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Load instructions often limit instruction-level parallelism (ILP)
in modern processors due to data and resource dependences they
cause. Prior techniques like Load Value Prediction (LVP) and
Memory Renaming (MRN) mitigate load data dependence by
predicting the data value of a load instruction. However, they
fail to mitigate load resource dependence as the predicted load in-
struction gets executed nonetheless (even on a correct prediction),
which consumes hard-to-scale pipeline resources that otherwise
could have been used to execute other load instructions.
Our goal in this work is to improve ILP by mitigating both

load data dependence and resource dependence. To this end, we
propose a purely-microarchitectural technique called Consta-
ble, that safely eliminates the execution of load instructions.
Constable dynamically identifies load instructions that have re-
peatedly fetched the same data from the same load address. We
call such loads likely-stable. For every likely-stable load, Con-
stable (1) tracks modifications to its source architectural registers
and memory location via lightweight hardware structures, and
(2) eliminates the execution of subsequent instances of the load
instruction until there is a write to its source register or a store or
snoop request to its load address.

Our extensive evaluation using a wide variety of 90 workloads
shows that Constable improves performance by 5.1% while re-
ducing the core dynamic power consumption by 3.4% on average
over a strong baseline system that implements MRN and other dy-
namic instruction optimizations (e.g., move and zero elimination,
constant and branch folding). In presence of 2-way simultaneous
multithreading (SMT), Constable’s performance improvement
increases to 8.8% over the baseline system. When combined with
a state-of-the-art load value predictor (EVES), Constable provides
an additional 3.7% and 7.8% average performance benefit over
the load value predictor alone, in the baseline system without
and with 2-way SMT, respectively.

1. Introduction
Extracting high instruction-level parallelism (ILP) [66, 146] is
essential for designing high-performance processors. How-
ever, ILP often gets limited by data dependence (i.e., the re-
sult of one instruction would be consumed by the other) and
resource dependence (i.e., two or more instructions contend-
ing for the same limited hardware resource) between instruc-
tions [97, 137, 165, 176]. Load instructions are a major source
of ILP limitation in modern workloads due to both data de-
pendence and resource dependence [27]. On the one hand,
a load instruction typically takes longer latency to execute
than most non-memory instructions since a load performs two
component operations: (1) compute the load address, and (2)
fetch the data by accessing the memory hierarchy. As a re-
sult, the instructions that depend on the load instruction often
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stall for multiple cycles, which can limit ILP. On the other
hand, a load instruction consumes multiple hard-to-scale hard-
ware resources (e.g., reservation station entry, port to address
generation unit, L1-data cache read port) which often causes
resource dependence in the pipeline, also limiting ILP.
Prior works propose many latency tolerance techniques to

improve ILP by mitigating load data dependence. Load Value
Prediction (LVP) [32,42,43,71,98,107,114,139–143,151,153–155,
159,160] and Memory Renaming (MRN) [120,121,147,177,178]
are two such widely-studied techniques that mitigate load
data dependence via data value speculation. LVP and MRN
speculatively execute load-data-dependent instructions using
the predicted value of the load instruction, thus improving ILP.
Key limitation. Even though LVP and MRN provide perfor-
mance benefits by breaking load data dependence, the pre-
dicted load instruction still needs to be executed nonetheless
to verify the speculated load value, which takes hard-to-scale
hardware resources that otherwise could have been utilized
for executing other load instructions. In other words, LVP
and MRN provide performance benefits by mitigating load
data dependence, but they do not mitigate load resource de-
pendence, which leaves a significant performance and power
consumption improvement opportunity on the table (see §4.4).

Our goal in this work is to improve ILP by mitigating both
load data dependence and resource dependence. To this end,
we propose a lightweight, purely-microarchitectural technique
called Constable, which safely eliminates the entire execution
of a load instruction (i.e., both load address computation and
data fetch from memory hierarchy).
The key insight behind Constable is that a dynamic load

instance I2 of a static load instruction I is bound to fetch the
same value from the same memory location as the previous
dynamic instance I1 of the same static load instruction when
the following two conditions are satisfied.
• Condition 1: None of the source registers of I has been
written between the occurrences of I1 and I2.

• Condition 2: No store or snoop request has arrived to the
memory address of I1 between the occurrences of I1 and I2.
Satisfying Condition 1 ensures that I2 would have the same

load address as I1, and thus the address computation operation
of I2 can be safely eliminated. Satisfying Condition 2 ensures
that I2 would fetch the same value from the memory as I1, and
thus the data fetch operation of I2 can be safely eliminated.
Key mechanism. Constable exploits this key insight to safely
eliminate executing a load instruction while breaking load
data dependence in two key steps. First, Constable dynami-
cally identifies load instructions that have repeatedly fetched
the same data value from the same load address. We call such

1

ar
X

iv
:2

40
6.

18
78

6v
1 

 [
cs

.A
R

] 
 2

6 
Ju

n 
20

24



loads likely-stable.1 Second, when Constable gains enough
confidence that a given load instruction is likely-stable, Con-
stable tracks modifications to the source architectural registers
the load instruction and its memory location via two small
hardware structures. Constable eliminates the execution of
all future instances of the likely-stable load and breaks the
load data dependence using the last-fetched value of the load
instruction, until there is a write to its source registers or a
store or snoop request to its load address.
Key results. We evaluate Constable using a diverse set of
90 workloads (which includes all workloads from SPEC CPU
2017 [17] suite and many well-known Client, Enterprise,
and Server workloads) over a strong 6-wide superscalar base-
line processor that already implements Memory Renaming and
various other dynamic instruction optimizations like zero elim-
ination [68], move elimination [64,68], constant folding [64,68],
and branch folding [60]. Our evaluation yields five key results
that show Constable’s effectiveness. First, Constable improves
performance on average by (up to) 5.1% (31.2%) over the base-
line, while reducing the core dynamic power consumption by
3.4% (24.6%). Second, when combined with a state-of-the-art
value predictor (EVES [155]), Constable improves performance
by 8.5% on average over the baseline, which is 3.7% more
performance than EVES alone. Third, in a 2-way simultane-
ous multithreading [62] configuration, (a) Constable alone
improves performance on average by 8.8% over the baseline,
and (b) Constable combined with EVES outperforms EVES
alone by 7.8% on average. Fourth, by eliminating both address
computation and data fetch component of load execution, Con-
stable reduces the reservation station allocations and L1-data
cache accesses by 8.8% and 26%, respectively, which results
in dynamic power savings. Fifth, Constable’s benefits come at
a modest storage overhead of only 12.4 KB per core.
We make the following key contributions in this work:
• We show that a significant fraction (on average by 34.2%
and up to 68.3%) of all dynamic loads repeatedly fetch the
same value from the same memory address across the entire
workload. By analyzing the disassembly of fully-optimized
workload binaries, we show that even a state-of-the-art
compiler with full optimization often fails to optimize such
load instructions at compile time due to various empirically-
observed reasons, e.g., accessing runtime constants and ac-
cessing local variables in inlined functions (see §4.1).

• We show that ideally eliminating the execution of such load
instructions while breaking their load data dependence has
more than twice the performance headroom (9.1% on aver-
age) than breaking only load data dependence via ideal load
value prediction (4.3% on average). This performance gap
demonstrates the opportunity to improve ILP by mitigating
load resource dependence (see §4.4).

• We propose Constable, a microarchitectural technique that
dynamically identifies load instructions that repeatedly fetch
the same data from the same address using a confidence-
based mechanism and eliminates the execution of such in-
structions by tracking modifications to their source registers
and store and snoop requests to their addresses (see §5).

• We propose a practical, lightweight microarchitecture for
Constable that safely eliminates load execution in the pres-
ence of aggressive out-of-order load issue in modern multi-

1Hence the name Constable, that polices the likely-stable loads to safely
eliminate them.

core processors (see §6).
• We extensively verify the correctness of Constable by match-
ing the outcome of every instruction in microarchitectural
simulation with that in functional simulation over a large
suite of 3400 traces (see §8.5).

• We show that Constable improves performance by 5.1% on
average (see §9.1.1) while reducing the core dynamic power
consumption by 3.4% (see §9.5) and incurring a modest stor-
age overhead of only 12.4 KB over a strong superscalar pro-
cessor that implements various dynamic instruction opti-
mizations. Constable’s benefits further increase in presence
of simultaneous multithreading (see §9.1.2).

• We open-source a binary instrumentation tool that we
use to identify load instructions that repeatedly fetch the
same value from the same memory address in any off-the-
self x86-64 binary in https://github.com/CMU-SAFARI/
Load-Inspector (see §4.2).

2. Background
Extracting high instruction-level parallelism (ILP) [66, 146] is
essential in providing high single-thread and multi-thread per-
formance in modern processors [80,94,172]. Unfortunately, ILP
often gets limited by data dependence and resource dependence
between instructions [27, 97, 137, 165, 176].2 Data dependence
limits ILP due to data flow (communications) between instruc-
tions, whereas resource dependence (also called structural de-
pendence) limits ILP due to contention for limited hardware
resources in the system (e.g., execution unit, load port).

Load instructions are amajor source of ILP limitation inmod-
ern workloads due to both data and resource dependence [27].
Load instructions typically have longer latency than most
non-memory instructions since they perform multiple com-
ponent operations in a single instruction. Fig. 1 shows the
two key component operations of a load instruction’s execu-
tion in a traditional nine-stage out-of-order (OOO) processor
pipeline [79, 137]. The processor first computes the load ad-
dress of an issued load instruction in the execute stage of the
pipeline. The processor then fetches the data by accessing the
memory hierarchy in the memory stage, which may require
accessing the lower levels of memory hierarchy (e.g., the main
memory). As a result, the dependents of a load instruction
often stall for several cycles, thus significantly limiting ILP.

Fetch Decode Allocate Execute RetireWriteback

In-order Out-of-order In-order

MemoryRename

Compute 

e0fective load address

Fetch data 

from memory hierarchy
Component operations:

Hardware resources: RS entry, AGU port Load port to L1-D cache

Issue

Figure 1: Two component operations of a load instruction exe-
cution and their associated pipeline resources.

A load instruction also uses several key hardware resources
during its execution. As shown in Fig. 1, a load instruction
consumes (1) a reservation station (RS) entry and an address
generation unit (AGU) port to compute its load address, and (2)
a load port to the L1-data (L1-D) cache to fetch the data from
the memory hierarchy. Many of these hardware resources are
hard to scale due to their non-trivial area and power overheads.
As a result, a load instruction often causes resource dependence
in the pipeline, thus limiting ILP.

2ILP also gets limited by frequent control dependence [137,138,176], which
is outside the scope of this work.
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Prior works propose many techniques to mitigate load data
dependence by tolerating load instruction latency. Load Value
Prediction and Memory Renaming are two such key techniques
that mitigate load data dependence via speculative execution.
Load Value Prediction (LVP) [32, 42, 43, 71, 98, 107, 114,

139–143, 151, 153–155, 159, 160] breaks load data dependence
by predicting the value of a load instruction and speculatively
executing load-data-dependent instructions with the predicted
value. The predicted value is later verified by executing the
load instruction. A correct prediction increases ILP, but an
incorrect prediction leads to re-execution of load-dependent
instructions, incurring both performance and power overhead.

Memory Renaming (MRN) [120, 121, 147, 177, 178] learns
the dependence relationship between a store-load instruction
pair, and speculatively executes the load-dependent instruc-
tions by forwarding the data directly from the associated store
instruction. The forwarded data is later verified by executing
the load. A correct data forwarding increases ILP, whereas
an incorrect forwarding incurs both performance and power
overhead due to re-execution of load-dependent instructions.

3. Motivation and Goal
Even though LVP and MRN provide performance benefit by
breaking load data dependence, the predicted load gets exe-
cuted nonetheless to verify the speculated load value, which
takes scarce and hard-to-scale hardware resources that oth-
erwise could have been utilized for executing other load in-
structions. In other words, LVP and MRN provide performance
benefits by mitigating load data dependence, but they do not
mitigate load resource dependence.

To illustrate how LVP provides performance benefit by mit-
igating data dependence,3 yet the benefit may get limited by
resource dependence, Fig. 2(a) and (b) show the execution time-
line of a code example in a processor without and with LVP,
respectively. For simplicity, we assume that the OOO proces-
sor has fetch, issue, and retire bandwidth of two instructions,
and one load execution unit (comprised of an AGU and a load
port). We also assume a perfect LVP. As Fig. 2(a) shows, I1 gets
issued to the load execution unit in cycle-5, thus stalling I2. In
cycle-6, an older load instruction Ix (not shown in the figure)
becomes ready to execute and gets issued to the load execution
unit, thus stalling I2 even further. Stalls like these, where a
load instruction gets delayed due to limited hardware resources
(i.e., resource dependence), frequently occur in a modern high-
performance processor with deeper and wider pipeline, as we
quantitatively show in §4.3. These stalls get exacerbated fur-
ther in the presence of performance-enhancement techniques
like simultaneous multithreading (SMT) [62], where a hard-
ware resource may get shared across SMT threads.

When LVP is employed, as shown in Fig. 2(b), both loads
I1 and I2 get value-predicted and the data-dependent instruc-
tion I3 retires 4 cycles earlier than in the processor without
LVP. However, since both I1 and I2 need to get executed to
verify their respective predicted values, I2 still experiences
stalls in cycle-5 and 6 due to resource dependence. If we can
safely eliminate the execution of I1 while breaking its data
dependence, as shown in Fig. 2(c), we can enable I2 to get
issued to the load execution unit in cycle-5, which provides an

3Since LVP and MRN work on conceptually similar principles, we use
LVP for this discussion without loss of generality.

additional 2 cycles savings on top of the processor with LVP.4

I2: mov  rdx, [r11+rax*8]

I1: mov  rcx, [rsp+0x14]

I3: imul rcx,rdx
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I2: mov  rdx, [r11+rax*8]

I1: mov  rcx, [rsp+0x14]

I3: imul rcx,rdx

I2: mov  rdx, [r11+rax*8]

I1: mov  rcx, [rsp+0x14]

I3: imul rcx,rdx

Fetch Decode Allocate Execute Memory Writeback RetireRename Issue

Eliminated load Value predicted load

These bubbles remain as value-predicted 

load get executed nonetheless

Eliminating I1 allows I2 to get the load 

execution unit, saving the bubbles

4 cycles saved 

Value predicted load

Bubble as I1 takes the load execution unit

Another bubble as an older load Ix (not 

shown here) becomes ready to execute 

and takes the load execution unit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2: Execution timeline of a code example in a processor
(a) without a load value predictor (LVP), (b) with LVP, and (c)
with LVP and load elimination.

We conclude that LVP and MRN may improve performance
by mitigating load data dependence, but they leave perfor-
mance improvement opportunity by not mitigating load re-
source dependence.

3.1. Our Goal
Our goal in this work is to improve ILP by mitigating both
load data dependence and resource dependence. To this end,
we propose a lightweight, purely-microarchitectural technique
called Constable, which safely eliminates the entire execution
of a load instruction (i.e., both load address computation and
data fetch from memory hierarchy).

4. Performance Headroom of Constable
To understand the performance headroom of Constable, we
first study the static load instructions that repeatedly fetch
the same value from the same load address across the entire
workload trace. We call such a load global-stable. Essentially,
a global-stable load is a prime candidate for elimination since
both load address computation and data fetch operations of its
execution produce the same result across all dynamic instances
of the instruction. We then quantify the resource dependence
on global-stable loads (§4.3), and the performance benefit of
ideally eliminating all global-stable load execution (§4.4).

4.1. Global-Stable Loads in Real Workloads
Intuitively, global-stable load instructions would be hard to
find in real workloads since such instructions should already be
optimized by the compiler. However, we observe that a signifi-
cant fraction of load instructions in real workloads are global-
stable even after aggressive compiler optimizations applied.
Fig. 3 shows the fraction of dynamic load instructions that
are global-stable on average across 90 workloads divided into
five categories. §8 discusses our evaluation methodology. We
make two key observations. First, 34.2% of all dynamic loads
are global-stable. Second, the fraction of global-stable loads
are much higher in Client, Enterprise, and Server work-
loads as compared to SPEC CPU 2017 workloads (i.e., ISPEC17
and FSPEC17 categories). We conclude that global-stable load
instructions are relatively abundant in real workloads.

4Similarly, I2 can potentially be eliminated as well, providing further
savings in execution time (not shown in Fig. 2).
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Figure 3: (a) Fraction of dynamic loads that are global-stable. Distribution of global-stable loads by their (b) addressing mode and
(b) inter-occurrence distance. (d) Distribution of inter-occurrence distance of global-stable loads from each addressing mode.

4.1.1. Characterization of Global-Stable Loads. To under-
stand the source of the global-stable loads in workloads (e.g.,
accessing variables in global scope, memory accesses in a tight
loop), we further characterize these loads by their address-
ing mode and the inter-occurrence distance (i.e., the number
of instructions between two successive dynamic instances of
the same global-stable load instruction). Fig. 3(b) shows the
breakdown of global-stable loads based on their addressing
mode. The key takeaway is that global-stable loads use var-
ious different addressing modes. On average, 20%, 42.6%,
and 37.4% of all global-stable loads use PC-relative (e.g., loads
that access variables in the global scope), stack-relative (i.e.,
loads that access stack segment using RSP or RBP as their only
source register), and register-relative (i.e., loads that use other
general-purpose architectural registers as their source) address-
ing. Fig. 3(c) shows the breakdown of global-stable loads based
on their inter-occurrence distance. The key takeaway is that
global-stable loads have a bimodal inter-occurrence distance
distribution. 31.9% of global-stable loads reoccur within 50
instructions (e.g., loads in a tight loop) on average, whereas
31.8% loads reoccur more than 250 instructions away (e.g., ac-
cessing a global-scope variable across function calls). Fig. 3(d)
further shows the distribution of inter-occurrence distance of
global-stable loads from each addressing mode. As we can
see, global-stable loads that use PC-relative addressing have
long inter-occurrence distance (52% of these loads have inter-
occurrence distance of 250 or more instructions), whereas
global-stable loads that use register-relative addressing have
short inter-occurrence distance (39.6% of these loads have
inter-occurrence distance of less than 50 instructions).

We conclude with three key takeaways. First, global-stable
load instructions pose diverse characteristics, both in address-
ing mode and inter-occurrence distance. Second, the inter-
occurrence distance of global-stable loads changes significantly
depending on their addressing mode. Third, an effective load
elimination technique should capture elimination opportuni-
ties across both short and long inter-occurrence distances.

4.2. Why Do Global-Stable Loads Exist?
To understand why a compiler with aggressive optimization
fails to avoid global-stable load instructions, we use a custom-
made binary instrumentation tool5 to analyze the disassembly
of workload binaries compiled with full optimization using a
state-of-the-art off-the-shelf compiler. Fig. 5(a) and (b) show
a code example from 541.leela_r from SPEC CPU 2017 [17]
benchmark suite and its disassembly, respectively. The work-

5We call this tool Load Inspector, which is freely available at https://
github.com/CMU-SAFARI/Load-Inspector.

load is compiled using the latest GNU g++-13.2 compiler [5] at
full optimization (i.e., using -O3 flag [6]) for x86-64 instruction
set architecture to produce the most optimized binary. The
highlighted load instruction in Fig. 5 fetches the object pointer
s_rng from memory. Since s_rng gets initialized only once
at the beginning of the workload, the pointer variable effec-
tively acts as a runtime constant and thus the highlighted load
instruction is global-stable. The compiler could not eliminate
this load instruction since it cannot reserve an architectural
register across the global scope of the program to be reused
for accessing the s_rng pointer.
Fig. 5(c) and (d) show two more examples of global-stable

load instructions in a code example from 557.xz_r of SPEC
CPU 2017 suite and its disassembly, compiled in the same way
as the previous workload. Each highlighted load instruction
accesses an argument variable to the function rc_shift_low
that does not change during the function invocation. Since
the function is repeatedly called using the same arguments
from the same caller function throughout the workload trace,
both the load instructions act as global-stable loads. However,
as the function rc_shift_low gets inlined within the body
of its caller function (not shown here), the compiler could
not allocate architectural registers to store and reuse these
variables due to register pressure [46].

We conclude that a state-of-the-art off-the-shelf compiler
often fails to optimize global-stable loads due to various
empirically-observed reasons, such as accessing runtime con-
stants and local variables of inline functions, combined with a
limited number of architectural registers.6

4.3. Resource Dependence on Global-Stable Loads
To quantify the loss of ILP due to resource dependence stem-
ming from global-stable loads, we analyze the utilization of
load ports. Other hardware resources that are used during a
load execution (e.g., RS entry and AGU port) may also cause
resource dependence, but we omit them here due to brevity.
Fig. 6(a) shows the fraction of total execution cycles where at
least one load port is utilized (we call such cycles load-utilized),
in our baseline processor7 augmented with a state-of-the-art
load value predictor EVES [155]. As we can see, on average
32.7% of the total execution cycles are load-utilized. Fig. 6(b)
further categorizes the load-utilized cycles of each workload
category based on whether or not a global-stable load utilizes

6We also observe that merely increasing the number of x86-64 architec-
tural registers from 16 to 32 has negligible impact on eliminating the global-
stable loads at compile time (see appendix B in the extended version [39]).

7Our baseline processor has an issue width of six instructions per cycle
with three AGU and three load ports, which support a maximum throughput
of three loads per cycle.
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1  Random* Random::s_rng = 0;
2  
3  Random* Random::get_Rng(void) 
4  {
5     if (s_rng == 0)
6     {
7        s_rng = new Random;
8     }
9     return s_rng;
10  }

0000000000432620 <Random::get_Rng()>:
432620: endbr64
432624: mov    rax,QWORD PTR [rip+0x1f4ac5] ; rax = Random::s_rng
43262b: test   rax,rax ; if(s_rng == 0)
43262e: je     432638 <Random::get_Rng()+0x18>
432630: ret
432631: nop DWORD PTR [rax+0x0]
432638: sub    rsp,0x8
43263c: mov    edi,0xc
432641: call   438460 <operator new(unsigned long)>    ; new Random(a) (b)

Global-stable load accessing a global-scope 
variable, which is effectively a runtime constant

1  static inline bool
2  rc_shift_low(lzma_range_encoder *rc, uint8_t *out, 
3 size_t *out_pos, size_t out_size)
4  {
5     ...
6     do 
7     {
8         if (*out_pos == out_size)
9             return true;
10         out[*out_pos] = rc->cache + (uint8_t)(rc->low >> 32);
11         ++*out_pos;
12         rc->cache = 0xFF;
13     } while (--rc->cache_size != 0);
14     ...
15  }

4134c8: mov r10d,edi
4134cb: mov rdi,QWORD PTR [r15]                ; rdi = *out_pos
4134ce: jmp 4134f0 <lzma_lzma_encode+0x3f0>
4134d0: movzx r8d,BYTE PTR [rbx+0x14]          ; r8d = rc->cache
4134d5: mov r14,QWORD PTR [rsp] ; r14 = out
4134d9: add r8d,r10d 
4134dc: mov BYTE PTR [r14+rdi*1],r8b 
4134e0: inc rdi ; ++*out_pos
4134e3: mov QWORD PTR [r15],rdi
4134e6: dec QWORD PTR [rbx+0x8] ; --rc->cache_size
4134ea: mov BYTE PTR [rbx+0x14],0xff 
4134ee: je 413500 <lzma_lzma_encode+0x400>     ; Breaking the while loop
4134f0: cmp QWORD PTR [rsp+0x8],rdi ; if (*out_pos == out_size)
4134f5: jne 4134d0 <lzma_lzma_encode+0x3d0>    ; do-while loop
4134f7: jmp 4133e9 <lzma_lzma_encode+0x2e9>    ; return true(c) (d)

Global-stable loads accessing function arguments. Function is 
repeatedly called by the same caller with the same arguments

54
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Figure 5: Code example and disassembly from 541.leela_r and 557.xz_r of SPEC CPU 2017 suite.

a load port. As we can see, for 23.0% of all load-utilized cycles,
a global-stable load takes a load port for its execution, while a
non-global-stable load (i.e., a static load instruction that does
not fetch the same value from the same load addresses across
all dynamic instances) is waiting to be scheduled on the same
port. Had the execution of global-stable loads be eliminated,
the non-global-stable loads could have been scheduled faster,
which in turn would provide performance benefit. Thus, we
conclude that global-stable load instructions causes significant
resource dependence, which can be mitigated by eliminating
their execution altogether.
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one load port is utilized (we call such cycles load-utilized). (b)
Categorization of load-utilized cycles based on whether or not
a global-stable load utilizes a load port.

4.4. Performance Headroom
To measure the performance headroom of eliminating global-
stable loads, we model an Ideal Constable configuration that
identifies all global-stable load instructions offline and elimi-
nates both component operations of their execution (i.e., load
address computation and data fetch). We also compare Ideal
Constable’s performance against three other configurations:
(1) Ideal Stable LVP, where all global-stable load instructions
identified offline are perfectly value predicted, and they are are
also executed to verify the predictions, (2) Ideal Stable LVP with
data fetch elimination, where all global-stable load instructions
are perfectly value predicted, and the value-predicted loads are
executed only until the end of address generation, and (3) 2×
load execution width configuration, where the number of load
execution units are doubled over the baseline. Fig. 7 shows the
speedup of each configuration over baseline.
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Figure 7: Speedup of Ideal Constable against Ideal Stable LVP
and a processor with 2× load execution width of the baseline.

We make four key observations from Fig. 7. First, Ideal Con-
stable provides 9.1% performance improvement on average
over the baseline. This shows that eliminating the execution
of global-stable loads has high performance headroom. Sec-
ond, Ideal Constable significantly outperforms Ideal Stable LVP
(4.3% on average). This shows that mitigating both data and
resource dependence (as done by Ideal Constable) has higher
performance potential than only mitigating data dependence
(as done by Ideal Stable LVP). Third, Ideal Stable LVP with data
fetch elimination outperforms Ideal Stable LVP (6.7% on aver-
age), yet it falls short to the Ideal Constable. This shows that
eliminating both the address computation and data fetch opera-
tions of a load execution has higher performance potential than
just eliminating the data fetch. Fourth, Ideal Constable even
slightly outperforms 2× load execution width configuration,
which incurs significantly higher area and power overhead. We
conclude that Constable has significant potential performance
benefit by mitigating both load data and resource dependence.

5. Constable: Key Insight
Constable is based on the key insight that a dynamic instance
I2 of a static load instruction I is bound to fetch the same
value from the same memory location as the previous dynamic
instance I1 of the same static load instruction if the following
two conditions are satisfied:
• Condition 1: None of the source registers of I has been
written between the occurrences of I1 and I2.

• Condition 2: No store or snoop request has arrived to the
memory address of I1 between the occurrences of I1 and I2.
Satisfying Condition 1 ensures that I2 would have the same

load address as I1, and thus the address computation operation
of I2 can be safely eliminated. Satisfying Condition 2 ensures
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that I2 would fetch the same value from the memory as I1, and
thus the data fetch operation of I2 can be safely eliminated.
Constable exploits this observation to operate in two key

steps. First, Constable dynamically identifies load instructions
that have repeatedly fetched the same value from the same load
address. We call such loads likely-stable. Second, when Con-
stable gains enough confidence that a given load instruction
is likely-stable, Constable tracks modifications to the source
architectural registers of the load instruction and its memory
location via two small hardware structures. Constable elimi-
nates the execution of all future instances of the likely-stable
load and breaks the load data dependence using the last-fetched
value - until there is a write to the source registers or a store
or snoop request to the load address.

6. Constable: Microarchitecture Design
6.1. Design Overview
Fig. 8 shows a high-level overview of Constable. Constable is
comprised of three main hardware structures:
Stable Load Detector (SLD). SLD is a program counter (PC)-
indexed table that serves three key purposes. First, SLD iden-
tifies whether or not a given load instruction is likely-stable
by analyzing its past dynamic instances. Second, SLD decides
whether or not the execution of a load instruction can be elimi-
nated. Third, SLD provides the last-computed load address and
the last-fetched data of a given likely-stable load instruction.
Register Monitor Table (RMT). RMT is an architectural-
register-indexed table whose key purpose is to monitor modifi-
cations to architectural registers and avoid eliminating a load
instruction when its source architectural register gets modified.
Each RMT entry stores a list of load PCs that are currently
getting eliminated that use the corresponding architectural
register as their source. In the rename stage, every instruction
looks up RMT using its destination architectural register and
resets the elimination status of any load PC from the corre-
sponding RMT entry in SLD to ensure that any future instances
of that load instruction will not be eliminated. In essence, RMT
enforces the Condition 1 for eliminating a load instruction (§5).
Address Monitor Table (AMT). AMT is a physical-address-
indexed table whose key purpose is to monitor modifications in
the memory and avoid eliminating a load instruction when the
memory location from which it fetches the data gets modified.
Each AMT entry stores a list of load PCs that are currently get-
ting eliminated that access the corresponding physical memory
address. Every store or snoop request looks up AMT using
its physical address and resets the elimination status of any
load PC from the corresponding AMT entry in SLD to ensure
that any subsequent instances of that load will not be elimi-
nated further. In essence, AMT enforces the Condition 2 for
eliminating a load instruction (§5).

6.2. Identifying Likely-Stable Loads
SLD employs a confidence-based learning mechanism to iden-
tify likely-stable load instructions based on the execution out-
comes of their past dynamic instances. Each SLD entry stores
four key pieces of information: (1) last-computed load address,
(2) last-fetched value, (3) a 5-bit stability confidence level and
(4) a can_eliminate flag that represents whether or not an
instance of this load instruction can be eliminated. When a
non-eliminated load instruction completes execution in the
writeback stage, Constable checks the SLD using the load PC
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Figure 8: Overview of Constable.

to compare the last-computed load address and last-fetched
value with the current load address and value. If both the
address and value match, Constable increments the stability
confidence level by one; otherwise, it halves the confidence. If
the stability confidence level surpasses a threshold (set to 30 in
our evaluation), Constable identifies subsequent load instances
from the same PC as likely-stable.

6.3. Eliminating Load Execution
During the rename stage, a load instruction first checks the SLD
using the load PC ( 1 in Fig. 8). If the can_eliminate flag is
set in the corresponding SLD entry, Constable breaks the load
data dependence using the last-fetched value stored in the SLD
entry and eliminates its execution ( 2 ). If the can_eliminate
flag is not set, Constable checks the stability confidence level
stored in the SLD entry. If the confidence level is above thresh-
old, Constable marks the load instruction as likely-stable and
executes it normally as the baseline ( 3 ). Only a load instruc-
tion marked as likely-stable can set the can_eliminate flag
during the writeback stage of its execution (see §6.4.1).
Microarchitecture for breaking load data dependence.
Breaking load data dependence requires supplying the load
value to all dependent in-flight instructions. Prior works on
LVP achieve this by writing the value to the physical register
file (PRF) or to a separate value table [159]. Since writing to
PRF either requires adding expensive write ports to PRF [134,
141,143] or a latency-sensitive arbitration of the existing write
ports [139, 159], Constable implements load data dependence
breaking using a small extra register file (only 32 entries),
called xPRF, which is dedicated to hold the values of the in-
flight eliminated load instructions.8
If SLD decides to eliminate the load execution, Constable

stores the last-fetched value provided by SLD in an available
8We implement Constable using xPRF as having a small PRF to break data

dependence has been shown to be more area- and energy-efficient than adding
new write ports to the existing PRF [159]. However, Constable can also be
implemented by adding or arbitrating PRF write ports. For a fair evaluation,
we also implement the LVP and MRN techniques considered in this work using
xPRF. As such, xPRF is not considered as an additional structure for Constable.
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xPRF register and converts the load instruction into a three-
operand register move instruction: the source is the xPRF
register, the destination is the destination architectural register
of the load, and the third operand is the last-computed load ad-
dress provided by the SLD. If there is no available xPRF register,
Constable does not eliminate the load and executes it normally
as the baseline. We observe this happens rarely (only in 0.2%
of the instances) in our evaluation with a 32-entry xPRF. In the
rename stage, the converted register move instruction simply
maps its destination register to the source xPRF register to com-
plete its execution (similar to move elimination [64,68]). Doing
so enables the dependents of the converted register move in-
struction to get scheduled by reading the xPRF register value.
In the allocation stage, the converted register move instruction
allocates a reorder buffer (ROB) entry and a load buffer (LB)
entry. The address field in the LB entry gets updated with
the last-computed load address embedded within the move
instruction as the third operand. This address field in the LB
entry is later required to correctly disambiguate the eliminated
load from the in-flight stores [70] as discussed in §6.5. Since
the execution of the converted register move instruction has
already been completed in the rename stage, the instruction
bypasses the remaining pipeline stages and resources directly
to retirement based on the in-order retirement logic.

6.4. Updating Constable Structures
6.4.1. Updates When a Likely-Stable Non-Eliminated
Load Finishes Execution. During the writeback stage of the
pipeline, when a likely-stable yet not eliminated load finishes
its execution, Constable updates its structures to eliminate sub-
sequent instances of the same load instruction. This happens
in three steps. First, Constable looks up RMT with its source
architectural registers. For each source register, Constable
inserts the load PC into the corresponding RMT entry ( 4 ).
Second, Constable looks up AMT with the physical address of
the load instruction. If the load address is found, Constable
inserts the load PC into the corresponding AMT entry ( 5 ). If
the address is not found, Constable inserts a new AMT entry
for the load address and inserts the load PC into the new AMT
entry. Third, Constable looks up SLD with the load PC and sets
the can_eliminate flag of the corresponding entry ( 6 ). Set-
ting the can_eliminate flag allows Constable to eliminate the
execution of subsequent instances of the same load instruction.
6.4.2. Updates during Register Renaming. In the rename
stage, Constable checks the destination architectural register
of every instruction and updates its structures to avoid elimi-
nating subsequent instances of any load instruction that uses
the destination register as its source. This happens in two
steps. First, Constable looks up RMT with the architectural
destination register of every instruction ( 7 ). If there is any
load PC in the corresponding RMT entry, Constable looks up
the SLD using each load PC and resets the can_eliminate flag
in the corresponding entry in SLD ( 8 ).
6.4.3. Updates on a Store Instruction. When the address
of a store instruction gets generated, Constable updates its
structures to avoid eliminating subsequent instances of any
load instruction that fetches data from the same memory ad-
dress as the store. This happens in two steps. First, Constable
looks up AMT using the physical store address ( 9 ). If the
address is found in AMT, Constable looks up SLD using each
load PC in the AMT entry and resets the can_eliminate flag

from the corresponding entry in SLD ( 8 ). Second, after re-
setting can_eliminate flag for all load PCs in the AMT entry,
Constable evicts the AMT entry.
6.4.4. Updates on a SnoopRequest. To safely eliminate loads
in multi-core systems, Constable monitors snoop requests com-
ing to the core and updates its structures to avoid eliminating
subsequent instances of any load instruction that fetches data
from the same memory address as the snoop. Constable han-
dles a snoop request in a similar way as a store request. When
a snoop request arrives at the core, Constable looks up AMT
using the snoop address ( 10 ). If the address is found, Consta-
ble looks up SLD using each load PC in the AMT entry and
resets the can_eliminate flag from the corresponding entry
in SLD ( 8 ). Finally, Constable evicts the AMT entry.

6.5. Disambiguating Eliminated Loads
from In-Flight Stores

When a store instruction computes its address, Constable ac-
cesses AMT and resets the can_eliminate flag for all load
instructions accessing the same memory location (see §6.4.3).
This prevents Constable from eliminating any subsequent occur-
rences of those load instructions. However, in a processor that
aggressively issues loads out-of-order [67,70,119], theremay be
eliminated loads in the pipeline that are younger than the store
instruction and whose addresses match with the store address.
We observe that this happens rarely (see appendix A.2 in the
extended version [39]) since Constable considers a load instruc-
tion to be eligible for elimination only if it meets the stability
confidence level threshold. In such infrequent cases, Constable
exploits the existing memory disambiguation logic [48,70] that
matches the store address with the address of every load in the
LB. If a violation is caught, Constable flushes the pipeline and
re-executes all younger instructions, including the incorrectly-
eliminated load (see the example in §6.8).

6.6. Maintaining Coherence in Multi-Core Systems
Constable relies on monitoring snoop requests for tracking
modifications in the memory by other processor cores to safely
eliminate loads in a multi-core system. However, monitoring
snoop requests poses the following two key challenges.
Loss of elimination opportunity due to clean eviction.
In a multi-core system with a directory-based coherence pro-
tocol [45], when a cacheline gets evicted from a core-private
cache, the core-valid bit (CV-bit) corresponding that core (i.e.,
the own core) gets reset in the directory entry of that cache-
line [22, 23, 74, 152]. Since resetting CV-bit prevents the direc-
tory from sending any further snoop request to that cacheline
to the core, on every core-private cache eviction, Constable
needs to avoid eliminating any load instruction that accesses
the evicted cacheline. This poses two key drawbacks. First, if
the evicted cacheline is clean (e.g., eviction due to limited cache
capacity or cache conflict), Constable loses elimination oppor-
tunity (we quantify the impact of such elimination opportunity
loss in appendix A.3 in [39]). Second, for every core-private
cache eviction, Constable needs to look up and invalidate the
corresponding AMT entry, which increases design complexity.
To address these drawbacks, we propose to pin the own core’s
CV-bit of a cacheline that is accessed by an eliminated load
instruction. When the memory request of a likely-stable yet
not eliminated load returns from the cache hierarchy, Consta-
ble pins the own core’s CV-bit in the directory entry of that
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cacheline. Pinning CV-bit ensures that (1) the coherence pro-
tocol would send any snoop request to that cacheline to the
own core, even if the cacheline gets clean-evicted from the
core-private cache, and (2) Constable does not need to look up
AMT on every core-private cache eviction. The CV-bit is reset
as soon as a snoop request is delivered to the core, as per the
normal directory-based coherence protocol.
Tracking snoop requests at cacheline address granularity.
Unlike a store instruction that contains a full memory address,
a snoop request contains a cacheline address. Thus, to support
AMT lookup using a snoop address, Constable indexes AMT us-
ing physical addresses at cacheline granularity. This may cause
loss of elimination opportunities due to false address collisions
(e.g., a store to a cacheline may reset the can_eliminate flag
of a load instruction that accesses different bytes of the same
cacheline accessed by the store). However, we find that the
performance impact of such elimination opportunity loss is
negligible. Constable with a cacheline-address-indexed AMT
has only 0.4% lower average performance than a Constable
with full-address-indexed AMT. This is primarily because the
compiler tends to lay out memory addresses accessed by likely-
stable load instructions together (e.g., a group of function argu-
ments laid out in the same cacheline of stack memory segment),
which reduces the overhead of false address collisions.

6.7. Other Design Decisions
6.7.1. Architecting SLD. Designing SLD with sufficient
read/write ports is crucial for realizing Constable’s perfor-
mance benefits. Constable reads SLD for every load instruction
to identify likely-stable loads in the rename stage ( 1 in Fig. 8).
Thus SLD needs to support the read bandwidth of the expected
number of load instructions in a group of instructions getting
renamed together in every cycle (we call this a rename group).9
We observe that a rename group contains 1.93 loads on av-
erage across all workloads, and 98.3% of all rename groups
have less than or equal to two loads. Thus, we model SLD with
three read ports. If there are more than three loads in a rename
group, we stall the rename stage until Constable finishes SLD
lookup for every load in that group.
Constable may need to update the can_eliminate flag in

SLD on every RMT update, which happens for each instruction
in a rename group ( 7 and 8 ). Since each RMT entry may
contain a list of likely-stable load PCs, the expected number
of SLD updates per cycle can vary in a large range. Fig. 9(a)
shows the average number of observed SLD updates per cycle
for every workload as a box-and-whiskers plot.10 As we can
see, we observe only 0.28 SLD updates per cycle on average
across all workloads. 98.23% of all cycles on average across all
workloads have two or fewer SLD updates. This is because, at
any point in time, only a small fraction of all load PCs (14.7%
on average) satisfies the stability confidence level threshold in
order to be tracked by RMT entries. Thus, we model SLD with
two write ports. If there are more than two SLD updates in a
cycle, we stall the rename stage until Constable finishes SLD
update for every load instruction in that rename group.
6.7.2. Handling Wrong Path Execution. In presence of
branch prediction, Constable’s structures may get updated

9We model a six-wide rename architecture (see §8.1).
10Each box is lower- (upper-) bounded by the first (third) quartile. The box

size represents the inter-quartile range (IQR). The whiskers extend to 1.5×IQR
range on each side, and the cross-marked values in the box show the mean.
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Figure 9: (a) Average number of SLD updates per cycle during
rename stage. (b) Change in performance when Constable’s
structures are updated only by correct path instructions vs.
all instructions without updating Constable’s structures on
branch misprediction recovery.

by wrong path instructions (especially, steps 7 and 8 in
Fig. 8). This may result in an unnecessary loss of elimination
opportunity, unless the structures are restored on a branch
misprediction recovery. To understand the need for restoring
Constable’s structures, we measure the change in performance
of Constable when its structures are updated only by the in-
structions on the correct path against when they are updated
by all instructions without an update mechanism on branch
misprediction recovery, and show it as a box-and-whiskers plot
in Fig. 9(b). The key observation is that 82 out of 90 workloads
show less than 1% absolute change in performance, while the
average performance change is only 0.2%. Thus, we model
Constable without any update mechanism for its structures on
a branch misprediction recovery.
6.7.3. Handling Changes in Physical Address Mapping.
AMT monitors memory locations accessed by all eliminated
load instructions in physical address space. This poses a chal-
lenge: when the physical memory mapping changes, the phys-
ical memory address tracked by an AMT entry may not be
associated with the corresponding eliminated load anymore.
In that case, to avoid incorrectly eliminating load execution,
Constable resets the can_eliminate flag of all SLD entries
and invalidates all RMT and AMT entries when the physical
memory mapping changes (e.g., context switch).

6.8. An Illustrative Example
To put it together, Fig. 10 illustrates an example of Constable’s
operation. For this example, we consider that the loads LD1,
LD2, and LD3 are three dynamic instances of the static load
instruction LD with a PC value PCx and the source registers
of LD do not get modified between LD1 and LD3. We also
assume the stability confidence level threshold is set to 30.
When LD1 gets decoded ( A in Fig. 10), Constable checks

SLD and finds that the stability confidence level of PCx

matches the threshold, yet the can_eliminate flag is not set.
In this case, Constable marksLD1 as likely-stable and executes
it normally. When LD1 finishes its execution ( B ), Constable
(1) pins the CV-bit corresponding to the own core in the co-
herence directory entry of address A, (2) updates AMT and
RMT (not shown here), and (3) increments the stability con-
fidence level in SLD. Since LD1 is marked as likely-stable,
Constable sets the can_eliminate flag in SLD entry. When
LD2 gets decoded ( C ), Constable eliminates executing LD2
since the can_eliminate flag is set. Now a store ST1 from
a different PCy gets decoded ( D ). This store instruction
would ultimately modify the memory address touched by LD.
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Figure 10: An illustrative example of Constable’s operation.

However, before ST1 could generate its store address, LD3,
which is younger than ST1 in program order, gets decoded
( E ) and Constable incorrectly eliminates its execution since
the can_eliminate flag is set. When ST1 finally generates its
store address ( F ), Constable resets the can_eliminate flag to
prevent eliminating subsequent instances of LD and evicts the
AMT entry. However, the existing memory disambiguation
logic probes the load buffer with the store address and finds
out that a younger load LD3 has been incorrectly completed.
As a result, the memory disambiguation logic aborts and re-
executes LD3 (and all instructions younger than LD3 that are
not shown here). When LD3 completes its execution ( G ), it
halves the stability confidence level counter.

6.9. Storage Overhead
Table 1 shows the storage overhead of Constable. Constable re-
quires only 12.4 KB storage per core of the processor (see §8.1).
Table 1: Storage overhead of Constable.
(Our baseline system models a 48-bit physical address space)

Structure Description Size

SLD
• # entries: 512 (32 sets × 16 ways)
• Entry size: tag (24b) + addr (32b) + val (64b) + con-

fidence level (5b) + can_eliminate flag (1b)
7.9 KB

RMT
• 16 load PCs for each stack registers (RSP and RBP)
• 8 load PCs for each remaining 14 architectural reg-

isters in x86-64
0.4 KB

AMT
• # entries: 256 (32 sets × 8 ways)
• Entry size: physical address tag (32b) + # hashed

load PCs (4 × 24b)
4.0 KB

Total 12.4 KB

7. Differences from Related Prior Works
The key idea of early-executing the address computation
and/or eliminating the data fetch operations of a load instruc-
tion has been explored in many prior works. We divide such
works into the following four categories to better understand
Constable’s differences from them.
Prior works that early execute address computation.
Prior works propose speculative and non-speculative tech-
niques to early or fast execute address computation of a load
instruction. [26] uses a fast, speculative carry-free addition to
speed up load address computation. [27] caches the values of
recently-used registers to speculatively compute load address.
Early load address resolution (ELAR) [34] tracks stack regis-
ter values using a small computation unit in the decode stage
to safely and non-speculatively compute the load address of
most stack loads immediately after the decode stage. Register
file prefetching (RFP) [164] predicts the load address of an
instruction to prefetch its data to the register file.

Constable differs from these works in one major way. These
prior works necessitate the execution of the load instruction
whose load address has been computed early. Works that spec-
ulatively compute load address [26, 27, 164] need to execute
the load to verify the speculation. ELAR, which employs a safe
technique to non-speculatively compute address of stack loads,
still needs to fetch the load data from the memory hierarchy.
Constable safely eliminates both the address computation and
the data fetch operations of a load execution altogether. We eval-
uate Constable against ELAR and RFP in §9.2 demonstrating
its performance benefits.
Prior work that eliminates the data fetch operation. Li-
pasti et al. (we call it the Lipasti load value predictor [108] or
LLVP) observe that some static load instructions have highly-
predictable load values, which they call constant loads. LLVP
proposes a microarchitecture to bypass the data fetch opera-
tions of constant loads. LLVP maintains addresses of constant
loads in a table called constant verification unit (CVU) and
invalidates a CVU entry by observing a store request to the
corresponding address. To verify the predicted value of a con-
stant load, LLVP first computes its load address. If the address
is found in CVU, LLVP bypasses the data fetch operation.

Constable differs from LLVP in one major way. LLVP advo-
cates for eliminating only the data fetch operation of a value-
predicted constant load. Constable, on the other hand, elimi-
nates both the address computation and data fetch operations
of a load instruction execution. As §4.4 shows, eliminating
both address computation and data fetch operations (as done
by Ideal Constable) provides higher performance benefit than
eliminating only data fetch (as done by Ideal Stable LVP with
data fetch elimination).
Prior works that enable memoization. Memoization [116],
caches computed results from repeated code executions, en-
abling a program or a microarchitecture to skip redundant
computations when encountering identical input sets. Memo-
ization has been applied in both software [58,116,148,173,174]
and in hardware at various program granularities, includ-
ing instruction-level [53, 76, 117, 149, 166, 167], basic-block-
level [83], trace-level [73], and function-level [54]. Early
works on instruction-level memoization aim to accelerate
long-latency operations (e.g., floating point multiplication
and division) by storing their operands and results in value
caches [133, 149]. Sodani and Sohi propose a PC-indexed reuse
buffer to store the results of (multiple) dynamic instances of
every static instruction [166]. Molina et al. improve upon
the reuse buffer to capture reuse of results across dynamic
instances of different static instructions [117].

Constable, in principle, resembles instruction-level memoiza-
tion with three key differences that make Constable more per-
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formant, lightweight, and usable in today’s high-performance
multi-core processors. First, prior works aim to memoize (mul-
tiple) results of every static instruction, irrespective of whether
or not the results would be useful for instruction elimination.
This requires a large memoization buffer, often as large as L1
data cache [52, 186, 187], to capture elimination opportunities
across long inter-occurrence distances (see §4.1.1). Gonzalez et
al. have shown that, while such a largememoization buffermay
provide a significant performance benefit, the benefits reduce
significantly when the latency to access the buffer is consid-
ered [72]. Constable on the other hand (a) only targets loads,
and (b) employs a confidence-based mechanism to filter out
likely-stable load instructions from all loads. This significantly
reduces Constable’s storage overhead and design complexity
(e.g., port requirements of SLD as discussed in §6.7.1) while
providing high elimination coverage. Second, prior works
may delay retrieving the memoized instruction output until
its source register values are available [53, 76, 117, 149]. As a
result, these works may not alleviate resource dependence on
hardware structures like the reservation station. Constable,
however, explicitly monitors changes in source architectural
registers of likely-stable load instructions and eliminates them
early in the pipeline, alleviating resource dependence from
both load reservation station and load execution unit. Third,
prior works may not be applied in today’s high-performance
multi-core processors as they do not address challenges related
to (a) keeping memoization buffer coherent across multiple
cores, and (b) maintaining program correctness in presence of
out-of-order load issue. Constable addresses both these chal-
lenges (§6.5 and §6.6) and we extensively verify its correctness
via functional simulation (§8.5).
Prior works on dynamic instruction optimization. Prior
works on trace-cache-based optimizations [68, 86] and rePLay
framework [63, 136] enable a wide range of runtime code op-
timizations (e.g., move elimination, zero-idiom elimination)
that can eliminate instructions in microarchitecture. Continu-
ous optimization (CO) [64] builds on these works and enables
removing redundant instructions (including loads) using the
register renaming logic.
Constable differs from these works in two key ways. First,

these schemes learn optimizations offline per-trace (or frame)
basis. Constable learns optimization online and applies directly
to the program’s dynamic instruction stream. Second, unlike
Constable, CO does not eliminate a load instruction in a multi-
core system in order to maintain the coherency. Our baseline
system already implements many runtime optimizations to
non-memory instructions at renaming stage (see §8).

8. Methodology
8.1. Performance Modeling
We evaluate Constable using an in-house, cycle-accurate,
industry-grade simulator that simultaneously runs both func-
tional and microarchitectural simulation on a workload. We
faithfully model a 6-wide out-of-order processor core config-
ured similar to the Intel Golden Cove [7,8,10,15] as our baseline.
Table 2 shows the key microarchitectural parameters. We in-
clude MRN and various dynamic optimizations in the rename
stage of the baseline processor, as highlighted in bold. For
a comprehensive analysis, we evaluate Constable and other
competing mechanisms on the baseline system, both without
SMT (called noSMT ) and with 2-way SMT (called SMT2). For

noSMT configuration, all hardware resources inside core are
fully available to the single running software context. For
SMT2 configuration, resources inside core (including Consta-
ble) are either statically-partitioned or dynamically-shared
between both software contexts [55]. Unless stated otherwise,
all reported results are from noSMT simulations.
Table 2: Simulation parameters.
(IDQ: Instruction Decode Queue, SB: Store Buffer)

Basic x86-64 core clocked at 3.2 GHz with 2-way SMT support

Fetch &
Decode

8-wide fetch, TAGE/ITTAGE branch predictors [156], 20-cycle mis-
prediction penalty, 32KB 8-way L1-I cache, 4K-entry 8-way micro-op
cache, 6-wide decode, 144-entry IDQ, loop-stream detector [41]

Rename
6-wide, 288 integer, 220 512-bit and 320 256-bit physical registers,
Memory Renaming [177], zero elimination [68], move elimina-
tion [64,68], constant folding [64,68], branch folding [60]

Allocate 512-entry ROB, 240-entry LB, 112-entry SB, 248-entry RS

Issue &
Retire

6-wide issue to 12 execution ports; 5, 3, 2, and 2 ports for ALU, load,
store-address, and store-data execution. Port 0, 1, and 5 are used for
vector instructions. Aggressive out-of-order load scheduling with
memory dependence prediction [51, 120], 6-wide retire

Caches

L1-D: 48KB, 12-way, 5-cycle latency, LRU, PC-based stride
prefetcher [69]; L2: 2MB, 16-way, 12-cycle round-trip latency, LRU,
stride + streamer [47] + SPP [101]; LLC: 3MB, 12-way, 50-cycle data
round trip latency [15,36], dead-block-aware replacement policy [100],
streamer, MESIF [118] protocol

Memory
4 channels, 2 ranks/channel, 8 banks/rank, 2KB row-buffer/rank, 64b
bus/channel, DDR4, tCAS=22ns, tRCD=22ns, tRP=22ns, tRAS=56ns

Optional

• EVES [155]: exact design of the CVP-1 32KB storage track winner
• ELAR [34]: with additional adder and RSP register in decode stage
• RFP [164]: 2K-entry prefetch table, 64-entry page address table,

128-entry RFP-inflight table. Total size: 12.5KB
• Constable (this work). Total size: 12.4KB

8.2. Power Modeling
We use an in-house, RTL-validated power model to measure
the dynamic power consumption of the core. We report the
overall core power consumption by breaking it down into four
key units: (1) front end (FE), (2) out-of-order (OOO), (3) non-
memory execution unit (EU), and (4) memory execution unit
(MEU). We further break down the OOO power into three sub-
units: RS, Register Alias Table (RAT), and ROB. We also break
down the MEU power into two sub-units: L1-D cache, and data
translation look-aside buffer (DTLB). To faithfully model the
power consumption of Constable, we estimate the read/write
access energy and leakage power of Constable’s structures
using CACTI 7.0 [31] 22nm library. We scale the estimates to
14nm technology using [171] to make the estimates compatible
with our core power model. Table 3 shows the access energy,
leakage power, and the area estimate of Constable’s structures.
We report RMT and SLD power in the RAT component and
AMT power in the L1-D component of the core power model.
Table 3: Access energy, leakage power, and area estimates of
Constable’s structures in 14nm technology.

Component Read access
energy (pJ)

Write access
energy (pJ)

Leakage
power (mW)

Area
(mm2)

SLD (7.9KB,
3R/2W ports) 10.76 16.70 1.02 0.211

RMT (0.4KB,
2R/6W ports) 0.15 0.20 0.31 0.004

AMT (4.0KB,
1R/1W ports) 1.58 4.22 0.74 0.017

8.3. Workloads
We evaluate Constable using 90 workload traces that span
across a diverse set of 58 workloads. Our workload suite con-
tains all benchmarks from the SPEC CPU 2017 suite [17], and
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many well-known Client, Enterprise, and Server work-
loads. Each trace contains a snapshot of the processor and
the memory state (1) to drive both the functional and microar-
chitecture simulation models, and (2) to faithfully simulate
wrong-path execution. Each trace is carefully selected to be
representative of the overall workload. Table 4 summarizes
the complete list of workloads.

Table 4: Workloads used for evaluation.

Suite #Workloads #Traces Example Workloads

Client 16 22 DaCapo [3], SYSmark [20], Tablet-
Mark [21], JetStream2 [12]

Enterprise 9 14 SPECjEnterprise [19], SPECjbb [18],
LAMMPS [13]

FSPEC17 13 29 All from SPECrate FP 2017 [17]
ISPEC17 10 11 All from SPECrate Integer 2017 [17]

Server 10 14 Hadoop [1], Linpack [9], Snort [16], Big-
Bench [2]

8.4. Evaluated Mechanisms
For a comprehensive analysis, we evaluate Constable stan-
dalone and in combination with three prior works: (1) a state-
of-the-art load value predictor EVES [155], (2) early load ad-
dress resolution (ELAR) [34], and (3) register file prefetching
(RFP) [164]. For EVES, we use the optimized implementation
that won the first championship value prediction (CVP-1) in
the 32 KB storage budget track [4]. For ELAR, we follow the
samemicroarchitecture design as proposed in [34]. For RFP, we
sweep and select the configuration parameter values that pro-
vide the highest performance benefit over the baseline. EVES,
RFP, and Constable apply their optimizations to load instruc-
tions with data size up to 64 bits. Table 2 shows the overheads
of all evaluated mechanisms.

8.5. Functional Verification of Constable
Since Constable completely eliminates a load instruction in
microarchitectural simulation, we cannot verify the functional
correctness of Constable in the same way as LVP or MRN
techniques. To functionally verify Constable, we enforce a
golden check at the retirement stage of every load instruction.
The golden check matches the load address and the load data
from the functional simulation model with those from the
microarchitectural simulation model. In case of a mismatch,
the golden check aborts the simulation. We extensively verify
the functional correctness of Constable using a broader set of
3400 traces and ensure that no single trace fails the simulation.

9. Evaluation
9.1. Performance Improvement
9.1.1. noSMT Configuration. Fig. 14 shows the geomean
performance of EVES, Constable, and Constable and Ideal Con-
stable (§4.4) combined with EVES normalized to the baseline
for each workload category. We make three key observations.
First, Constable alone improves performance by 5.1% on av-
erage over the baseline, which is similar to the performance
improvement of EVES (4.7% on average) while incurring 1

2× of
EVES’ storage overhead. Second, when combined with EVES,
Constable improves performance by 8.5% on average over
the baseline, which is 3.7% higher than EVES alone. Third,
when combined with EVES, Constable provides 82.9% of the
performance improvement provided by Ideal Constable.
Per-workload performance. To better understand Consta-
ble’s performance improvement, Fig. 12 shows the performance
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Figure 11: Speedup over the baseline (noSMT).

line graph of EVES, Constable, and Constable combined with
EVES for every workload. Workloads are sorted in ascending
order of the performance gain of EVES over the baseline. We
make three key observations. First, Constable outperforms
EVES by 4.9% on average in 60 of the 90 workloads (high-
lighted in green). In the remaining 30 workloads (highlighted
in red), EVES outperforms Constable by 9.2% on average. Sec-
ond, Constable combined with EVES consistently outperforms
both EVES and Constable alone in every workload.
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Figure 12: Speedup of all workloads (noSMT).

Load category-wise performance. To understand the perfor-
mance benefits contributed by different load categories, Fig. 13
compares the geomean performance of Constable when it elim-
inates only PC-relative, stack-relative, and register-relative
loads with that of a full-blown Constable. The key takeaway
is that each three individual types of loads contribute towards
Constable’s overall performance benefit. Eliminating only PC-
relative, stack-relative, and register-relative loads provide a
performance improvement of 1.1%, 2.6%, and 1.8%, respec-
tively, which nearly get added up to a 5.1% improvement by
the full-blown Constable.
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Figure 13: Speedup of Constable by eliminating execution of
only PC-relative, stack-relative, and register-relative loads.

Based on these results, we conclude that (1) Constable pro-
vides a significant performance benefit over a wide range of
workloads both by itself and when combined with a state-of-
the-art load value predictor EVES, and (2) Constable’s perfor-
mance benefit comes from eliminating all types of loads.

9.1.2. SMT2 Configuration. Fig. 14 shows the geomean per-
formance of EVES, Constable, and Constable combined with
EVES normalized to the baseline. We make two key observa-
tions. First, unlike in noSMT configuration, Constable signifi-
cantly outperforms EVES in the baseline with SMT2. Constable
alone improves performance by 8.8% on average over the base-
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line, whereas EVES alone improves performance by 3.6%. This
is because, unlike EVES, Constable’s load elimination funda-
mentally reduces utilization of load execution resources, which
face increased contention in presence of SMT. Second, com-
bining Constable with EVES continues to provide additional
performance benefit than EVES alone. Constable with EVES
improves performance by 11.3% on average over the baseline
in SMT2. We conclude that Constable provides even more per-
formance benefit in presence of SMT as compared to non-SMT
system, due to high resource contention in SMT systems.
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Figure 14: Speedup over the baseline (SMT2).

9.2. Performance Comparison with Prior Works
Fig. 15 shows the geomean performance of Constable stan-
dalone and when combined with ELAR and RFP in the base-
line. We make two key observations. First, Constable alone
outperforms both ELAR and RFP. ELAR, RFP, and Constable
improve performance on average by 0.74%, 4.4% and 5.1%,
respectively over the baseline. ELAR provides relatively small
performance benefit over baseline as our baseline already im-
plements constant folding [64,68], which can track stack regis-
ter modifications in the form of RSP ← RSP ± immediate
before the execution stage. Second, when combined with ELAR
and RFP, Constable provides more performance benefit than
ELAR and RFP alone, respectively. This shows that Constable
can be applied along with these proposals to provide evenmore
performance benefit.
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Figure 15: Speedup of Constable over ELAR and RFP.

9.3. Loads Eliminated by Constable
Fig. 16 shows the load coverage (i.e., the fraction of load instruc-
tions that are either eliminated or value-predicted by Constable
or EVES, respectively) of EVES, Constable, and Constable and
Ideal Constable combined with EVES in the baseline system.
We make three key observations. First, Constable alone cov-
ers 23.5% of the loads, whereas EVES covers 27.3%. This is
because Constable target loads which show both value and
address locality (i.e., repeatedly fetching same value from same
memory address), whereas EVES target loads that show only
value locality. Despite its lower coverage, Constable matches
performance of EVES as Constable mitigates both data depen-
dence and resource dependence on covered loads. Second, Con-
stable combined with EVES has higher load coverage (35.5%
on average) than EVES alone. Third, when combined with
EVES, Constable provides 85.4% of the coverage of Ideal Con-

stable. We conclude that Constable covers a significant fraction
of the load instructions both by itself and combined with EVES.
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Figure 16: Load coverage of Constable versus EVES.

9.3.1. Coverage of Global-Stable Loads. To understand Con-
stable’s coverage of global-stable loads (see §4), Fig. 17 shows
the breakdown of loads in each addressing-mode category
into three classes: (1) loads that are global-stable and elim-
inated by Constable, (2) loads that are global-stable but not
eliminated, and (3) loads that are not global-stable but elim-
inated. We make three key observations. First, PC-relative
and register-relative global-stable loads see the highest and the
lowest runtime elimination coverage of 70.2% and 33.2%, re-
spectively. Second, Constable successfully eliminates 56.4% of
all global-stable loads on average at runtime. For the remaining
43.6% global-stable loads, Constable misses their elimination
opportunity due to three key reasons (not shown in the figure):
(a) at least one source architectural register of a global-stable
load instruction gets written between its two successive dy-
namic instances (for 23.3% of all global-stable loads), (b) a silent
store [35, 104–106] occurs between two successive dynamic
instances of a global-stable load (for 14.1% of all global-stable
loads), and (c) coverage loss due to other reasons, e.g., stability
confidence learning and limited hardware budget for likely-
stable load tracking (for 6.2% of all global-stable loads). Third,
on average, 13.5% more loads are eliminated by Constable
at runtime which are not identified as global-stable. This is
because these loads are not stable across the entire workload
trace, but stable in a workload phase to meet the stability con-
fidence threshold and and hence get eligible for elimination.
Based on these results, we conclude that Constable eliminates a
significant fraction of the global-stable loads at runtime. How-
ever many elimination opportunities are still left, which can be
unlocked by future works to achieve even higher performance
and power efficiency improvements.
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Figure 17: Breakdown of eliminated and non-eliminated loads
as a fraction of global-stable loads.

9.4. Impact on Pipeline Resource Utilization
9.4.1. Reduction in RS Allocation. Fig. 18(a) plots the per-
centage reduction in RS allocations in a system with Constable
over the baseline system as a box-and-whiskers plot. The key
observation is that Constable reduces the RS allocation by
8.8% on average (up to 35.1%) across all workloads. Server
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and ISPEC17 workloads experience the highest and the lowest
average RS allocation reductions of 12.8% and 1.3%, respec-
tively. 37 of the 90 workloads experience a reduction in RS
allocation by more than 10%.
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Figure 18: Reduction in (a) RS allocations and (b) L1-D accesses.

9.4.2. Reduction in L1-D Access. Fig. 18(b) plots the percent-
age reduction in L1-D accesses in a system with Constable over
the baseline as a box-and-whiskers plot. The key observation
is that Constable reduces L1-D allocation by 26.0% on average.
Similar to the reduction in RS allocation, Server and ISPEC17
workloads experience the highest and the lowest average L1-D
access reduction of 39.7% and 3.9%.

Based on these results, we conclude that, by eliminating load
execution, Constable significantly reduces RS allocations and
L1-D accesses, both of which aid in improving performance
(§9.1) and reducing dynamic power consumption (§9.5).

9.5. Power Improvement
Fig. 19(a) shows the core power consumption (and its break-
down) in a system with EVES, Constable, and EVES+Constable
normalized to the baseline. The key takeaway is that Consta-
ble reduces the core power consumption by 3.4% on average
over the baseline, whereas EVES reduces power by only 0.2%.
This is because, unlike EVES where the value-predicted load
instructions get executed nonetheless, Constable eliminates
executing likely-stable loads altogether. To understand the dis-
tribution of the power benefit across various core structures,
we further expand the power consumption of OOO and MEU
units in Fig. 19(b) and (c) respectively. As Fig. 19(b) shows,
Constable reduces the power consumed by OOO unit by 4.5%
on average over the baseline. The RS sub-unit of OOO unit
experiences the highest power reduction of 5.1% (marked by
braces). This is because Constable significantly reduces the
number of RS allocations (§9.4.1). As Fig. 19(c) shows, Consta-
ble also reduces the power consumed by MEU unit by 7.2%
on average over the baseline. The MEU power reduction is
dominated by L1-D cache, which experiences 9.1% reduction
in power (marked by braces) on average. This is largely due
to the reduction is L1-D accesses (§9.4.2). We conclude that
Constable, unlike value prediction, reduces the core power by
fundamentally eliminating load execution.

10. Other Related Works
Compiler-based optimizations like global value number-
ing [56, 150], common subexpression elimination [57], and
loop-invariant code motion [81] identify pieces of code that
stay invariant across various granularities of a program and
eliminate their redundant execution. All the workloads used
in this work are already compiled with these optimizations.
We demonstrate that Constable provides performance benefits
on top of such well-optimized workloads.
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Figure 19: (a) Overall core power consumption normalized to
baseline. Expanded view of (b) OOO power and (c) MEU power.

Data caching [75, 109, 182] reduces the average memory ac-
cess latency by storing the data that would likely get accessed
in the near future in faster on-chip memory. Prior works have
proposed techniques to improve cache hit-rate by (1) exploit-
ing data reuse patterns (e.g., [88–90, 132, 145, 157, 183]), (2)
predicting dead cachelines (e.g., [93,100,175]), and (3) applying
machine learning techniques(e.g., [111, 112, 162]). Constable
can be orthogonally combined with caching techniques. Our
baseline system employs a dead-block-aware replacement pol-
icy in the LLC (Table 2).
A data prefetcher predicts the address of future memory
requests and fetches the data from slower memory to faster on-
chip caches before the program demands it. A prefetch request
can be generated by software [24, 25, 44, 113, 188] or hardware.
Hardware prefetchers can generate prefetch request by (1) pre-
executing program code [61, 77, 78, 84, 122–130], (2) learning
memory access pattern over spatial memory regions [28,30,37,
38,40,47,69,85,91,92,96,101–103,110,115,131,135,144,158,161,
169,170], and (3) memorizing long sequences of past demanded
memory addresses [29, 33, 49, 50, 59, 65, 82, 87, 95, 99, 163, 168,
179–181,184,185]. Constable can be orthogonally applied with
any prefetcher. Our baseline system employs multiple data
prefetchers across the cache hierarchy (Table 2).

11. Conclusion
We introduce Constable, a purely-microarchitectural technique
that safely eliminates the execution of load instructions while
breaking the load data dependence. Our extensive evaluation
using a wide range of workloads and system configurations
shows that Constable provides significant performance benefit
and reduced dynamic power consumption by eliminating load
execution. As hardware resource scaling becomes challenging
in future processors, we believe and hope that Constable’s
key observations and insights would inspire future works to
explore a multitude of other optimizations that mitigates ILP
loss due to resource dependence and load instruction execution.
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A. Extended Evaluation
A.1. Performance Sensitivity
A.1.1. Sensitivity to Load Execution Width Scaling.
Fig. 20(a) shows the geomean speedup of Constable and the
baseline system over the baseline configuration when we in-
crease the load execution width (i.e., increasing both number
of AGU and load ports). We make two key observations. First,
Constable consistently adds performance on top of the baseline
system even if we naively scale the load execution width. With
increasing AGU and load ports (while keeping the pipeline
depth resources same), the resource dependence stemming
from load reduces. Yet, Constable outperforms the baseline
system by 3.5% with 2× load execution width than the base-
line configuration. Second, adding Constable on the baseline
system configuration (i.e., with 3 load execution width) essen-
tially provides the similar performance benefit as the baseline
system with one extra load execution width, while incurring
lower area overhead and reducing power consumption.
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Figure 20: Performance sensitivity to (a) load execution width,
and (b) pipeline depth.

A.1.2. Sensitivity to Pipeline Depth Scaling. Fig. 20(a)
shows the geomean speedup of Constable and the baseline
system over the baseline configuration when we scale pipeline
depth resources (i.e., size of ROB, RS, LB and SB). The key take-
away is that Constable consistently adds performance on top of
the baseline system even if we naively scale the pipeline depth.
With 4× depth scaling, Constable improves performance of
the baseline system by 3.4% on average.

A.2. Effect of Eliminated Load Disambiguation
with In-Flight Stores

When the computed address of an in-flight store instruction
matches with that of an eliminated load younger than the store,
the existing memory disambiguation logic catches such mem-
ory ordering violation and re-executes all instructions younger
than (and including) the incorrectly-eliminated load (see §6.5).
Thus a frequent memory ordering violation by eliminated loads
may incur a significant performance and power overhead on
Constable. To understand such overhead, we show the fraction
of loads eliminated by Constable that violate memory ordering
as a box-and-whiskers plot in Fig. 21(a). As we can see, an
eliminated load rarely violates memory ordering. On average,
only 0.09% of all eliminated loads violate memory ordering.
Less than 0.5% of eliminated loads violate memory ordering
in 86 out of 90 workloads. This is primarily due to Constable’s
confidence-based mechanism that considers a load instruction
eligible for elimination only if it meets a sufficiently-high sta-
bility confidence level threshold (set to 30 in our evaluation).
Fig. 21(b) further shows the increase in instructions allocated to
the ROB in presence of Constable as compared to the baseline

system to understand the effect of such rare memory ordering
violations. As we can see, Constable increases the allocated
instructions by only 0.3% on average across all workloads. 79
out of 90 workloads observe an increase of less than 1%.
Thus, we conclude that Constable observes a very insignif-

icant overhead due to rare memory ordering violations by
incorrectly-eliminated loads.
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Figure 21: (a) Fraction of loads eliminated by Constable that
violate memory ordering. (2) Increase in instructions allocated
to ROB in presence of Constable.

A.3. Effect of Loss of Elimination Opportunities
due to Clean Evictions

In order to correctly eliminate load instructions in a multi-core
system, Constable proposes pinning the CV-bit of a cacheline
that is accessed by an eliminated load instruction (see §6.6).
However, the change in the coherence protocol may compli-
cate hardware verification. Another alternative design could
be to avoid elimination on every core-private cache eviction.
However, this design choice may lose elimination opportuni-
ties if the evicted cacheline is clean. In this section, we quantify
impact of such elimination opportunity loss on Constable’s
performance and elimination coverage.

To understand the effect, we model a Constable variant that
looks up AMT for every L1 data (L1-D) cache eviction and
invalidates the AMT entry. This prevents Constable from elim-
inating any further load instructions that access the evicted
cacheline. We call this Constable variant Constable-AMT-I.
Fig. 22(a) compares the speedup of Constable-AMT-I with the
vanilla Constable. Constable-AMT-I loses 0.9% performance
improvement than the vanilla Constable on average across all
workloads. 11 out of 90 workloads observe a performance loss
of more than 5% in Constable-AMT-I (with the highest perfor-
mance loss of 10.4% in 554.roms_r) as compared to vanilla
Constable. The performance loss is primarily attributed to the
loss in elimination coverage. As Fig. 22(b) shows, Constable-
AMT-I provides 3.4% less load elimination coverage than the
vanilla Constable. 17 out of 90 workloads observe a coverage
loss of more than 5% in Constable-AMT-I (with the highest
coverage loss of 27% in 554.roms_r). Thus, we conclude that
CV-bit pinning is a more-performant design choice than avoid-
ing elimination on every core-private cache eviction.

B. Effect of Increasing Architectural Registers
on Global-Stable Loads

Increasing architectural registers enables a compiler to exploit
additional registers to capture data reuse, which otherwise
would have been reused via memory. Thus increasing architec-
tural registers typically reduces the number of load and store
instructions in a program. To understand the effect of increas-
ing architectural registers on global-stable load instructions,
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Figure 22: (a) Speedup and (b) coverage of Constable with AMT
invalidation on L1D eviction compared to a vanilla Constable.

we compile all C/C++-based workloads from SPEC CPU 2017
rate suite [17] without and with Intel APX extension [11], that
doubles the number of architectural registers in x86-64 ISA
from 16 to 32, using Clang 18.1.3 [14]. We run these workloads
using the test input and profile their end-to-end execution using
the Load Inspector tool (see §4.1) to observe (1) the reduction
in dynamic loads caused by APX, and (2) the fraction of all
dynamic loads that are global-stable in workloads without and
with APX.

Fig. 23 shows the fraction of all dynamic loads that are global-
stable in each workload without and with APX (as bar graph on
the left y-axis) and the reduction in dynamic loads with APX
extension (as markers on the right y-axis) for all C/C++-based
workloads from SPEC CPU 2017 suite.11
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Figure 23: Fraction of all dynamic loads that are global-stable
in workloads compiled without and with APX (on the left y-
axis) and the reduction in dynamic loads by APX (on the right
y-axis).

We make two key observations from Fig. 23. First, the frac-
tion of dynamic loads that are global-stable (i.e., the elimination
opportunities for Constable) is much higher than the reduc-
tion in dynamic loads by doubling the number of architectural
registers. APX reduces the number of dynamic loads by 11.7%
on average. 500.perlbench_r is an outlier that observes a
reduction of 98.3% of loads. Without it, APX reduces the dy-
namic loads by only 4.5% on average. On the other hand,
13.7% and 14.2% of all dynamic loads on average are global-
stable in workloads without and with APX, respectively.12 The
difference is more prominent for FSPEC17 workloads, where
APX reduces dynamic loads by only 3.7%, whereas 20.8%
and 21.2% of dynamic loads are global-stable in without and
with APX, respectively. Second, the fraction of dynamic loads
that are global-stable is nearly the same in workloads without
and with APX. 500.perlbench_r and 557.xz_r are only two

11502.gcc_r, 510.parest_r and 525.x264_r are omitted from this study
due to failed compilation using Clang.

12Note that, the global-stable load fraction reported here is slightly lower
than that reported in Fig. 3(a). This is because, the earlier study in Fig. 3(a) uses
the representative sections of the workloads (see §8.3) to limit the simulation
overhead, while this study instruments each workload end-to-end.

workloads that show more than 3% absolute change in the
global-stable load fraction. This shows that the elimination op-
portunities for Constable is largely orthogonal to the benefits
of increasing architectural registers.
To further analyze the change in characteristics of global-

stable loads in presence of APX, we break down the global-
stable loads based on their addressing modes in workloads
both without and with APX in Fig. 24. We make two key ob-
servations from this figure. First, the fraction of stack-relative
global-stable loads reduces in presence of APX. On average,
21.1% and 16% of all global-stable loads use stack-relative
addressing in workloads without and with APX, respectively.
This is expected, since increasing architectural registers pre-
dominantly reduces stack loads. Second, the fraction of PC-
relative global-stable loads stays nearly the same in presence
of APX (38.3% without APX as compared to 38.9% with APX).
This shows that doubling architectural registers alone cannot
eliminate all memory accesses to global-scope variables which
are effectively runtime constant.
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Figure 24: Distribution of global-stable loads by their address-
ing modes in workloads without and with APX. Each number
on the x-axis corresponds to the respective workload from
SPEC CPU 2017 suite.

Based on these results, we conclude that the two load elimi-
nation techniques - at compile time by increasing architectural
registers and at runtime by Constable - are largely orthogo-
nal to each other. Thus, Constable would likely be equally-
performant and power-efficient in presence of increased archi-
tectural registers, as it is with the current set of architectural
registers.
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