the default code-generation scheme.

8 EVALUATION

Coalescing of memory requests is a key performance consideration when writing or generat-
ing GPU code. It is increasingly difficult for developers to infer memory access characteristics of
OpenMP GPU code as it gets translated into a data-parallel form. Moreover, explicitly committing
the code to a specific access pattern that would suit a specific type of accelerator can hurt per-
formance portability. Thus, high-level accelerator programming models make such considerations
the prerogative of the compiler designer rather than the developers.

The efficacy of the analysis framework is evaluated in two ways: First, the potential perfor-
mance impact of the two proposed loop transformations is demonstrated on a set of representative
OpenMP 4.x programs. The second evaluation demonstrates that a compiler equipped with loop
transformations informed by the IPDA analysis allows a higher degree of performance portabil-
ity in OpenMP code. Generality and architecture-independence of OpenMP code can often be
improved by removing developer-specified clauses intended as optimization prescriptions that
commit generated code to specifically target GPU accelerators. The results of this evaluation
demonstrate (1) that, equipped with the IPDA analysis and loop transformation framework, the
compiler is able to re-capture the performance impact of such clauses by automatically performing
the required optimization when generating GPU code; and (2) that omitting performance-guiding
clauses results in a performance improvement when targeting other accelerator architectures.

8.1 Informed Loop Reshaping Performance Impact

The Polybench [28] and SPEC ACCEL [13] OpenMP 4 benchmark suites are used to evaluate the
efficacy of the coalescing-analysis-informed loop reshaping of OpenMP 4.x parallel loop nests.
Execution times are reported for two experimental setup machines: an IBM POWERS host with an
Nvidia P100 GPU and an IBM POWERS9 host with an Nvidia V100 GPU accelerator. Figure 11 shows
speedup of benchmarks with IPDA-guided collapse and interchange transformations enabled in
the compiler. Each benchmark was executed 10 times, and the mean execution time is reported.
Each presented kernel execution time is a mean of 10 average kernel execution times from each
of the benchmark runs. The analysis detected transformation opportunities in three Polybench
benchmarks: MVT, 2DCONV, 3DCONV, and one SPEC ACCEL benchmark: 557. pcsp.
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1| #pragma omp target teams distribute parallel for private(i,j,k,m,fac1,j1,3j2)
2| for (k = 1; k <= gp2-2; kt++) {

3| for (3 =0; j <=gpl-3; j++) {

4 j1 =3 +1;

5 j2 =3+ 2;

6 for (i = 1; i <= gpo-2; it++) {

7 facl = 1.0/1hsY[2][kI[jI[i];

8 1hsY[31[kI[j1[i] = fac1*1lhsY[31C[k1[jI[i];
9 1hsY[4][k][jI[i] = facl*xlhsY[4][k1[jI[i];
10 for (m = 0; m < 3; m++) {

11 rhs[m][k1[jI[i] = facl*rhs[m][kI[j1[i];

12 3

13 1hsY[2][kI[j1I01iT = 1hsY[2ICkI[31104] - 1hsY[1ICkI[31I04] * 1hsY[31[kIC3ICi];
14 e

15 }

16 3

17| }

Fig. 12. Excerpt from a target region in 557.pcsp.

The matrix multiplication GEMM contains a single 3-deep parallel loop nest. Collapsing the nest
to depth 2 was found by the analysis to have the effect of transforming a kernel with completely
non-coalesceable accesses into a kernel with perfectly coalesced accesses. The kernel execution
time improves by a factor of 25.5% in the P100 and 20.9% in the V100. The benchmark execution
time improves by a factor of 3.18X in the P100 and by 8% in the V100 machine.

2DCONV and 3DCONV convolution benchmarks contain a single parallel loop nest of depth 2 and 3,
respectively. The original compiler failed to prove that the 3DCONV loop nest is free of loop-carried
dependences. The IPDA Test reduced the DDG further, ultimately proving the nest as independent
and safe to collapse. Profitability analysis on the two parallel nests indicated that automatic col-
lapse would result in turning both from non-coalesceable into completely coalesced GPU kernels.
The transformed code for 2DCONV improves kernel execution time by a factor of 14.75% and 6.37X,
and benchmark execution time improves by a factor of 1.65X and 5% on the P100 and V100 ma-
chines, respectively. Transformed 3DCONV code results in kernel execution time speedup of 19.54x
and 18.3x and benchmark execution time speedup of 2.03% and 3% on the P100 and V100 machines,
respectively.

The lower speedup at the increased input size in GEMM is due to the kernel being memory-bound.
At high input sizes, more parallel work is available. The runtime aims to maximize the GPU oc-
cupancy and launches kernels with a higher number of thread-blocks. Even though most accesses
are coalesced, the device still spends the majority of its time waiting for memory loads/stores to be
resolved, and the higher number of thread-blocks in-flight puts additional pressure on the memory
subsystem. Using nvprof to monitor GEMM kernels shows that the GPU’s memory throughput is
at near 100% for most of the kernel’s lifetime. A similar effect is seen for 3DCONV, but not 2DCONV,
which is a less memory-heavy computation.

The SPEC ACCEL benchmark suite consists of highly tuned OpenMP code written in a way
that maximizes GPU performance. Aggressive use of collapse clauses by the benchmark devel-
opers limits the opportunities available for automatically inferring the need to interchange or
collapse loop nests. Still, our analysis identified one such opportunity. 557.pcsp, a pentadiago-
nal software application, contains > 60 OpenMP target regions, all made up of parallel loops.
One parallel loop, performing the forward elimination operation according to the Thomas al-
gorithm, was identified by the IPDA analysis to be a safe candidate for transformation. An ex-
cerpt from the three-dimensional k-j-i parallel loop nest in question is shown in Figure 12. The
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coalescing analysis identifies the opportunity to reduce the number of memory requests per warp
present in the kernel by interchanging loops j and i and collapsing the resulting k-i nest. Ob-
serve that a collapse(3) transformation of the original code is not possible due to loop-carried
dependencies across iterations of the j loop. Post j-i interchange and k-1i collapse, the j loop is
executed sequentially by each thread, preserving the j-loop-carried dependence. The IPDA Test
employed by the transformation safety analysis removed a false-positive dependence from the
DDG, thus proving that loop i is independent. The combination of transformations reshapes the
resulting GPU kernel in a way that makes every memory access contained within fully coalesced.
The transformed version yields an improvement in kernel execution time of 86.5X on an Nvidia
P100 accelerator and 111.1X on an Nvidia V100. Across a run of the benchmark, the forward elim-
ination kernel is invoked 401 times. The untransformed kernel’s poor performance characteristics
make it the biggest contributor to the overall benchmark execution time, of which it constitutes
41%. Applying the transformations described above to just 1 out of > 60 parallel loops present in
the benchmark results in overall speedup of 3.38% in the P100 and 2.3X in the V100.

The dramatically lower improvement in benchmark execution time compared to kernel execu-
tion time in Polybench benchmarks stems from their small default input data sets. Thus, kernel
execution time comprises only a small part of the total time, with kernel initialization and data
transfer taking up most of the benchmark execution time. Higher improvements should occur
with larger input sizes. For example, the GEMM benchmark performance improvement begins to
approach the kernel speedup as input size is increased, as can be seen in Figure 11. As input size
is increased, CONV benchmark speedups remain fixed, despite a massive improvement in kernel
execution time, because memory transfer time dominates the overall execution time.

The relative decrease in overall benchmark execution time on a V100 is due to an increased
overhead of kernel launch when using a Volta GPU with CUDA 9. The CUDA runtime creates
a unifying context at first kernel launch to maintain state for consecutive launches. The context
creation operations take up to 0.7s versus up to 0.1s for the machine with a Pascal GPU. We hy-
pothesized that the difference is due to Volta’s support for unified memory, which would require
allocation of pinned host memory. The impact of this overhead is most pronounced in single-kernel
programs with short runtimes. To test this hypothesis, we created high-throughput versions of the
Polybench programs in which the benchmark kernel is invoked 100 times in a single launch on
different data sets, amortizing the CUDA context creation overhead. Results are reported in the
rightmost bar graph of Figure 11. The high-throughput version of GEMM confirmed our intuition
with overall benchmark speedup of 15.9%x and 7.14X on the P100 and V100, respectively. Memory-
transfer dominated 3DCONV also demonstrated Volta improvement start to approach Pascal figures
with speedups of 1.82x and 1.56X. Based on these experiments, we believe that in real-world
computation-heavy code, the improvement in overall program performance on Volta is likely to
scale more closely with kernel performance improvement.

In benchmarks where no safe/profitable opportunities were found, performance remained un-
changed; as such, their results are not presented in Figure 11. Benchmarks that do not contain
collapse clauses and benchmarks that could not be compiled with the current compiler versions
are not presented in Table 1. 557.. pcsp currently crashes when compiled with the ICC.

8.2 Code Portability Impact

The OpenMP collapse clause is prescriptive and requires the compiler to generate a specific code
structure. Its goal is to exploit performance characteristics of a particular architecture. The issue
is that memory access patterns that lead to maximum coalescing in a data-parallel GPU result in
poor spatial locality on a multi-core CPU architecture.
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Table 1. Loop collapse Clauses Were Removed from Benchmarks That Contain Them

Paralldl U™  IPDA automatic . N° IPDA- No
Benchmark OpenMP 4 specified collapse Collapse enabled Collapse
loops collapse transformations GPU GPU MIC
P clauses Speedup  Speedup  Speedup
3MM 3 3 3 0.03x 1.0x 1.26%
COVAR 3 1 1 0.98% 1.0x 1.04x
SYR2K 1 1 1 0.06X 1.0x 1.13x
SYRK 2 2 2 0.12X 1.0x 1.15%
503.postencil 1 1 0 0.33%x 0.33%x 1.83%x
555.pseismic 14 13 0 0.09% 0.09%x 1.01x
563.pswim 17 8 0 0.84% 0.84% 1.19%
570.pbt 42 36 26 0.78%X 0.96% 0.97x
557.pcsp 60 60 50 0.04X% 0.76X na

This table shows the portion of the loop collapses re-discovered to be beneficial and automatically applied by the
compiler. Execution ratio columns show the performance of the code stripped of collapse clauses versus the code
with collapse clauses present. GPU code is executed on an Nvidia P100. The MIC (Many Integrated Core) relative
execution column compares the performance of the same two versions of the kernel executed on an Intel Xeon Phi
7250 processor, compiled with ICC ver. 17.0.2.

Forcing developers to make such trade-offs in a prescriptive manner reduces performance porta-
bility. A capable compiler must be able to detect when such transformation is beneficial for the
target architecture. This experimental evaluation provides evidence that the IPDA-based safety
and profitability analyses can be a useful tool to increase performance portability and to allow
program code to remain free from architecture-driven annotations.

To test this claim, we remove all collapse clauses from the Polybench and SPEC ACCEL bench-
marks available to us. Then, we let the IPDA-based framework automatically perform the same
transformations on GPU-bound loops. The evaluation shows that the resulting, more-generic,
code has the same performance as the architecture-specific code and has better performance on
platforms for which it was not hand-tuned—this evaluation uses the Intel MIC Xeon Phi 7250
accelerator. Table 1 shows the impact of removing the collapse clauses from benchmark code.

The implications of removing this directive are clearly demonstrated by the reduced GPU per-
formance without it in 3MM at 0.03%x speedup versus the original version of the benchmark that
includes the clause. Similarly, in SYR2K with a speedup of 0.06X, when the directive is removed.
COVAR slowdown is not as significant, because only one out of three parallel loops in the bench-
mark is annotated with collapse. The IPDA-enabled GPU Speedup column shows that the original
performance is recovered when IPDA-based transformations are applied to the code from which
the clauses were removed.

In multi-core CPU platforms, each processor has a local cache. Adjacent threads accessing ad-
jacent memory locations, which is the effect of collapsing, results in false sharing, causing un-
necessary coherence traffic and degrading performance. Intel’s OpenMP performance guidelines
recommend avoiding this usage pattern at all cost [12]. Yet, even highly tuned benchmark imple-
mentations have programmers inserting prescriptive clauses that maximize false sharing. The “No
Collapse MIC Speedup” column of Table 1 shows that simply removing the collapse clauses can
significantly improve performance on an x86-based accelerator (up to 26%). Analysis and trans-
formation capabilities enabled by IPDA go a long way towards removing the need for specializing
the code to a given architecture.
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9 RELATED WORK
9.1 Performance Portability

The quest for performance portability of high-level parallel programming models has attracted
much research attention to the areas of modeling and optimization of parallel-program perfor-
mance [8, 19, 25, 32, 34]. In the context of OpenACC, Miles et al. argue that true performance
portability can only be achieved through compiler transformations guided by the specific demands
of the target platform [20]. They observe that parallel loop nests must be structured differently de-
pending on whether they are to be executed on a homogeneous multi-core machine or on a highly
parallel, throughput-optimized accelerator. Both paradigms currently coexist in the domains of
high-performance and scientific computing; thus, the continued development of compiler tech-
nology is key to achieve performance portability.

9.2 OpenMP to GPGPU Optimization

Lee, Min, and Eigenmann presented an OpenMP to GPGPU compiler long before the programming
model provided official constructs for accelerator offloading [15]. Their stream optimizer deploys
similar interchange and collapse transformations to increase GPU inter-thread locality and thus
enable coalescing of memory requests. Stream optimizer selects a loop whose induction variable
increments a memory reference’s indexing expression, using classical auto-parallelization tech-
niques to build a list of candidate loops. However, they provide no details on how such analysis is
performed and present no new parallelization or profitability metrics. Similarly, scant details are
presented about the selection of loops for collapsing. There are concerns about the implementa-
tion, because some examples shown in the article apply a collapse transformation to a loop nest
where loop interchange is not possible because of a loop dependence—collapsing such a loop nest
is not a legal operation. This seminal work presents new ideas, but, as they state, “some advanced
compiler optimizations using inter-procedural analysis were applied manually.” In contrast, the
IPDA framework is a fleshed-out technology demonstrated in a commercial compiler that is more
robust and more general.

9.3 Symbolic Memory Reference Analysis

Symbolic analysis of loop code is a concept that dates as far back as 1976, when Cheatham and
Townley proposed symbolic execution as a tool for loop analysis for the EL1 programming lan-
guage [6]. This analysis expressed a set of facts about an execution of a loop across iterations cap-
tured as recurrence equations with symbolic unknowns. This research paved the way for decades
of work that iterated on the idea. Haghighat et al. use numerical finite differences to detect gen-
eralized induction-variable expressions and to reduce cross-iteration access stride to a recurrence,
solving that can yield dependence information (Paraphase 2 compiler) [11]. Gerlek et al. apply
a technique based on a generalization of demand-driven constant propagation to detect strongly
connected components in the SSA graph with the goal of identifying sequence variables in pro-
gram code [9]. They demonstrate how solving recurrences that occur in loop expressions can be
used to replace update statements with the respective closed form.

Motivated by the need to analyze addressing expressions that cannot be captured as a solvable
recurrence, Rus et al. introduced a framework for analysis of memory reference sets addressed
by induction variables without closed forms [29]. The framework relies on a data structure called
the Value Evolution Graph (VEG). Based on Gated Static Single Assignment representation, the
VEG augments the GSA data-flow graph by representing values as ranges of possible actual val-
ues. Sequences of data-flow edges p— - - - —q form evolutions, which are unioned across all paths
from p to g to form an aggregate evolution. Similarly to IPDA, the VEG can be used to compute
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iteration distance between two consecutively accessed elements. Representing evolutions as graph
paths restricts the evolutions that it can represent and the kinds of operations that can be per-
formed. IPDA’s symbolic representation allows it to scale to large indexing expressions, because
the algebraic differences lead to simpler expressions due to term cancellations.

Paek et al. introduced the term coalescible to describe an array access pattern in their presenta-
tion of Linear Memory Access Descriptors (LMADs)—an array region representation that abstracts
data structure shapes of a programming language by relating them directly to linear machine mem-
ory [27]. An LMAD is a set of arbitrarily ordered memory locations. LMADs are encoded as a set
of offsets from a common base and a set of constraints on the dimensional indices that correspond
to the loops containing the array reference, forming a polytope and a set of strides through it. The
symbolic manipulation and simplification techniques used in IPDA are similar to the ones used to
simplify LMADs to identify and manipulate array access pattern. Like LMADs, IPDA infers access
characteristics from access dimensions—changes in overall stride based on changes in a single di-
mension of a loop nest. Both LMADs and IPDA are able to characterize array access strides and
aim to expose simple access footprints embedded in complex addressing expressions. However,
the LMAD representation places restrictions on the capability of analyses it powers that the IPDA
framework does not have. By design, LMAD is restricted to linear expressions. For example, an
expression containing i X j, where i, j are loop indices, cannot be expressed as an LMAD. IPDA
framework places no such restrictions on the subscript expressions it can express. The symbolic
manipulation of indices in IPDA allows an analysis to reason about access ranges of non-linear
expressions (e.g., in the interest of dependence testing). Moreover, unlike LMADs, IPDA captures
conditionally defined terms in subscript expressions. Such cases are common in practice and would
prevent an LMAD-based analysis from improving the code.

Moon et al. proposed a technique called predicated array data-flow analysis, which associates
predicates with data-flow values that represent control-flow paths taken to arrive at the values
[21]. The predicates are formulated into executable program statements that form tests that guard
parallelized versions of computation. They capture control-flow into the data-flow representation
at runtime for a specific control-flow path. In contrast, The IPDA framework encodes facts about all
possible control-flow paths into its symbolic representations of program statements without losing
accuracy. A result similar to Moon et al.’s can, in principle, be achieved by the IPDA framework;
however, the techniques described in this article are presented in a fully static context.

Oancea and Rauchwerger combined LMADs and runtime information to produce highly accu-
rate dependence information [23]. They transform independence conditions into succinct predi-
cates. They define Uniform Set Representation (USR) to represent array references, which is further
reduced to a language of predicates. Logic inference is then used to factorize the predicate sets into
a set of conditions that, if evaluated to true, signify that the loop is parallel. These predicates can
be evaluated statically or at runtime. The hybrid nature of the analysis allows their work to handle
complex control flow and nonlinear indexing. It is also what distinguishes their work from IPDA.
IPDA foregoes array-abstraction set representations, opting for a symbolic evaluation framework
that is more computationally expensive but requires arguably fewer conservative heuristics, as
in the discussion on LMADs above. For instance, IPDA can statically handle complex predicated
control flow in a path-insensitive fashion. This capability of IPDA could also be delivered to cap-
ture values only known at runtime, in a similar fashion to the runtime predicate evaluation by
Oancea et al., by evaluating the succinct symbolic expressions produced by the dependence tests
described in Section 5 and the profitability metrics described in Section 6 at runtime and using this
evaluation to select a code version at runtime.

Predicated values in array subscripts were explored by Oancea with a flow-sensitive analy-
sis that summarizes effects of conditional Induction Variables that often appear in programming
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constructs such as filters [24]. The work builds on USR to allow representation of conditionally in-
cremented index variables with the same goal of building predicate-based independence tests to be
evaluated at runtime. In that work, handling of predicated values is only supported for monotonic
index variables. In contrast, IPDA’s symbolic encoding allows the expression of conditionals in a
more general representation that is able to capture predicated values that are not index variables
contained in generic control flow constructs. An analysis framework that operates on symbolic
expressions instead of an array abstraction is inherently more amenable to a greater variety of
applications. This work shows dependence and coalescing analyses built using this framework;
however, other potential compiler applications are well suited to benefit from this representation,
such as expression tree balancing and strength reduction.

9.4 Loop Dependence Analysis

Industrial-strength compilers, such as the LLVM Compiler Infrastructure and the IBM XL
C/C++/Fortran Compilers, use a near-complete implementation of Goff-Kennedy-Tseng depen-
dence testing [10]. For a single-index addressing expression, exact tests are typically used that treat
most commonly occurring single-index expressions as special cases for which efficient closed-form
solutions are implemented. For linear addressing expressions, dependence testing is often reduced
to finding integer solutions to systems of linear Diophantine equations. Implementations of the
Goff-Kennedy-Tseng work include a limited variety of “symbolic” tests. One such test processes
addressing expressions that contain no index variables and can be symbolically tested for equality.
Another handles expressions of the form <ai + ¢y, ai’ + c,> that contain a single index variable
i, with loop-invariant symbolic additive constants ¢; and c¢,, where the difference ¢, — ¢; can be
reduced to a constant. These techniques are restricted to a small subset of addressing expressions
that conform to a very specific format. In contrast, the IPDA analysis scales to arbitrary address-
ing expressions and to many index variables present in these expressions, enabling the analysis of
deep loop nests.

The work most similar to our proposed DDG algorithm technique is the Range Test by Blume
and Eigenmann [4]. The Range Test propagates ranges to symbolic values to determine poten-
tial overlap of two addressing expressions across iterations of a given loop. It then computes the
minimum and the maximum of the corresponding ranges of addressing expressions across multi-
ple loops and checks whether the maximum value for one expression is less than or equal to the
minimum value of the other; whereas the IPDA Test first computes algebraic differences between
symbolic representations of the two subscripts and then methodically reduces iteration point dif-
ferences for all loop subsets in a given nest to verify if the difference can be zero. The compiler
infrastructure used by the IPDA framework does not implement the Range Test, making a quanti-
tative comparison challenging. A key advantage to the IPDA subscript difference approach is ev-
ident when handling conditionally defined variables. Although the abstract interpretation-based
[7] range analysis used by the Range Test is able to capture ranges of conditionally defined values,
it does so by conservatively combining ranges across control-flow paths at merge points, using
the largest upper and lowest lower bounds. Similar range analysis, when run on a symbolic sub-
script difference computed by IPDA, is instead able to compute much narrower ranges due to the
likelihood of the conditional sum-of-product expressions being cancelled out as a common term
on both sides of the difference.

Engelen et al. propose a symbolic loop analysis framework for nonlinear dependence testing
based on a representation of symbolic expressions with chains of recurrences (CRs) [31]. Their
framework handles variable and pointer updates in conditional paths inside the loop body by con-
structing a set of CR forms for a conditionally defined variable, where each set element corresponds
to the CR form of a given program path. Bounding functions for the range of the given variable
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are then constructed for a set of CR forms, instead of an individual CR form. Indexing expression
range analysis is then performed, similarly to the Range Test, over sets of characteristic functions.
The CR-set technique may handle some code patterns described in the article that are common
to DSP codes (boundary checks); however, range analysis over sets of characteristic functions has
significant drawbacks that do not affect IPDA. Consider the case of:

int x;

if (o) { x=0; 3%

if (¢) { AIx] = ...; 3}

The set of CRs for the conditionally defined variable x through code paths that lead to the array
access A[x] will have the value of x range both 0 or any other possible integer value (for the case
that the if condition does not hold). As a result, the analysis would not be able to infer any informa-
tion about the array access. IPDA analysis is capable of capturing variable references’ dominating
definitions and will determine the access to always be AL@]. Even without the definition propaga-
tion, the algebraic difference computation on the values of ALx] computed by different iterations
would be solved to a 0, because the condition expressions would be canceled out. The symbolic
difference simplification process often makes range computation much simpler.

Another popular methodology for dependence analysis is the Polyhedral model [5]. The Poly-
hedral model treats loop iterations within loop nests as points in a lattice inside a polytope. This
representation allows geometric modelling of any affine functions of indices that comprise the
polytope. Dependence relations can then be established based on overlap of the resulting poly-
topes of memory location subscripts. A key limitation of the polyhedral representation—one that
does not impact IPDA —is its restriction to spaces of affine functions of index variables. More-
over, expressions containing variables defined in conditional execution paths are intractable by
the Polyhedral model.

10  CONCLUSION

Architecture-specific compiler optimization is key for achieving performance portability for high-
level parallel programs. Conflicting demands of current accelerator architectures when it comes
to efficient use of memory hierarchies mean compilers demand stronger program analyses and
heuristics to generate optimal code for a given target. This article introduced a static analysis
framework capable of identifying memory access strides of parallel accelerator code using Iter-
ation Point Difference Analysis. The evaluation of a prototype implementation of a framework
that uses IPDA to guide the safety and profitability decisions required for improving performance
through loop transformations demonstrated the potential for dramatic performance improvement
in GPU-bound OpenMP code. Moreover, this article also demonstrated that informed compiler
transformation can further advance the goal of performance portability by reducing the reliance
on programmer hints used to hand-tune OpenMP loop code. Making such hints redundant both
increases performance across a greater variety of target architectures and increases abstraction
of the underlying computing platform, making parallel programs more generic and allowing the
developer to focus instead on the problem at hand.
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