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Abstract—This paper introduces combined profiling (CP): a
new practical methodology to produce statistically sound com-
bined profiles from multiple runs of a program. Combining
profiles is often necessary to properly characterize the behavior
of a program to support Feedback-Directed Optimization (FDO).
CP models program behaviors over multiple runs by estimating
their empirical distributions, providing the inferential power of
probability distributions to code transformations. These distribu-
tions are build from traditional single-run point profiles; no new
profiling infrastructure is required. The small fixed size of this
data representation keeps profile sizes, and the computational
costs of profile queries, independent of the number of profiles
combined. However, when using even a single program run, a CP
maintains the information available in the point profile, allowing
CP to be used as a drop-in replacement for existing techniques.
The quality of the information generated by the CP methodology
is evaluated in LLVM using SPEC CPU 2006 benchmarks.

I. INTRODUCTION

Current techniques to report performance based on experi-

mental evaluation of systems lack rigor. Published evaluations

reveal that many members of the system community assume

that a single input is enough to evaluate the performance

of a program. Moreover, many researchers fail to discuss

how they address, and often do not report, variations in their

measurements. Previous research found significant program

behavior variations across inputs, but little research dealt with

input-dependent behavior [1], [2], [3], [4].

Capturing behavior variations across inputs is important

in the design of an ahead-of-time (AOT) compiler where

feedback-directed optimization (FDO) consists of collecting

information about the behavior of a program from training

runs and then using this information for a new compilation of

the program [5]. A number of speculative code transformations

are known to benefit from FDO, including speculative partial

redundancy elimination [6], [7], trace-based scheduling and

others [8], [9]. Several open questions remain about the use of

profiles collected from multiple runs of a program. How should

the multiple profiles be combined? Is it sufficient to simply

average the multiple measurements? Is it necessary to compute

the parameters for an assumed statistical distribution of the
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measurements? Or is there a simple technique to combine the

measurements and provide useful statistics to FDO?

This paper addresses these questions by arguing that the

behavior variations in an application due to multiple inputs

should be evaluated by FDO decisions. It also argues that a

full parametric estimation of a statistical distribution is not

only unnecessary, but it may also mislead FDO decisions if

the wrong distribution is assumed or there is insufficient data

to accurately estimate the parameters. Instead, it proposes the

use of a non-parametric empirical distribution that makes no

assumptions about the shape of the actual distribution. The

new technique presented here is called Combined Profiling

(CP). CP is designed with the following goals: (1) It must

provide FDO with information about the variability of the

application behavior over multiple runs; (2) It must be com-

puted incrementally, i.e. the raw data from previous runs need

not be available to incorporate a new run; (3) It should be

simple to compute and to understand; (4) It should capture

more nuances of the program behavior than a simple average

of profiles; (5) It should work for CFG edge and path profiling,

for context sensitive and context-insensitive call graphs, and

for value profiling. The application of CP to other situations

with multiple profiling instances, such as profiling program

phases individually, is not within the scope of this paper.

The main contribution of this paper are:

• Combined profiling (CP), a statistically sound method-

ology to combine data from multiple runs, including

a space-efficient combined representation and statistical

queries to inform code transformations (Section II).

• Hierarchical normalization, an algorithm to maintain the

local and global frame of reference for each monitor when

combining profiles (Section III).

• Experimental Evaluation analyzing behavior variability

and CP characteristics across input workloads for SPEC

CPU 2006 benchmarks (Section V).

II. COMBINED PROFILING

A major challenge in the use of FDO is the selection of

a profiling data input that is representative of the execution

of the program throughout its lifetime. For large and complex

programs dealing with many use cases and used by a multitude

of users, assembling an appropriately representative workload
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Fig. 1. Combined profiling flow diagram

may be a difficult task. Picking a solitary training run to

represent such a space is far more challenging, or potentially

impossible if use-cases are mutually-exclusive. Moreover, user

workloads are prone to change over time. Ensuring stable

performance across all inputs in today’s workload prevents

performance degradation due to changes in the relative impor-

tance of workload components.

A Combined Profile (CP) is a statistical model facilitating

the collection and representation of profile information over

multiple runs that eases the burden of training-workload selec-

tion and mitigates the potential for performance degradation.

First, there is no need to select a single input for training

because data from any number of training runs can be merged

into a combined profile. More importantly, CP preserves

variations in execution behavior across inputs. The distribution

of behaviors can be queried and analyzed by the compiler

when making code-transformation decisions. Modestly prof-

itable transformations can be performed with confidence when

they are beneficial to the entire workload. On the other hand,

transformations expected to be highly beneficial on average

can be suppressed when performance degradation would be

incurred on some members of the workload.

Combining profiles is a three-step process, as illustrated in

Figure 11: (1) Collect raw profiles via traditional profiling.

(2) Apply Hierarchical Normalization (HN) to each raw

profile. (3) Apply CP to the normalized profiles to create the

combined profile.

A. Design Considerations

We refer to traditional single-run profiles, such as edge

or path profiles, as raw profiles. The simplest technique to

maintain information about many profiling runs is to keep all

the raw profiles and provide them to the compiler. However,

not only does such a representation require space linear in the

1Shaded components of the figure represent contributions of this work.

number of profiles, but querying such data (e.g., within code

transformation heuristics) incurs an associated computational

cost. Combined profiling aims to represent an unbounded

number of profiles in a compact, fixed-size representation in

order to bound such costs by a small constant.

In a batch environment, optimization minimizes (weighted)

average execution time, and consequently an average of pro-

gram behavior over a workload is a sufficient statistic. How-

ever, more typically, program optimization across a workload

of inputs is not a batch-execution scenario: the execution time

on each individual input is significant. Thus, average-case

performance is not the metric that an FDO compiler should

maximize. Rather, for a given program, each transformation

should attempt to minimize the execution time for each input

in the program workload; average execution time is merely a

convenient aggregate statistic. Thus, an FDO transformation

decision made using FDO is a multi-objective optimization

problem with the dual goals of maximizing both the worst-

case and average-case improvements in program execution

time across the workload. A single-run profile, or even an

aggregated profile using sums or averages across multiple runs,

is not adequate to meet these goals because it only allows for

the assessment of the average case.

Similarly, there is no reason to assume that the amount of

computation performed on a given training input is related

to the importance of such an input in a user’s workload.

The relative weights of profiles being combined can only be

assigned by the user. CP is a weighted combination of profiles,

but in the absence of user specification, all profiles are assumed

to be equally important.

B. Measuring Program Behavior

The profile of a program records information about a set of

program behaviors. A program behavior B is a (potentially)

dynamic feature of the execution of a program. The obser-

vation of a behavior B at a location l of a representation of

the program is denoted Bl.
2 A behavior B is quantified by

some metric M(B) as a tuple of numeric values. A monitor

R(B, l,M)3 is injected into a program at every location l

where the behavior B is to be measured using metric M . At

the completion of a training run, each monitor records the

tuple 〈l,M(Bl)〉 in a raw profile that contains unmodified

metric values. The value (or distribution) of the metric of

a monitor is simply called the value (or distribution) of the

monitor. For example, in naive edge profiling, the locations l

are the edges of the Control Flow Graph (CFG), the metric

M is the execution count of each edge, the observation Bl of

the behavior B is the traversal of the edge during program

execution, and the raw edge profile contains a listing of

〈edgeID, count〉 pairs.

For simplicity, consider a program with a single monitor,

R1. When no program state is shared between executions, the

2For instance a location l can be a point or a single-entry-single-exit region
in the Control Flow Graph of the program.

3A monitor can also be thought of as a Recorder, thus the use of the letter
R to refer to a monitor.
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raw profile from each training run i provides one independent

sample,4 R1[i], of the possible values of R1. Thus, each

R1[i] is an independent random variable identically distributed

according to some unknown probability distribution D, which

arises as the result of the interactions between a program and

its inputs.

C. Queries

In an AOT compiler, profiles are used to predict program

behavior. Thus, raw profiles are statistical models that use a

single sample to answer exactly one question: “What is the ex-

pected frequency of X?” where X is an edge or path in a CFG

or a Call Graph (CG). A CP is a much richer statistical model

that can answer a wide range of queries about the measured

program behavior. Using a set of raw profiles, a CP provides

the mean monitor value, analogous to a raw profile, along with

the standard deviation and minimum and maximum values.

Furthermore, CP can estimate from a monitor’s Cumulative

Distribution Function (CDF) the probability that the monitor is

within a (possibly half-bounded) range. Conversely, the inverse

CDF provides estimates of the thresholds corresponding to a

given quantity of probability mass. For example, the inverse

CDF facilitates estimating the median value of a monitor.

This information allows an FDO heuristic to quantify the

expected trade-offs between various workload-performance

measurements, such as between the impact on the 5%-quantile

(nearly worst-case) or the average impact on the 5%–95%-

quantile range (omitting potential outliers). In some transfor-

mations, the order in which candidates are considered is im-

portant [10]. CP allows a sorting function to use, for example,

both the expected frequency and the variance of the candidates

in order to prioritize low-variance opportunities. Behavior

variation should not, by itself, inhibit optimization. Rather, CP

enables the accurate assessment of the potential performance

impact of transformations based on varying monitors in a

variety of ways, and with adjustable confidence in the result.

D. Approximating the Empirical Distribution

To facilitate the use of CP with existing FDO compilers,

CP should offer a semantic “drop-in replacement” for raw

profiles. In particular, a CP created from a single raw profile

should be as informative as the original raw profile. This goal

is at odds with parametric models, which need many data

points to accurately estimate their parameters. As a matter

of practicality, the distribution model should have a (small)

bounded size because it competes with the rest of the compiler

for memory during compilation.

A simple method to create a model is to build the empirical

distribution, where the data is the distribution. This approach

requires the storage and analysis of all existing profiles. How-

ever, in the context of compiler decisions, a coarse-grained

distribution model is sufficient because small variations in a

distribution have no impact on decision outcomes. Therefore,

the empirical distribution can be approximated by storing

4Execution independence is sufficient, but not strictly necessary for Ri and
Rj (i 6= j) to be independent.

quantized monitor values in histograms. Assuming that a mon-

itor is uniformly distributed within a bin5, it’s histogram forms

a contiguous n-step probability distribution. FDO’s limited

precision requirements make this assumption reasonable. The

probability of the value of a monitor belonging to bin bi is

the proportion of the histogram’s total weight falling in bin bi.

Thus, the monitor’s distribution has a well-defined and piece-

wise continuous CDF and inverse CDF. Likewise, individual

monitor values can be seen as degenerate histograms where

all the weight is contained in a single point.

E. Building Histograms

The histogram of a combined profile may be updated in

a batch, incrementally, or by a hybrid approach. The update

method is unaffected by the choice of update frequency. Given

and initial histogram, updating produces a new histogram in 3

steps: (1) Determine the range of the combined data. Create a

new histogram with this range. (2) Proportionally weight the

bins of the new histogram according to their overlap with bins

of the old histogram(s). Add weight for point data as usual.

(3) Update the values of the true mean and variance. Berube

et al. present an example illustrating this process [11].

III. HIERARCHICAL NORMALIZATION

CP provides a data representation for profile information,

but does not specify the semantics of the information stored

in the combined profile. Raw profiles cannot be combined

naively. To illustrate this point, Figure 2(a) presents a CFG and

the table in Figure 2(b) provides the edge frequencies observed

for three profiles: P1, P2, and P3. The numbers within the

rectangles are the probabilities for edges A→B and B→C.

First note that averaging values across profiles is misleading

because it can easily characterize behavior in a way that does

not correspond to any individual profile; The average branch

probability at B is 0.37, hiding its strongly biased behavior.

In all three profiles, the probability of entering the G-H loop

from A is 0.2. The loop trip counts for P1 and P2 are identical,

but the probability of entering the C→D loop from B is 0.9

in P1 and 0.1 in P2. P3 is identical to P2, except that all

edge counts are doubled. Therefore, P2 and P3 are essentially

the same profile; if they were combined, the resulting profile

should not show any variation in program behavior. However,

if the two raw frequencies for an edge such as G→H were

combined into a histogram, the values 5,000 and 10,000 would

not suggest this consistent behavior.

On the other hand, the raw frequencies for edge C→D in

P1 and P2 are both 5,000, but P1 enters the loop much more

frequently than P2 due to the 0.9 vs 0.1 branch probability at

B. Therefore, the average trip count of the loop in P1 is much

lower (69.4) than in P2 (625). In this case, histogramming

the raw frequencies suggests consistent behavior for the loop,

which is misleading.

The problem in both cases is that the pairs of measurements

were taken under different conditions. Thus, when combining

5as in a Riemann sum
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(a) A control flow graph. Edges are labeled with the raw frequencies
for {P1, P2, P3}. The probabilities that the left branch is taken from
nodes A and B are listed in the adjacent boxes.

Raw Normalized

Edge Dom P1 P2 P3 P1’ P2’ P3’

IN→A 100 100 200 1.0 1.0 1.0

A→B IN→A 80 80 160 0.8 0.8 0.8

A→G IN→A 20 20 40 0.2 0.2 0.2

G→H A→G 5,000 5,000 10,000 250 250 250

H→G G→H 4,980 4,980 9,960 249 249 249

H→E G→H 20 20 40 4.0e-3 4.0e-3 4.0e-3

B→C A→B 72 8 16 0.9 0.1 0.1

C→D B→C 5,000 5,000 10,000 69.4 625 625

D→C C→D 4,928 4,992 9,984 1.0 1.0 1.0

D→E C→D 72 8 16 1.4e-2 1.6e-3 1.6e-3

B→F A→B 8 72 144 0.1 0.9 0.9

F→E B→F 8 72 144 1.0 1.0 1.0

E→OUT IN→A 100 100 200 1.0 1.0 1.0

(b) Profiles P1, P2 and P3 show raw edge frequency counts. P1’, P2’, and P3’
are hierarchically-normalized profiles suitable for combined profiling.

Fig. 2. The CFG of a procedure with three possible edge profiles

these measurements, all values recorded for a monitor must be

normalized relative to a common fixed reference. Hierarchical

normalization (HN) is a profile semantic designed for use

with CP that achieves this goal by decomposing a CFG into a

hierarchy of dominating regions. The results of using HN for

the profiles in Figure 2(b) are shown in the right portion of the

table. As desired, P2 and P3 are identical, and the differences

in loop trip count between P1 and P2 are identified.

HN is presented for vertex profiling. Edge profiles are

treated identically, but use the line graph of the CFG instead

of the CFG itself. The line graph contains one vertex for each

edge in the CFG. The edges in the line graph correspond to

adjacencies between the edges of the CFG. This technique

may be similarly applied to a call-graph.

Decomposing a CFG into a hierarchy of dominating regions

to enable HN is achieved by constructing it’s dominator tree.

Denote the immediate proper dominator of node n by dom(n).
Each non-leaf node n in the tree is the head of a region

Gn, which by construction encompasses any regions entered

through descendants of n. To prepare a raw profile for combi-

nation with other profiles, the frequency fn of each non-root

node n is normalized against the frequency of it’s immediate

proper dominator, fdom(n). The ratio of these two frequencies

is invariant when a branch probability or loop iteration count

is (dynamically) constant. Along with the issues illustrated

in Figure 2, this process also prevents variable behavior in

an outer loop from masking consistent behaviors within the

loop. Normalization proceeds in a bottom-up traversal of the

dominator tree, so that the head of a region is normalized to its

immediate dominator only after all it’s descendents have been

normalized. The root of the dominator tree, i.e., the procedure

entry point, is assigned a “normalized” value of 1. The HN

for the example is shown in the left portion of the table in

Figure 2(b).

In order to understand the capabilities and limitations of

a statistical model incorporating HN, and to use it correctly,

the model must be precisely defined. Therefore, let Fn and

Fdom(n) be random variables for the raw frequencies of n

and dom(n), respectively. Define a new random variable Yn =
Fn

Fdom(n)
, which is the frequency of node n with respect to its

dominator. The raw profile from run 1 of the program records

f1
dom(n) and f1

n, the observed frequencies of the two nodes

over that run. One sample of Yn, y1n =
f1
n

f1
dom(n)

is calculated

as the hierarchically normalized value for n. Over k runs, k

samples y1n, y
2
n, ..., y

k
n are added to the histogram of Rn. Thus,

the distribution summarized by the histogram of monitor Rn

is an approximation for the true distribution:

R∗n(θ) = P (Y = θ) = P

(
Fn

Fdom(n)
= θ

)

A. Denormalization

The properties of Ra can only be directly compared to

those of Rb when dom(a) = dom(b). However, more gen-

eralized reasoning about Ra may be needed when considering

code transformations. Denormalization statistically reverses

the effects of hierarchical normalization to lift monitors out

of deeply-nested domination regions by marginalizing out the

distribution of the dominators above which they are lifted.

Denormalization is a heuristic method rather than an exact

inference because it assumes statistical6 independence between

monitors.

Consider first the hierarchically-normalized raw profiles in

Figure 2. Intuitively, the expected execution count of node F

for a single execution through the graph is calculated:

BPl(A) =

(
fA←B

fA←B + fA←G

)

BPr(B) =

(
fB←F

fB←C + fB←F

)

E[fF ] = E[RIN←A × BPl(A)× BPr(B)]

6Ri,Rj are independent iff ∀i, j : P(Ri = i, Rj = j) = P(Ri =
i)P(Rj = j). Control-flow equivalence implies independence. Independence
does not hold in most other cases.
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P1 :E[fF ] = 1.0× 0.80× 0.90 = 0.72

P2,P3 :E[fF ] = 1.0× 0.80× 0.10 = 0.08

where BPd(n) is the probability of a branch going in direction

d (either (l)eft or (r)ight) from node n. However, even a single

raw profile is a statistical model. Thus, the calculation above

assumes that the edge frequencies are independent.

With the same assumption, the same approach can be used

with a CP. Thus, for the CP built from P1, P2 and P3:

E[fF ] = 1.0× 0.8×

(
0.9 + 0.1 + 0.1

3

)
= 0.29

which is the average of the expected frequencies.

The mean is a special case of marginalization; independence

allows the joint distribution to be broken into the product

of individual distributions, where the expectation associates

over the product, simplifying the calculation to the product of

means seen above. Thus, to recover an “absolute” expected

execution count from an HN CP, multiply the means of each

monitor up the dominator tree to the procedure entry. Then,

multiply by the expected invocation frequency of the procedure

(possibly using this technique over a CG CP). Denormalization

is this process of multiplying monitors along a path in the

dominator tree. The mean is a special case of denormalization

because it does not require the distribution of monitor values.

The general denormalization technique is formally presented

in the remainder of this section.

Let Ra and Rb be monitors from the same CFG. Let

domi(Ra) be the ith most-immediate proper dominator of

Ra. The least-common dominator of Ra and Rb is Rd =
domj(Ra) = domk(Rb), where there is no monitor Rn such

that Rd properly dominates Rn, and Rn dominates both Ra

and Rb. Denormalizing Ra from the region dominated by

dom(Ra) to the region dominated by Rd is achieved by

walking up the dominator tree. Let R̂−in be the denormalized

distribution when Rn is lifted above domi(n). R̂−1n is created

from the point-wise product of histograms Hn and Hdom(n).

Denormalization can be applied to Ra and Rb recursively to

produce the desired R̂
−j
a and R̂−kb , which can be compared.

The product of two histogram bins is a new bin whose range

is the product of the two input bin ranges, and whose weight

is the product of the two input bin weights. Instead of dealing

with a large number of overlapping, variable-width bins, HN

assumes that each histogram bin is a point distribution at the

midpoint of that bin. A larger number of narrower bins reduces

the modeling error induced by this assumption. Consequently,

the product of two bins is a 〈value,weight〉 pair, where the

value of the pair is the product of the bin midpoints, and

the weight is the product of the bin weights. The point-wise

product of two b−bin histograms, denoted H1×̇H2, uses all

pairings of bins between H1 and H2 to produce a set of b2

weighted-value pairs. These pairs are used as the source data

for the resulting histogram.

The computation of R̂−in takes O(ib2) time. The number

of bins is chosen by the user. There is a tradeoff between

DF DFb       d
a       d

g

d

f

e

ab

Fig. 3. Denormalization of Ra and Rb with respect to their least-common
dominator Rd. Dashed lines show the path over which the marginalized
histograms are computed.

accuracy and precision on one hand and memory space and

computation time on the other.

Figure 3 shows a dominator tree containing the nodes a and

b and their least common dominator d, which is shaded. The

dashed lines illustrate the paths followed, in the dominator

tree, to compute the denormalization. Nodes f and e are in

the path from d to a and there might be other nodes in the

path from d to b. Thus, Rd = dom3(Ra), and the histogram

for R̂−3a is calculated:

pairs = Ha×̇He×̇Hf ×̇Hd

Ĥ−3a = new Histogram(pairs)

B. Statistical Considerations

Any execution profile is a statistical model of program

behavior. CP makes this statistical modeling explicit and

replaces point statistics with probability distributions. By using

raw profiles to build a CP, the CP inherits the statistical

assumptions of those raw profiles. An edge profile does not

model the correlations between edges in a CFG. Thus, when

an edge profile is used to estimate CFG edge frequencies,

the estimate is made under the assumption that each edge

frequency is statistically independent. This limitation of edge

profiles inspired path profiles. A combined edge profile (CEP)

built from multiple edge profiles cannot remove this assump-

tion. However, at the time of combination, the model could

measure cross-run edge correlations. That model would be a

joint distribution across all edges, and would require space

exponential in the number of edges. Furthermore, a vast

number of input profiles would be needed to estimate all of

the joint probabilities.

Hierarchical normalization models the correlations between

a monitor and its immediate dominator, and assumes inde-

pendence for other pairings. This assumption allows the size

of the model to grow linearly with the number of monitors,

and furthermore allows queries to the combined profile to

be computed in constant time, or when denormalization is

required, in time linear in the length of the path between the

involved monitors and their least common dominator.

The inter-run independence assumptions of hierarchically

normalized combined profiles are analogous to the intra-run

assumption made by the underlying profiling technique. An
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L1a

L2

L1b

P2 P3

P4 P5 P6

P1

(exit)

(entry)

k−1

9*k

Fig. 4. Some sub-paths through a nested loop. The outer loop L1 iterates a
total of k times; the inner loop L2 iterates 10 times per iteration of L1.

edge profile assumes all edge probabilities are independent;

a CEP assumes that edge probabilities remain independent

across runs. A path profile models the (in)dependence between

edges within a path, but assumes that all paths are independent

within a run. A combined path profile (CEP) maintains the cor-

relations between edges in a path, but extends the assumption

of path independence across multiple runs.

C. Extensions to CP

The empirical-distribution methodology of CP is orthogonal

to the techniques used to collect raw profiles. CP is applicable

whenever multiple profile instances, including intra-run phase-

based profiles, hardware performance-counter profiles and

sampled profiles. The main issue when combining profiles

is how normalization should be done in order to preserve

program-behavior characteristics. This section discusses nor-

malization for CFG path profiling and call-graph (CG) pro-

filing. CP can also be used for value profiling by creating,

for each frequent value v of a monitor, a histogram of the

proportion of observed values accounted for by v [12].

1) CFG Paths: An algorithm that collects path profiling in

a program that contains loops must break cycles. The most

commonly used technique to break such cycles is due to Ball

and Larus [13]. Given a simple loop, the main idea is to replace

the back edge with a set of sub-paths that include (a) a path

from a point outside the loop to the end of the first iteration,

(b) a path from the loop entry point to a point outside the loop,

and (c) a path from the entry point to the exit point in the loop.

Figure 4 illustrates some of the paths inserted to replace the

two back edges in a double-nested loop.

Hierarchical normalization must be adapted to work with

paths because there are no dominance relationships between

paths. Consider two runs of the double-nested loop of Figure 4,

where the outer loop L1 iterates a total of k = 10, 000 times

in the first run, and k = 100 times in the second run. In both

cases the inner loop L2 iterates 10 times per iteration of L1.

The solution is to normalize with respect to the frequency

of the node that starts the path. For instance, P4 should be

normalized to the frequency of L2 to factor out k and preserve

the constant nature of the inner loop.

2) Program Call-Graphs: Combined profiling can easily

be extended to call-graphs (CG)7. Profiling a CG gathers

information about the frequency of inter-procedural calls. A

CG can be represented in multiple ways. For instance, a

single edge may represent all calls from a procedure foo()

to a procedure bar(). Alternatively, there may be a separate

edge for each call-site in foo() that targets bar(). If context-

sensitivity is included, there are several alternatives to keep

track of the execution path that leads to a call from foo() to

bar(). A common solution is to keep track of the k most recent

calls on the stack when the call from foo() to bar() occurs [15].

This sequence of calls is called a call string.

Unlike a CFG, a CG is not a well-structured graph. Con-

sequently, the dominator tree is often very wide and shallow,

which limits the utility of applying HN to the full CG. Instead,

we propose that CG monitors are normalized with respect to

the invocation frequency of the procedure where the behavior

originates. In the case of CG profiles that do not use context

sensitivity, call frequencies are normalized against the caller’s

frequency. Likewise, when context-sensitivity is used to collect

a CG profile, call-string frequencies are normalized against

the frequency of the caller of the first call in the string.

The combined profile then provides a conditional distribution

describing the probability of following a call or call string,

given that the start of the call string has been reached.

IV. METHODOLOGY

Combined profiling is a data representation for profile

information collected over multiple runs, and is motivated by

the observation that program behavior is input dependent and

varies from run to run. Therefore, the metrics in this evaluation

assess the variation present in a program workload, and how

this variation is stored in a CP. These metrics are used to

collect the results presented in Section V and are calculated

on a per-monitor basis. The presentation of the results uses

probability densities to expose the distribution of values across

monitors and thus allow a careful examination of the results.

While LLVM has profiling facilities for both edge and path

CFG profiling, it does not currently have any transformations

that make use of FDO information. Thus, the performance

impact of combined profiles on compiled programs cannot yet

be evaluated.

A. Behavior Variation

One benefit of using multiple profiling runs is that these runs

might exercise more of the program code than any individual

run. The dichotomy between a monitor being executed or

unexecuted in a profile is perhaps the most obvious indicator

of behavior variation. We report the coverage of a monitor as

the proportion of runs where the monitor executes.

An FDO compiler uses profile information to predict future

program behavior. If one behavior is very frequent, it may be

sufficient for transformations to only consider this dominating

behavior. A CP histogram is a probability distribution: the

7We do not attempt to extend CP to inter-procedural paths [14].
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probability of the monitor taking on a value within the range

of a histogram bin is equal to the proportion of the histogram’s

total weight found in that bin. Thus, the most likely behavior

of a monitor can be estimated by finding the bin containing

the most weight. The maximum probability of a monitor is the

proportion of weight in the heaviest bin to the total weight in

the histogram. The total weight only includes weight from raw

profiles that cover the monitor.

The occupancy of a histogram refers to the proportion of

bins that contain non-zero weight, and thus indicates how

weight is distributed within the histogram. If the weight is

distributed across the histogram, many bins will be used, but

if weight is concentrated at a few points, then most histogram

bins will be empty. The number of non-empty bins is limited

by the number of raw profiles combined. This evaluation

reports the number of non-empty bins as a proportion of the

maximum possible number of non-empty bins.

Variation of program behaviors is practically relevant only if

the variation is significant compared to typical monitor values.

The span of a histogram is the ratio between it’s range and it’s

maximum value. The lower-bound on the range is the smallest

non-zero value in the histogram.

B. Drift

Ideally, building a combined profile incrementally should

yield the same result as building it from a batch of raw

profiles. However, when histograms are combined in the

incremental construction, weight is proportionally allocated

to the overlapping bins in the new histogram. This weight-

distribution process can cause histogram weight to shift away

from the observed value. Drift measures the difference be-

tween a combined profile built as a single batch versus one

built fully incrementally from the same raw profiles.

The final range, and thus the bin boundaries, of both

histograms will be identical because the extreme values in the

data are fixed. The difference in weight between corresponding

bins is due to drift. Summing these differences for all pairs of

bins double-counts total drift: drift is half this sum, reported

as a proportion of total histogram weight. This study reports

drift using the merged results of 5 different randomly-selected

incremental combination orders.

V. RESULTS

Experiments were conducted on a machine running Red

Hat 4.1.2-42 on a Quad-Core AMD OpteronTM Processor

2350. The experiments use C integer benchmarks from SPEC

CPU 2006 with all inputs provided by SPEC. When the

SPEC ’ref’ run uses multiple inputs, each of these inputs

is treated separately. Additional inputs for mcf are taken

from Berube [1]. Bzip2 uses the 1000-input workload from

kDataSets [16]. Combined profiles are created using 10, 20,

30, 40, and 50 histogram bins. We present detailed results for

50 bins only due to space constraints, but briefly discuss the

impact of the number of bins in Section V-D. All combined

edge profiles employ HN. Experiments are performed with

both edge and path profiling. The figures for path profiling

are very similar to their edge profiling counterparts, and are

omitted due to space constraints.

Table I summarizes the characteristics of the combined

profiles for each benchmark. Runs indicates the number of

program inputs in the workload. The Edges and Paths columns

list the number of unique monitors executed at least once

across all runs. All results exclude unexecuted monitors.

The “%” columns for Histograms indicate the proportion

of monitors who’s non-zero values vary across the workload

and thus require a histogram for accurate modeling. Monitors

executed in every run have Full coverage. Otherwise, they

have Partial coverage. No less than 10% of monitors require

histograms, demonstrating the presence of input-dependent

program behavior in all benchmarks. The following subsec-

tions examine this variation in detail.

The columns labeled Points list the proportion of monitors

that are Point distributions in the CP. Points arise when all

non-zero values for a monitor are equal: all the probability

mass occurs at a single point on the real number line. In

these cases, no histogram bins are required to represent the

monitor in the CP. Point histograms at 1.0 are uninteresting

because they indicate that the monitor always executes the

same number of times as it’s dominator. For example, in

Figure 2, the F→E edge would have a point distribution

at 1 because it is immediately dominated by, and control-

flow equivalent to, B→F, and thus must always have an HN

frequency of 1. For edges, most of these monitors are likely

statically redundant and could be removed from the CP to

reduce file size with no loss of information. For paths, these

point histograms identify paths that execute exactly once each

time their procedure executes. In most cases, such a path is the

only non-loop path executed in a function. Point distributions

at values other than 1 are more interesting. These points arise is

cases such as (dynamically) constant loop trip counts or branch

probabilities. CP allows a compiler to evaluate potential code

transformations involving these monitors with confidence that

the analysis is applicable to all program runs.

The figures in this section use violin plots, which are

probability densities drawn vertically with the weight centered

horizontally. The width of the shaded area represents the

probability mass at the corresponding y-axis value. A uniform

distribution would appear as a vertical band with constant

width, while a normal distribution would have a bulge at

its mean and thin to a vertical line. Gaussian smoothing

transforms the discrete experimental data into a continuous

distribution. A black dot is placed at the mean of the data.

The values listed at the top of the figures identify the number

of unique monitors represented in the plot.

A. Behavior Variation

Figure 5 shows the distribution of monitor coverage across

the workload, excluding fully-covered monitors. The coverage

value is normalized to the number of runs. For example, 670 of

the 2182 executed edges in bzip2 are not executed in every

run. On average, those edges are executed by about 65% of the

1000 runs. However, the small bulge at the bottom of the plot
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TABLE I
CHARACTERISTICS FOR BATCH-COMBINED PROFILES, INDEPENDENT OF THE NUMBER OF HISTOGRAM BINS.

Combined Edge Profiles Combined Path Profiles

Histograms Points (%) Histograms Points (%)

Name Runs Edges % Partial Full 6= 1.0 = 1.0 Paths % Partial Full 6= 1.0 = 1.0

bzip2 1,000 2,182 35 366 399 3 61 1,295 90 904 265 3 6
gcc 11 93,748 43 15,973 24,703 3 52 41,276 81 18,972 14,724 13 4
gobmk 20 29,858 49 12,807 2,030 4 45 64,436 82 51,051 2,011 16 1
h264ref 5 8,846 26 1,023 1,297 8 65 4,857 76 2,398 1,325 13 9
hmmer 4 1,534 11 1 179 5 82 390 46 8 174 21 31
lbm 3 188 10 1 18 28 61 99 15 3 12 56 28
libquantum 3 585 27 8 150 1 71 220 63 13 126 5 31
mcf 12 491 42 22 187 1 56 249 83 39 170 1 14
milc 3 1,933 11 12 202 16 72 750 32 23 217 44 23
sjeng 3 3,778 58 127 2,077 2 38 36,111 41 9,913 4,971 58 0
sphinx3 3 3,278 10 9 342 14 74 1,147 35 30 374 36 28
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Fig. 5. Edge coverage, excluding fully-covered monitors

indicates that several edges are covered by very few runs; a

large group of edges are covered by slightly more than 40% of

the runs, and another group of edges are covered by more than

85% of the runs. An FDO compiler would be oblivious to the

execution of any or all of these monitors using a single-input

profile, and may consequently make suboptimal decisions from

a whole-workload perspective.

Hmmer, libquantum, milc, sjeng, and sphinx3

have more than 90% of their executed edges covered by

every run, which may be due to a lack of diversity in their

very small workloads. At least 30% of the edges in the

other benchmarks are not executed in every run, up to 79%

for gobmk. Furthermore, the distribution of coverage for

these benchmarks shows that the number of runs that do not

executed some edge is spread across the range, indicating

that these differences in coverage are unlikely due to a small

number of large-scale control-flow alternatives. Particularly for

gcc and gobmk, the set of executed edges varies significantly

from run to run. In contrast, for both milc and sphinx the

’ref’ and ’train’ inputs cover identical sets of edges, while

the ’test’ input misses a handful of edges, producing their

distinctive “point violins” at 66%.

Compilers predict program behavior from profiles. In the
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Fig. 6. Maximum edge likelihood with 50 bins (no points)

case of point histograms, this prediction can be made correctly

from any non-zero sample. The prediction is more complicated

when behavior varies from run to run. However, if the behavior

is consistent for most runs, then perhaps the most frequently

observed behavior is a good predictor. Unfortunately, this is

seldom the case. Figure 6 shows the proportion of histogram

weight that occurs in the heaviest bin, i.e., the probability of

the most likely behavior. For the four benchmarks with more

than 10 runs, this probability tends to be low: there is no

dominant behavior for these monitors. No single run, and no

point statistic, is a good representative of such monitors. A dis-

tribution model is needed to evaluate transformations involving

these monitors, as discussed in Section II-C. Redundancy in

bzip2’s very large workload allows for dominant behaviors

in some monitors, as exemplified by the bulge near 100%.

Figure 7 presents bin occupancy: a histogram with weight

in many bins increases the violin width toward the top of the

figure. The maximum number of occupied bins is listed at the

bottom of the figure, which is, with the exception of bzip2,

the number of runs. The average proportion of bins used is

over 50%, indicating that when variation is present, monitor

values are not limited to a small number of possibilities. The

maximum probabilities discussed above indicate that, in most
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Fig. 8. Span of edge histograms (no points)

cases, none of the bins contain a majority of the histogram

weight. Consequently, the weight must be distributed across

many bins. Visual investigation of the individual histograms

for bzip2 reveals that no single simple parametric model

(e.g., uniform, normal) matches the shape of a majority of the

histograms [12]. In contrast, CP’s histograms match the shape

of the data automatically.

Figure 8 presents histogram span, the ratio between range

and maximum value. Recall that monitors use HN to keep

behavior variation local to the monitor where it occurs. The

distribution of monitor values in a histogram may not have

practical significance if the span is small. Therefore, prac-

tically relevant behavior variation should widen the violin

plot toward the top of the figure. Figure 8 suggests that

all the benchmarks contain monitors that exhibit practically

significant behavior variation across the workloads. An FDO

compiler must take this variation into account when proposing

code transformations by, for example, calculating expected

benefit for the worst case or a low-quantile point as well as

the average, weighting by coverage, or considering span in

sorting functions.
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Fig. 9. Edge weight drift using 50-bin histograms (no points)

B. Drift

Drift is due to histogram ranges growing during incremen-

tal construction. For each benchmark, five randomly-selected

combination orders instruct the incremental combination of

all raw profiles. Drift is maximized by combining profiles one

at a time. Drift is calculated between these CPs and a batch-

combined profile and presented in Figure 9. The figure merges

all five comparison results. A drift of 0 indicates that the batch

and incremental histograms are identical, while a value of 1

is possible only when the weight in the two histograms does

not overlap at all.

For benchmarks with few runs, there is very little drift

because the histograms do not have a range until the second

profile is added; a third profile will only change the histogram

range if the new value is not between the first two. The

infrequent large drift values occur when the range expansion

from the third point causes one of the existing end-point bins to

be split near that endpoint’s value, causing a large proportion

of that bin’s weight to be distributed to an adjacent bin.

From the benchmarks with a greater number of runs, gcc,

gobmk, and mcf show much more drift. This drift is due

to two factors: histogram ranges have been changed more

frequently in the incremental construction, causing more bin

weights to be split; and more bins contain weight that can drift

when the range changes.

However, bzip2 does not display much more drift than the

benchmarks with few runs. The more raw profiles that have

already been added to the CP, the lower the probability that an

additional raw profile will change one of the extreme values.

The large number of runs for bzip2 allows the histogram

ranges to expand to approximately their final size before most

of the weight is added to the histogram. Thus, the vast majority

of the weight in those histograms is subject to very little drift.

C. Space Requirements

Edge profiles grow linearly with the number of edges in

a program; path profiles grow linearly with the number of

executed paths. In raw profiles, each monitor is represented

218

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 21,2023 at 14:46:46 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
PROFILE FILE SIZES, IN KB, FOR 50 BINS. THE OHEAD COLUMNS GIVE THE OVERHEAD FACTOR FOR THE CP VS. THE COLLECTED RAW PROFILES.

Edge Profiles Path Profiles

Raw (KB) Batch Incremental Raw (KB) Batch Incremental

Name Runs Single Total Size OHead Size OHead Single Total Size OHead Size OHead

bzip2 1,000 14 14,392 489 0.03 530 0.03 9 8,062 664 0.08 741 0.09
gcc 11 1,047 11,517 9,793 0.85 11,859 1.02 251 2,552 5,853 2.29 7,413 2.90
gobmk 20 178 3,557 4,127 1.16 5,417 1.52 432 4,916 10,436 2.12 13,456 2.73
h264ref 5 99 495 592 1.19 604 1.22 35 146 420 2.86 433 2.95
hmmer 4 59 238 94 0.39 96 0.40 4 15 32 2.13 34 2.25
lbm 3 1 4 11 3.17 12 3.20 1 2 6 2.78 6 2.82
libquantum 3 5 16 40 2.42 41 2.48 2 7 19 2.80 20 2.98
mcf 12 3 31 60 1.91 79 2.53 3 33 45 1.36 63 1.93
milc 3 19 56 118 2.10 119 2.13 7 21 54 2.61 56 2.71
sjeng 3 32 95 313 3.29 325 3.42 272 451 2,570 5.69 2,584 5.72
sphinx3 3 30 91 199 2.18 202 2.21 11 33 83 2.50 87 2.61

by a 4-byte counter. Like combined profiles, path profiles only

store executed monitors, but add a 4-byte index. In a CP, each

monitor maintains the true mean and variance of all samples

along with the histograms; an entry for a single monitor is 45

bytes8, plus a 1-byte bin index and an 8-byte weight per non-

empty histogram bin. Thus, even point distributions requires

11x (edge) or 5.5x (path) more space than the same monitor

in a raw profile. Table II presents profile files sizes. Raw edge

profiles and batch-combined profiles always have the same

size. The sizes of raw path profiles and increment CPs are

taken as the largest file across all runs or combination orders,

respectively. Comparing batch and incremental combination,

the drift observed in Figure 9 causes more bins to be non-

empty, resulting in larger files. This effect is most visible

for the benchmarks with several runs: gcc, mcf, gobmk,

and bzip2. Likewise, these benchmarks illustrate that the

file size grows slowly: as more profiles are combined, it

becomes less likely that an additional profile will place weight

in an empty histogram bin. Bzip2 illustrates how CP can

dramatically reduce storage requirements for profiles as the

total number of profiles becomes large, e.g., systems using

continuous profiling.

D. Number of Bins

The appropriate number of histogram bins is dependent

on the precision requirements of the profile’s consumers and

is independent of the number of raw profiles available. We

present data from 50 bins because it likely a (loose) upper-

bound on the required precision.

Coverage, span, and the results in Table I are properties of

program behaviors and are thus independent of the number of

histogram bins, while maximum likelihood, occupancy, and

drift depend on the number of bins. Results from 10, 20, 30,

and 40 bins are consistent with the discussion and conclusions

presented above for 50 bins.

Maximum likelihood increases by roughly 0.1 with 10 bins

instead of 50 for benchmarks with more than 10 runs. Occu-

pancy decreases slightly with fewer bins, even for benchmarks

with only 3 runs: the reduced precision changes some 3-

bin monitors into 2-bin monitors. Bzip2 is the exception.

8Fields are 8-byte doubles; floats would roughly halve the size

With 10 bins, nearly all monitors have 100% occupancy.

Increased precision allows the CP to identify ranges where

monitor values are not observed, resulting in empty bins. The

difference in drift between 10 and 50 bins is negligible for all

benchmarks except mcf, where drift is reduced by about 0.05

with 10 instead of 50 bins.

File size increases with more bins, though this effect is

small or negligible for all benchmarks except gobmk and

mcf, and bzip2, where it is most pronounced. As expected

from occupancy, gcc, gobmk, and mcf exhibit modest file

size increases all the way up to 50 bins despite having 20 or

fewer runs. The rate of growth decreases as the number of

bins increase. For example, the batch-combined edge profile

for bzip2 is 219 KB with 10 bins, and grows by 75, 70, 65,

and 60 KB to reach 489 KB with 50 bins.

VI. RELATED WORK

Many attempts to model program behavior have been made.

Jiang et al. use seminal behaviors, program behaviors that

are highly correlated with subsequent behaviors, to predict

behaviors at runtime [17]. This methodology is complementary

to CP because CP’s general model can be used when it is

infeasible to model behavior correlations. Tian et al. exploit

seminal behaviors in C programs to select between function

versions at runtime. Each version is created using a standard

single-input FDO compilation [18]. While many runs achieve

impressive speedups, worst-case performance suffers by over

5% on average. Traditional FDO produces similar results.

These results highlight the fact that FDO performance is

sensitive to program inputs and can vary widely across the

workload. Furthermore, optimization based on one input fre-

quently reduces performance for some other inputs. Salverda

et al. model the critical paths of a program by generating

synthetic program traces from a histogram of profiled branch

outcomes [19]. To better cover the program’s footprint, they

do an ad-hoc combination of profiles from SPEC training and

reference inputs. In contrast, CP is a sound methodology to

combine an arbitrary number of profiles. Savari and Young

build a branch and decision model for branch data [20].

Their model assumes that the next branch and it’s outcome

are independent of previous branches, an assumption that is
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violated by computer programs (e.g., correlated branches).

One distribution is used to represent all events from a run;

distributions from multiple runs are combined using relative

entropy — a sophisticated way to find the weights for a

weighted geometric average across runs. In contrast, CP’s

empirical distributions are for a single event across multiple

program runs.

Multiple inputs are used in attempts to scale input sizes

(up or down). Bienia et al. focuses on micro-architectural

features to scale the input sizes of PARSEC benchmarks [2].

When a reduced input has a large error in comparison with a

reference input, they regard the reference input as “correct.” In

contrast CP considers input-dependent behaviors to be intrinsic

to programs and captures them in a distribution over runs.

Kim et al. compare the simulated dynamic branch prediction

accuracy of FDO on the diverge-merge processor using the

MinneSPEC reduced program inputs against the same bench-

marks using the SPEC training inputs [21]. They find that

FDO is not sensitive to program input. Their evaluation is

not sound because comparing program behavior between a

reference input and an input that was specifically selected by

experts on the criteria that it be representative of the reference

is unlikely to predict the actual variations between inputs

encountered after deployment.

An early attempt to combine profiles is due to Fisher and

Freudenberger. They measure instructions per break in control

flow and sum profiles to provide better branch prediction [22].

Such summations produce similar results to summing normal-

ized frequencies. While better than single-run profiles, they

still yield poor behavior modeling in the presence of multiple

program use cases and poor training input selection, two issues

addressed by CP. A work-in-progress description of the CP

methodology introduced in detail the histogram construction

techniques used by CP and the types of queries CP can

answer [11]. This work expands the discussion of CP and

HN, introduces the monitor-level metrics of Section IV and

provides the evaluation of CP in Section V.

VII. CONCLUSION

Combined profiling is a practical and statistically sound

methodology to model behavior variation across multiple data

inputs. The experimental evaluation of CP shows that behavior

variation is present both in simple programs such as bzip and

in programs with more complex control flow like gcc and

gobmk. This variation can be captured and queried by the CP

statistical model. The prototype of CP for both edge and path

profiling in LLVM is a functional implementation of CP. We

look forward to introducing CP-directed transformations into

LLVM.

An extensive study of CP requires adequate workloads for

benchmark programs. The publication of the CP methodology

should encourage organizations that publish benchmarks to

include a significant number of inputs to each benchmark, thus

improving future use and evaluation of FDO code transforma-

tions.
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