
Improving Native-Image Startup Performance
Matteo Basso

Università della Svizzera italiana (USI)
Lugano, Switzerland
matteo.basso@usi.ch

Aleksandar Prokopec
Oracle Labs

Zurich, Switzerland
aleksandar.prokopec@oracle.com

Andrea Rosà
Università della Svizzera italiana (USI)

Lugano, Switzerland
andrea.rosa@usi.ch

Walter Binder
Università della Svizzera italiana (USI)

Lugano, Switzerland
walter.binder@usi.ch

Abstract
With the increasing popularity of Serverless computing and
Function as a Service—where typical workloads have a short
lifetime—the research community is increasingly focusing
on startup performance optimization. To reduce the startup
time of managed language runtime systems, related work
proposes strategies to move runtime environment initial-
ization ahead-of-time. For instance, GraalVM Native Image
allows one to create a binary file from a Java application
that embeds a snapshot of the pre-initialized heap memory
and can run without instantiating a Java Virtual Machine.
However, the program startup needs to be further optimized,
because the cloud runtime often starts the program while
responding to the request. Thus, the program startup time
impacts the service-level agreement.
In this paper, we improve the startup time of Native-

Image binaries by changing their layout during compilation,
reducing I/O traffic. We propose a profile-guided binary-
reordering approach and a profiling methodology to obtain
the execution-order profiles of methods and objects. Thanks
to these profiles, we first reduce page faults related to the
code section. Then, we propose three ordering strategies to
reduce page faults related to accessing the objects in the heap
snapshot. Since the object identities and the heap-snapshot
contents are not persistent across Native-Image builds of the
same program, we propose a method of matching objects
from the profile against the objects in the profile-guided
build. Experimental results show that our ordering strategies
lead to an average page-fault reduction factor of 1.61× and
an average execution-time speedup of 1.59×.

CCS Concepts: • Software and its engineering→ Com-
pilers; Software performance; File systems management;

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CGO ’25, March 01–05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708927

Virtual machines; • Computer systems organization→
Cloud computing.

Keywords: GraalVM, Native Image, Startup Performance,
Profiling, Serverless Computing, Function as a Service.
ACM Reference Format:
Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter
Binder. 2025. Improving Native-Image Startup Performance. In
Proceedings of the 23rd ACM/IEEE International Symposium on Code
Generation and Optimization (CGO ’25), March 01–05, 2025, Las Ve-
gas, NV, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3696443.3708927

1 Introduction
In contrast to long-running server-side workloads where
steady-state performance is crucial, modern short-running
workloads—typically executed on Serverless and Function
as a service (FaaS) cloud-computing services—incur signif-
icant overheads when the runtime relies solely on Just-In-
Time (JIT) compilation. Indeed, JIT compilation enables high
steady-state performance but introduces runtime and mem-
ory overheads, which affect program startup [2]. For this rea-
son, recent research is increasingly focusing on the optimiza-
tion of startup performance, cloud lambda functions [55],
and interpreters [6]. Improving startup performance of short-
running applications is crucial to save computational re-
sources, maximizing the throughput of cloud services.

In the Serverless and FaaS computing models [17], the ser-
vice needs to balance between keeping programs in memory
and starting programs too often. When a certain machine
receives a request for the first time, the service needs to pre-
pare the execution environment with the required memory,
runtime, and configuration to run the user-provided function
on that machine. The code of the function can be either fully
downloaded in this setup step or incrementally downloaded
using a Network File System (NFS), upon the first function
execution. Since the environment is already initialized and
the function code is already present in the RAM, subsequent
function invocations are significantly faster than the first
one. However, to avoid wasting resources, the service typi-
cally retains the execution environment only for a certain
period of time [4]. After that, the service frees the resources

689

https://orcid.org/0000-0002-7219-9077
https://orcid.org/0000-0003-0260-2729
https://orcid.org/0000-0002-6467-0113
https://orcid.org/0000-0002-2477-2182
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696443.3708927
https://doi.org/10.1145/3696443.3708927
https://doi.org/10.1145/3696443.3708927
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696443.3708927&domain=pdf&date_stamp=2025-03-01

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

by removing the idle program, and a new function request
may later start the initialization from scratch, incurring in
additional overhead. The service would like to remove the
idle programs from main memory as soon as possible, but
without breaking the service-level agreement that a certain
percentile of responses takes less than a certain number of
milliseconds. Improving the program startup time allows the
service to remove idle programs more often.
While related work on optimizing start-up performance

focuses mostly on the optimization of the Serverless plat-
forms [55], a few techniques try to perform startup opti-
mizations at the application level. For instance, GraalVM
Native Image [57] allows creating a binary file from a Java
application that can run without instantiating a Java Vir-
tual Machine (JVM), pre-initializing at build time the Java
environment. Binaries produced by Native Image contain
not only the code to be executed, but also a snapshot of the
pre-initialized heap memory, consisting of Java objects and
arrays. While embedding this snapshot reduces the runtime-
initialization time, the larger binary size increases the pres-
sure on the (Network) File System. Hence, even when em-
ploying these techniques, startup performance is not optimal.

This paper aims at mitigating startup-performance degra-
dation for the first execution of binaries that embed a snap-
shot of the heapmemory.We propose a profile-guidedmethod-
ology to reorder the code and the heap-snapshot sections of
the binary (Sec. 3). We generate an instrumented binary of
the program to collect a profile, containing a trace of method
invocations (which reflects the order in which they were first
executed) and a trace of accesses to objects in the heap snap-
shot (which reflects the order in which they were accessed).
Using these profiles, we create a second, profile-driven opti-
mized binary. We use the traces to place the used methods
and objects into contiguous areas of the binary. While the
invocation traces can be mapped to the methods in the op-
timized binary by matching their signatures, mapping the
object-access traces to the heap snapshot is more challenging.
Since a heap object does not have a unique name or identifier,
and the heap-snapshot contents are not guaranteed to be
the same across image builds (due to non-determinism in
running class initializers and because profiles themselves
influence the contents of the binary), the object-access trace
needs to be mapped to respective objects using other distin-
guishing factors. We are not aware of other work dealing
with the ordering of heap snapshots stored in binary files,
mapping object identities across builds that differ due to di-
vergence between the regular and the profile-driven image.

In addition, we propose multiple ordering strategies aim-
ing at reducing page faults related to accesses to the binary.
We first describe two code-ordering strategies, which im-
prove runtime performance and locality in the code section
of the binary (Sec. 4). One strategy is based on ordering com-
pilation units, while the other relies on method ordering.
Then, we propose three heap-ordering strategies to reduce

page faults related to accessing objects in the heap snapshot,
as well as a novel way of mapping profiles against objects in
the heap (Sec. 5). One strategy relies on incremental identi-
fiers, another on structural hashing and the third encodes
paths in the heap object graph. We also propose a profiling
methodology to collect the profile (Sec. 6).
Finally, we evaluate our code- and heap-ordering strate-

gies on the “Are We Fast Yet?” (AWFY) benchmark suite [33]
and three widely-used microservice frameworks, i.e., micro-
naut [34], quarkus [47], and spring [53] (Sec. 7). Experimental
results show that our ordering strategies are effective in both
reducing page faults and improving runtime performance,
leading to an average page-fault reduction factor of 1.65×
and 1.46× and an average execution-time speedup of 1.59×
and 1.61× on AWFY and microservices, respectively.
We complement the paper by illustrating the required

background (Sec. 2), discussing related work (Sec. 8), and
giving our concluding remarks (Sec. 9).

2 Background
In the following text, we give preliminary information on
ahead-of-time compilation, heap snapshotting, and profile-
guided optimizations.
Ahead-of-time (AOT) Compilation To reduce the startup
time of Java workloads, GraalVM Native Image [39, 57]
(henceforth just Native Image for short) allows compiling a
JVM application and its dependencies into a single binary
file that can be executed without instantiating a JVM. To do
so, Native Image relies on Graal [13], an optimizing compiler
that performs inlining [46], escape-analysis [51], and various
other optimizations [26, 27]. Graal performs transformations
and optimizations on a portion of code provided as input,
called compilation unit (CU). A CU consists of a root method
(i.e., the method from which the compilation started), and
all the methods that were inlined into that root method. CUs
are stored in the .text section of the binary. After the compi-
lation, each CU typically includes multiple inlined methods.
By default, CUs in the .text section of a Native-Image binary
are ordered alphabetically. Notably, the CUs in one binary
may not correspond to the CUs in another binary of the
same compiled application. The contents of a Native-Image
binary are sensitive to the code that is on its classpath. In-
deed, Native Image uses a form of points-to analysis to decide
which code from the classpath is reachable [22, 22, 49, 57, 58],
and to improve compilation speed, it employs saturation to
mark virtual calls as having all possible targets after the set
of targets exceeds a specific threshold [58]. The points-to
analysis is conservative and always includes more code than
what is actually reachable or executed at runtime. The inclu-
sion of seemingly unrelated code into the binary may thus
significantly impact inlining decisions, hence producing a
completely different grouping of Java methods into compi-
lation units. Inlining decisions are furthermore code-size

690

Improving Native-Image Startup Performance CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

driven, so instrumentation code may make the inliner be-
have differently between compilations of the instrumented
and the regular image.
Heap Snapshotting A defining feature of Native Image is
that, to further speed up the startup, the produced binaries
contain a snapshot of the Java heap memory. The snapshot is
obtained after executing the static initializers of the classes
that are deemed to be reachable in the startup process of
the VM (when static initializers have no observable side-
effects). The aforementioned points-to analysis determines
which classes and static fields are reachable. To select the
objects to be included in the heap snapshot, Native Image
traverses the object graph in a well-defined order, starting
from the required static fields of the reachable classes, as
well as constants in the code section. For this reason, small
changes in the program or its entry points may lead to sig-
nificant changes in the heap snapshot. Moreover, objects
in the heap snapshot typically differ across Native-Image
compilations, particularly when the second compilation con-
sumes profiles to guide its optimizations. For example, due
to different inlining decisions that affect Partial Escape Anal-
ysis (PEA) [51], some objects could be stack-allocated in
one binary but not in another, or the accesses to their fields
could be constant-folded, eliminating the need to store the
respective objects in the heap snapshot. The heap snapshot is
stored in the .svm_heap section of the binary, and is memory-
mapped when the program starts, hence each page is lazily
copied to memory on the first access. By default, objects are
ordered according to the order of the CUs in the .text sec-
tion of the binary—objects reachable from a CU 𝐴 are stored
before objects reachable from another CU 𝐵 that is stored
after 𝐴 in the .text section. We note that the compilation
is in some cases non-deterministic, and one reason is that
the class initializers may be executed in parallel during the
build process.
Profile-guided Optimizations (PGO) Native Image can
use execution profiles to generate more efficient code, and
this is yet another reason for inconsistencies between regular
and profile-driven builds. As is common for AOT compilers
such as LLVM [31] and GCC [16], Native Image can create
an instrumented binary with code that gathers profiles, and
writes them to a file upon program exit. Native Image can
then use the profiles to generate an optimized image. Native-
Image profiles currently contain branch frequencies, virtual-
call receiver types, andmethod call counts. Instrumented and
optimized images differ in their CUs and objects in the heap
snapshot, which is primarily caused by different inlining
decisions that enable different sets of optimizations.

3 Profile-Guided Binary Reordering
Our goal is to improve the existing profiles collected by in-
strumented Native-Image binaries, and use the augmented
profiles to generate an optimized binary with improved

startup performance. Fig. 1 shows the steps required by our
methodology and how they are integrated into Native Im-
age. The figure reports both the steps required to create the
instrumented binary in the profiling build (gray nodes with
dotted borders) and the steps required to create the opti-
mized image introduced by our methodology (blue nodes
with dashed borders). Steps required for both the profiling
and the optimized builds are depicted with green nodes with
dash-dot borders. White nodes with solid borders represent
existing steps of the Native-Image building process, while
white nodes with double borders represent outputs.

The regular Native-Image building process starts with the
iterative execution of a points-to analysis [22, 22, 49, 57, 58]
to run static initializers and create a snapshot of the heap
until a fixed point is reached. Then, Native Image compiles
the reachable methods, adding their code to the .text section
of the binary, and stores the heap snapshot in the .svm_heap

section of the binary. To produce instrumented binaries in
the profiling build, our methodology extends the regular
building process to 1) instrument the compiled methods to
collect method-execution and object-access traces, and 2) as-
sociate an identifier to each object instance to be stored in
the .svm_heap section of the binary (detailed later in Sec. 5).
The execution of the instrumented binary leads to the gen-
eration of traces that need to be further post-processed to
produce the actual code- and heap-ordering profiles.
In the optimizing build, our methodology exploits the

ordering profiles gathered upon the execution of the instru-
mented binary. We add a code-ordering step that takes the
code-ordering profiles as input (note that the dashed arrow
in the figure connects the code-ordering profiles to the code-
ordering step) and reorders the CUs before storing them
into the binary. Moreover, we add the same step present in
the profiling build to associate an identifier to each object
instance in the heap snapshot, and a heap ordering step that
takes the heap-ordering profiles as input, before writing the
heap snapshot. The heap-ordering step attempts to match
the semantically same objects in the heap snapshot and in
the profiles by exploiting their identifiers and hence reorders
the former according to the latter. In this build, identifiers
are not stored in the binary.

4 Code Ordering
In our approach, we extend the instrumentation of the pro-
gram to collect the trace ofmethod invocations, which records
the order in which the methods executed. The CUs in the
.text section of the optimized binary are then reordered
using the trace, with the goal of ordering and minimizing
the total set of pages with the code from the trace, and thus
to reduce the number of page faults.
We order CUs with the aim of achieving the following

optimality property as often as possible:

691

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Points-to
Analysis

Run Static
Initializations

Heap Snap-
shotting

Object-
Identifier
Generation

Heap Ordering
Image-Heap
Writing

Ahead-of-Time
Compilation Instrumentation Code Ordering

Binary

.text
section

.svm_heap
section

Image Build
Time

Code-Ordering
Profiles

Heap-Ordering
Profiles

Profiled
Execution

Post-
Processing
Analyses

Execution
and
Post-

processing
Time

Figure 1. Integration of the proposed binary-reordering methodology into the Native-Image building process.

Property 1 (Optimal ordering). If the first invocation of
method 𝐴 appears in the trace before the first invocation of
method 𝐵, then the first occurrence of the method𝐴 precedes
the first occurrence of the method 𝐵 in the layout of the
optimized binary.

In general, for any method-invocation trace of a program
and any choice of CUs, it is not possible to choose a CU
ordering that satisfies Property 1. The reason for this is that
the same method from the trace may have been invoked on
multiple code paths. Consider the following example:

a() {
if (...) b();
if (...) c(); }

b() {
if (...) c();

}

c() {
...

}

Next, consider the following choice of compilation units:
the call from a to b is inlined into a, the code from b to c

is also inlined into a, but the call from a to c is not inlined
(i.e., method c remains a separate CU). Finally, consider the
method-invocation trace a, b, c. It is not possible to decide
whether the inlined or the non-inlined invocation of c oc-
curred in the trace. Hence, when laying out the CUs in the
binary, it is not clear whether it is optimal to place the CU
with the root c immediately after the CU with the root a.

We therefore implement and evaluate two code-ordering
heuristics: one that orders the CUs based on the invocation
orders of the root methods, and another that orders the CUs
based on the invocation orders of all the methods.

4.1 Compilation-Unit-Based Ordering
In this strategy (called cu ordering), we trace all the CU exe-
cutions by instrumenting the CU entry points. In particular,
the instrumentation code records the signature of the root
method of each CU. To obtain the ordering profiles, we re-
move the duplicated elements in the trace maintaining the
original (execution) order.
Consider the previous example and the execution of the

following code a() in the case where the conditions of all
the if statements evaluate to true. This strategy produces
the CU-invocation trace a, c (since c is not inlined into a),
leading to the ordering a, c.

4.2 Method-Based Ordering
In this strategy (called method ordering), we trace all the
method executions by instrumenting themethod entry points.
The instrumentation code records the signature of each
method. To obtain the ordering profiles, we remove the
duplicated elements in the trace maintaining the original
(execution) order. In the same example presented in Sec. 4.1,
this strategy would produce the method-invocation trace a,

b, c, c, leading to the ordering a, b, c. This ordering is
convenient if the inliner decide to not inline method b in
method a in the optimized binary.

5 Heap-Snapshot Ordering
In this section, we propose and describe three heap-ordering
strategies, aiming at reducing page faults related to the
.svm_heap section of the binary. The goal of each strategy is
to compute 64-bit object identities (IDs) to match the object-
access trace entries with the heap-snapshot objects of the
optimized binary as accurately as possible. The first strat-
egy does this by assigning sequential IDs to objects in the
order in which they are encountered during heap snapshot-
ting (Sec. 5.1); the second strategy identifies objects through
hashes, computing them taking into account the type and
the fields of the object, as well as its neighbours in the ob-
ject graph (Sec. 5.2); the third strategy assigns IDs to objects
based on the path to the heap object (Sec. 5.3).

5.1 Incremental ID
Here, we propose a strategy that assigns incremental IDs to
object instances in object encounter order when traversing
the heap object graph to detect objects to be included in the
heap snapshot. This strategy called incremental ID, has the
advantage of being simple, but it becomes inaccurate for
complex workloads whose code and heap snapshots differ
between regular, profiling, and optimized builds.

Algorithm 1 shows the pseudocode of the proposed strat-
egy. All algorithms shown in the paper take as input an
𝑒𝑛𝑡𝑖𝑡𝑦, which represents a wrapper around a 𝑣𝑎𝑙𝑢𝑒 , which

692

Improving Native-Image Startup Performance CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Algorithm 1: Incremental IDs Function
Function incrementalId(𝑒𝑛𝑡𝑖𝑡𝑦):
computes the 64-bit ID for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦
using incremental IDs
Input:
𝑒𝑛𝑡𝑖𝑡𝑦, a wrapper around the value for which the algorithm
computes the ID
Output:
the 64-bit ID for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦

1 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑁𝑢𝑙𝑙 () then
2 return 0
3 𝑡𝑦𝑝𝑒 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑡𝑦𝑝𝑒 ()
4 𝑡𝑦𝑝𝑒𝐼𝑑 ← 𝑡𝑦𝑝𝑒.𝑖𝑑 ()
5 𝑖𝑑 ← 𝑔𝑒𝑡𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐹𝑜𝑟 (𝑡𝑦𝑝𝑒𝐼𝑑).𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐴𝑛𝑑𝐺𝑒𝑡 ()
6 return (𝑡𝑦𝑝𝑒𝐼𝑑 << 32) | 𝑖𝑑

can be an object reference, an array reference, or a primi-
tive value. The purpose of 𝑒𝑛𝑡𝑖𝑡𝑦 is storing and inspecting
metadata of the wrapped 𝑣𝑎𝑙𝑢𝑒 . We anticipate that primi-
tive value wrappers will only be encountered in function
encodeToBytes (Algorithm 2, explained later), because IDs
need to be computed only for objects and arrays. We gen-
erate 64-bit IDs, where the most-significant 32 bits store a
unique ID associated with the type (lines 3–4, 6) while the
least-significant 32 bits store an incremental ID associated to
the ID of the type of the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦 (lines 5–6).
That is, objects have incremental IDs within their type, not
globally. Doing so helps reduce inaccuracies due to differ-
ent object encounter orders among different compilations
because in this way the inaccuracies introduced by an object
affect only the ordering of the objects of the same type and
not the ordering of all the objects.

We note that types can be uniquely identified by their fully
qualified names even between compilations and hence are
easily associatedwith IDs. The helper function getCounterFor

(line 5) returns a counter object instance associated with the
provided type ID. If a type ID has no counter associated, the
function creates a new counter with an initial value of zero
and associates it with the type ID.

5.2 Structural Hash
In this section, we propose a strategy that computes ob-
ject IDs leveraging a structural hash function, i.e., a func-
tion that analyzes the object structure and hashes all its
fields. We call this strategy structural hash. We note that
we implement our own hashing function and we do not re-
sort to the Java method System.identityHashCode(Object)

(i.e., the default hash function implementation invoked by
Object.hashCode()) because the hash computed on the se-
mantically same object across compilations most likely dif-
fers, invalidating object mappings. Indeed, implementations
of System.identityHashCode(Object), which are platform-
specific, often rely on either random values or the memory

Algorithm 2: Structural Hash Function
Function structuralHash(𝑒𝑛𝑡𝑖𝑡𝑦):
computes the structural hash for the value wrapped by
𝑒𝑛𝑡𝑖𝑡𝑦

Input:
𝑒𝑛𝑡𝑖𝑡𝑦, a wrapper around the value to be hashed
Output:
the 64-bit structural hash for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦

1 𝑏𝑦𝑡𝑒𝑠 ← 𝑒𝑛𝑐𝑜𝑑𝑒𝑇𝑜𝐵𝑦𝑡𝑒𝑠 (𝑒𝑛𝑡𝑖𝑡𝑦, 0)
2 return𝑚𝑢𝑟𝑚𝑢𝑟𝐻𝑎𝑠ℎ3(𝑏𝑦𝑡𝑒𝑠)

Function encodeToBytes(𝑒𝑛𝑡𝑖𝑡𝑦, 𝑑𝑒𝑝𝑡ℎ):
encodes the value wrapped by the provided 𝑒𝑛𝑡𝑖𝑡𝑦 into a
byte buffer
Input:
𝑒𝑛𝑡𝑖𝑡𝑦, a wrapper around the value to be encoded
𝑑𝑒𝑝𝑡ℎ, the current recursion depth
Output:
a byte buffer that encodes the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦

1 𝑏𝑦𝑡𝑒𝑠 ← 𝑛𝑒𝑤𝐵𝑦𝑡𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟 ()
2 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑁𝑢𝑙𝑙 () then
3 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (0)
4 return 𝑏𝑦𝑡𝑒𝑠

5 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑡𝑖𝑡𝑦.𝑡𝑦𝑝𝑒 ().𝑓 𝑢𝑙𝑙𝑦𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒 ())
6 𝑠ℎ𝑜𝑢𝑙𝑑𝑅𝑒𝑐𝑢𝑟𝑠𝑒 ← 𝑑𝑒𝑝𝑡ℎ < 𝑀𝐴𝑋_𝐷𝐸𝑃𝑇𝐻
7 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 () or 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑆𝑡𝑟𝑖𝑛𝑔() then
8 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑡𝑖𝑡𝑦.𝑣𝑎𝑙𝑢𝑒 ())
9 else if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑂𝑏 𝑗𝑒𝑐𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 () then
10 𝑓 𝑖𝑒𝑙𝑑𝑠 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑓 𝑖𝑒𝑙𝑑𝑠 ()
11 for 𝑘 ← 1 to 𝑓 𝑖𝑒𝑙𝑑𝑠.𝑙𝑒𝑛𝑔𝑡ℎ() do
12 𝑓 𝑖𝑒𝑙𝑑 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑔𝑒𝑡𝐹𝑖𝑒𝑙𝑑𝑊𝑟𝑎𝑝𝑝𝑒𝑟 (𝑘)
13 if 𝑠ℎ𝑜𝑢𝑙𝑑𝑅𝑒𝑐𝑢𝑟𝑠𝑒 or 𝑓 𝑖𝑒𝑙𝑑.𝑖𝑠𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 () or

𝑓 𝑖𝑒𝑙𝑑.𝑖𝑠𝑆𝑡𝑟𝑖𝑛𝑔() then
14 𝑓 𝑖𝑒𝑙𝑑𝑇𝑦𝑝𝑒𝑁𝑎𝑚𝑒 ←

𝑓 𝑖𝑒𝑙𝑑.𝑡𝑦𝑝𝑒 ().𝑓 𝑢𝑙𝑙𝑦𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒 ()
15 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓 𝑖𝑒𝑙𝑑𝑇𝑦𝑝𝑒𝑁𝑎𝑚𝑒)
16 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑐𝑜𝑑𝑒𝑇𝑜𝐵𝑦𝑡𝑒𝑠 (𝑓 𝑖𝑒𝑙𝑑, 𝑑𝑒𝑝𝑡ℎ +

1))

17 else if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝐴𝑟𝑟𝑎𝑦 () then
18 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 ()
19 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝑓 𝑢𝑙𝑙𝑦𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒 ())
20 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑡𝑖𝑡𝑦.𝑙𝑒𝑛𝑔𝑡ℎ())
21 if 𝑠ℎ𝑜𝑢𝑙𝑑𝑅𝑒𝑐𝑢𝑟𝑠𝑒 or 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝑖𝑠𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 () or

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.𝑖𝑠𝑆𝑡𝑟𝑖𝑛𝑔() then
22 for 𝑘 ← 1 to 𝑒𝑛𝑡𝑖𝑡𝑦.𝑙𝑒𝑛𝑔𝑡ℎ() do
23 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑘)
24 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ← 𝑒𝑛𝑡𝑖𝑡𝑦.𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑊𝑟𝑎𝑝𝑝𝑒𝑟 (𝑘)
25 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑐𝑜𝑑𝑒𝑇𝑜𝐵𝑦𝑡𝑒𝑠 (𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑑𝑒𝑝𝑡ℎ+

1))

26 return 𝑏𝑦𝑡𝑒𝑠

address at which the object was allocated. Similarly, we do
not use as hash the one computed by the hashCode method
because this method is not guaranteed to be declared for

693

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

all types or implemented efficiently, and can contain side-
effects.

Our approach, shown in Algorithm 2, exploits metadata to
hash object instances of arbitrary types. Function structuralHash

first encodes the wrapped value in a byte buffer by exploit-
ing the recursive encodeToBytes function (line 1, described
later) and then leverages the widely used hash functionMur-
murHash3 [1] (line 2), i.e., a fast hash function that produces
well-distributed hash values, useful “in every scenario when
we need to find two or more matching byte arrays” [1]. En-
coding the wrapped value to bytes allows computing the
hash on the entire data and avoids computing and merging
partial hashes.
The recursive encodeToBytes function encodes an object

with all its fields (it is recursively invoked when the field
value is an object reference) and consists of four cases, ex-
plained below. In addition to the wrapper around the value,
the function takes as input the current recursion depth (start-
ing from 0) and produces a byte buffer as output. First, the
algorithm initializes an empty byte buffer to store the bytes
to be returned (line 1). If the wrapped value is null (line 2),
the algorithm stores 0 in the buffer and returns it (lines 3–4).
If the wrapped value is not null, the algorithm stores (in
the buffer) the bytes representing the fully qualified name of
the type of the value and checks whether the current depth
exceeds a certain threshold MAX_DEPTH (lines 5–6). The result-
ing value of this check, stored in the shouldRecurse variable,
will be later used to determine whether the algorithm should
recurse or not when encountering a reference to an object
instance or array. This is required to avoid infinite recursion
since the object graph may contain cycles. The higher the
value of MAX_DEPTH, the higher the computation time, the
lower the collisions of the hash function but also the lower
the probability of matching objects across compilations due
to the inclusion of divergences between the heap snapshots
in the hash.

Then, the algorithm computes the encoding based on the
value type. If the value is of a primitive type or String, we
simply append the primitive value or the bytes representing
the string to the buffer, respectively (lines 7–8). If the value is
an object instance, we iterate over the object fields (in source-
code definition order) and we read the value stored in each
field as an entity (lines 9–12). For each field, the algorithm
checks whether it can recurse on the field entity or whether
the dynamic type of the field value is a primitive type or
String (line 13). If the check succeeds, we append the fully
qualified name of the field’s static type to the byte buffer
(lines 14–15), as well as the bytes resulting from a recursive
call that takes the field entity and the depth (incremented by
1) as parameters (line 16).

Finally, if the value is an array, we first append the fully
qualified name of the array element type and the array length
to the byte buffer (lines 17–20). Then, if the current depth
allows recursion or the array element type is a primitive type

Algorithm 3: Heap Path Hash Function
Function heapPathHash(𝑒𝑛𝑡𝑖𝑡𝑦):
computes the 64-bit hash for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦
based on heap paths
Input:
𝑒𝑛𝑡𝑖𝑡𝑦, a wrapper around the value to be hashed
Output:
the 64-bit hash for the value wrapped by 𝑒𝑛𝑡𝑖𝑡𝑦

1 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑁𝑢𝑙𝑙 () then
2 return 0
3 𝑏𝑦𝑡𝑒𝑠 ← 𝑛𝑒𝑤𝐵𝑦𝑡𝑒𝐵𝑢𝑓 𝑓 𝑒𝑟 ()
4 if 𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑠𝑅𝑜𝑜𝑡 () and

𝑒𝑛𝑡𝑖𝑡𝑦.𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑒𝑎𝑠𝑜𝑛() == “𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑑𝑆𝑡𝑟𝑖𝑛𝑔” then
5 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑡𝑖𝑡𝑦.𝑣𝑎𝑙𝑢𝑒 ())
6 else
7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑒𝑛𝑡𝑖𝑡𝑦

8 while true do
9 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑡𝑦𝑝𝑒 ().𝑓 𝑢𝑙𝑙𝑦𝑄𝑢𝑎𝑙𝑖 𝑓 𝑖𝑒𝑑𝑁𝑎𝑚𝑒 ())

10 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑖𝑠𝑅𝑜𝑜𝑡 () then
11 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑒𝑎𝑠𝑜𝑛())
12 break

13 else
14 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑔𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠 ().𝑓 𝑖𝑟𝑠𝑡 ()
15 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑖𝑠𝐴𝑟𝑟𝑎𝑦 () then
16 𝑖𝑛𝑑𝑒𝑥 ←

𝑔𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑𝐴𝑟𝑟𝑎𝑦𝐼𝑛𝑑𝑒𝑥 (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
17 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑛𝑑𝑒𝑥)
18 else
19 𝑓 𝑖𝑒𝑙𝑑 ←

𝑔𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑒𝑑𝐹𝑖𝑒𝑙𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
20 𝑏𝑦𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓 𝑖𝑒𝑙𝑑.𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 ())
21 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑝𝑎𝑟𝑒𝑛𝑡

22 return𝑚𝑢𝑟𝑚𝑢𝑟𝐻𝑎𝑠ℎ3(𝑏𝑦𝑡𝑒𝑠)

or String, we iterate over all the wrapped array elements,
appending for each of them the corresponding index within
the array and the bytes resulting from the recursive encoding
on the array element (lines 21–25). The algorithm terminates
by returning the byte buffer (line 26).

5.3 Heap Path
In this section, we propose a strategy named heap path. This
approach uses as object ID a hash computed based on 1) the
first path in the heap object graph to that object found by
Native Image, i.e., the path that led to the inclusion of that
object in the heap snapshot, and 2) the heap-inclusion reason
associated with the root of that path. The heap-inclusion
reason is a string representing why Native Image has deemed
the root to be such. The heap-inclusion reason associated
with a root object may be the signature of a static field (for
an object stored in a static field of a reachable class), the
signature of a method (for an object that is referenced by a

694

Improving Native-Image Startup Performance CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

constant pointer embedded in a method), “InternedString”
(for a Java interned string [40]), “DataSection” (for an object
stored in the data section of the binary), or “Resource” (for
an object representing a resource). The advantage of this
strategy is that heap paths are less sensitive to divergences
between compilations than incremental IDs (as shown later
in Sec. 7.2). The disadvantage is that the same object may be
reachable from multiple paths. Our strategy considers only
the single path that led to the inclusion of that object in the
heap snapshot at image build time, which may be different
across compilations.

Algorithm 3 reports the pseudocode of the iterative heap-
path hash function. The value wrapped in the input 𝑒𝑛𝑡𝑖𝑡𝑦
(for which the hash has to be computed), is the last objec-
t/array in the path that needs to be written in the .svm_heap

section of the binary. Similarly to the structural hash strat-
egy, this function returns a 64-bit hash computed via Mur-
murHash3.

The algorithm first checks whether the wrapped value is
null, returning zero in such case (lines 1 and 2). If the value
is not null, the algorithm allocates a byte buffer that will be
later used by MurmurHash3 (line 3) and checks whether the
value is a root in the heap object graph and whether this root
was included in the heap object graph because it represents
an interned string (line 4). If the value is an interned string,
we do not hash the heap path (that would be the same for
all the interned strings) but instead, we append the bytes
representing the string to the buffer (line 5). If the value is
not an interned string, we iteratively traverse the first path
from the object to the root (lines 7–21). For each object in
the path, we append the fully qualified name of the type of
the object to the buffer (line 9).

If the value is a root, we append the heap inclusion reason
as a string and we break the loop (lines 10–12). If the value
is not a root, we obtain the parent object or array in the
path (line 14), If the parent is an array (line 15), we obtain
the array index where the current wrapped value is stored
(line 16) and we append it to the buffer (line 17). Otherwise,
the parent is an object instance. Hence, we obtain the field
where the current wrapped value is stored (line 19) and we
append the field descriptor to the buffer (line 20). We then
iterate over the parent (line 21).
Finally, after processing all objects in the path, we apply

MurmurHash3 and we return the hash (line 22).

6 Profiling Methodology
In this section, we detail our profiling methodology (Sec. 6.1)
and post-processing analysis (Sec. 6.2).

6.1 Tracing Profiler
Our approach makes use of a tracing profiler, i.e., a profiler
that produces a (per-thread) sequence of executed events.
The profiler performs the instrumentation at the level of

the intermediate representation (IR) [12, 13] used by the
compiler during its optimization passes. We resort to this
technique because, for our goals, it would be impractical
to perform the instrumentation at other levels, such as ma-
chine code or bytecode. Instrumentation at machine-code
level would lack additional metadata (obtained upon compi-
lation) necessary to identify 1) all methods corresponding to
machine-code instructions (needed to perform code order-
ing) and 2) machine-code instructions corresponding to Java
object field and array accesses (needed to perform heap or-
dering). Instead, bytecode-level instrumentation would have
severe drawbacks, as it would 1) disrupt the optimizations
normally done by the compiler and 2) overprofile Java field
and array accesses, leading to highly inaccurate ordering
profiles [7].
In particular, our profiling methodology leverages an ac-

curate IR-level path-profiling technique proposed by related
work [7]. Using this technique, we accurately track executed
events, lowering perturbation on compiler optimizations and
increasing the accuracy of the profiles. Moreover, our tracing
profiler exploits the path-cutting optimization to the stan-
dard path-profiling algorithm proposed by the same related
work [7], which is fundamental to avoid an exponentially
large number of paths and enables the practical usage of path
profiling in a modern optimizing compiler. We implement
the profiler within the Graal compiler.

Upon instrumentation, each application path is associated
with a unique ID. We modify the technique proposed by
related work, which performs event counting, to perform
event tracing instead, i.e., we do not count path executions
but we store the IDs associated to the executed paths into
thread-local buffers, producing one trace file per thread. By
iterating over the ordered path IDs in a trace file, one can ob-
tain the entire sequence of events executed by a thread (such
as the ordered object accesses performed by a thread). In-
strumentation code is implemented as handcrafted IR nodes
with some specific calls to low-level functions to obtain and
dump thread-local buffers. These functions are implemented
as methods with no heap accesses, allowing the collection of
events occurring even during the initialization of the execu-
tion environment, when code cannot be interrupted and the
heap memory has not been initialized yet. This is crucial to
optimize not only the user code but also the Native-Image
internals employed in the very early stages of the execution.
To reduce the profiling overhead, we store only the IDs

of the executed paths and the identifiers of the accessed
objects in thread-local buffers. Upon instrumentation, we
associate information that is statically available at compile
time (and hence remains constant among executions of the
same path) to paths. For example, we associate to a path all
IR instructions contained in the path, and for each IR instruc-
tion we store its corresponding source method. Our profiler
implements two buffer-dumping modes. In the first mode,
we dump the thread-local buffers when full, immediately

695

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

before storing a path that would not fit into the buffer, and
upon thread termination. We use this mode when executing
workloads for which we expect a normal termination. In
the second mode, we memory map thread-local buffers to
trace files. When a buffer is full, we remap the thread-local
buffer to a different (higher) offset in the trace file. We use
this mode when executing workloads for which we expect
an abnormal termination (e.g., microservices workloads that
are killed with a SIGKILL signal as explained later in Sec. 7.1).
The reason is that, upon abnormal termination, threads may
not execute the thread-termination handlers and hence may
not dump buffers. Using memory-mapped files, the kernel
ensures that traces are not lost.

To perform code ordering, we trace two different events de-
pending on the proposed technique. For cu ordering, we trace
cu entry events, while for method ordering, we trace method
entry events. Finally, to perform heap-snapshot ordering, we
trace all the identifiers of the accessed Java objects upon
every field or array access. Since object identifiers repre-
sent runtime information, they are stored in the thread-local
buffers together with the executed path IDs. When parsing a
trace file, each path ID (associated with a fixed sequence of
events) determines how many object identifiers are stored
after the path ID.

6.2 Post-processing Analyses
To parse the traces and obtain ordering profiles, we imple-
ment a Java post-processing framework that implements
ordering analyses. Each ordering analysis produces as out-
put a CSV file that is used by Native Image. Ordering analyses
are implemented as classes that exploit the visitor pattern
and accept one event after the other in execution order. The
framework reads the trace files, decodes the path IDs (i.e.,
obtains the sequence of events associated with the path ID
and if present reads hashes stored after the path ID), and
dispatches all the events occurring in the executed paths to
the analyses. Each analysis internally keeps an ordered set
that stores either the CUs, methods, or hashes in encounter
order (and hence, in execution order). After the analyses
have consumed all the executed paths/events, the ordered
set of each analysis is dumped into a CSV file.

7 Evaluation
In this section, we first present our experimental setup (Sec. 7.1).
Then, we present the page-fault reductions (Sec. 7.2) and
execution-time speedups (Sec. 7.3) achieved by the proposed
ordering strategies. Finally, we discuss the execution-time
overhead of our tracing profiler (Sec. 7.4).

7.1 Evaluation Settings
We run our experiments on a machine equipped with a 16-
core Intel Xeon Gold 6326 (2.90 GHz) and 256 GB of RAM run-
ning Linux Ubuntu (kernel v. 5.15.0-25-generic). Frequency

scaling, turbo boost, hyper-threading, and address space
randomization are disabled, CPU governor is set to “perfor-
mance”. We conduct our experiments on GraalVM Commu-
nity Edition, based on OpenJDK 21, using the Graal compiler.
Wemodify both Graal and the Native Image to implement our
strategies. We perform our experiments on two different sets
of benchmarks. To evaluate the improvements on the FaaS
model, where there are no microservices or long-running
server processes and any program that maps the input to the
output can be a function, we employ AWFY [33]. The bench-
mark suite consists of 14 benchmarks designed to compare
language implementations and optimize their compilers. To
evaluate the improvements on microservices, we employ a
helloworld workload implemented using three widely-used
microservice frameworks: micronaut [34], quarkus [47], and
spring [53]. We use helloworld because we want to measure
the improvements in the startup of the microservice frame-
works and not in the user application, which we evaluate
using AWFY. While AWFY benchmarks are single threaded,
microservice workloads are multi threaded. To compute the
orderings in a multi-threaded setting, we concatenate the
orderings of all the threads in thread creation order and
remove duplicated entries. We build statically linked exe-
cutables as recommended [30]. Since our goal is optimizing
and evaluating the first binary execution, where data is not
already present in RAM and needs to be fetched, we drop
clean caches, as well as reclaimable slab objects such as den-
tries and inodes between benchmark iterations [52].

We execute our experiments employing a Solid-state Drive
(SSD) and page size of 4 KB. We note that we executed the
same experiments employing an NFS and obtained similar
results. We do not employ AWS Lambda [3] or other cloud
computing services [41] to perform our evaluation because
these services do not allow collecting performance numbers
by adequately customizing the evaluation settings. For ex-
ample, they do not allow dropping caches between workload
executions.

For each strategy (including the unmodified baseline), we
build 10 native images for each benchmark. For each of these
builds, we run 10 iterations to measure page faults and an-
other 10 iterations to measure the end-to-end execution time
and the elapsed time until the first response for AWFY and
microservice workloads, respectively. End-to-end execution
time measurements are obtained using perf [28]. To obtain
the elapsed time until the first response, we start the time
measurement, we run the microservice workload, and we
continuously ping the endpoint exposed by the microser-
vice. As soon as the workload sends back a response, we
stop the time measurement and send a SIGKILL signal to kill
the workload. We note that this evaluation setting is subject
to measurement variability due to this inter-process com-
munication. To determine page-fault reductions related to
the .text and .svm_heap sections, we trace page faults using
perf and extract only the page faults directed to the offsets

696

Improving Native-Image Startup Performance CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Bounce CD
DeltaBlue Havlak Json List

Mandelbrot NBody
Permute Queens

Richards Sieve
Storage Towers

geomean
1.2

1.4

1.6

1.8

2

Pa
ge

-Fa
ul

t R
ed

uc
tio

n
Fa

ct
or

 1
.6

1

 1
.5

2 1
.6

2

 1
.6

3

 1
.4

7

 1
.6

2

 1
.6

6

 1
.5

1

 1
.6

2

 1
.5

6

 1
.5

3 1
.5

8

 1
.6

1 1
.6

6

 1
.5

8

 1
.4

7

 1
.6

2

 1
.6

2

 1
.6

3

 1
.4

7 1
.5

5

 1
.5

1

 1
.4

1

 1
.5

5

 1
.4

3

 1
.5

3

 1
.5

5

 1
.4

7 1
.5

1

 1
.5

2

 1
.3

1

 1
.2

2 1
.2

6 1
.3

0

 1
.3

0

 1
.2

9

 1
.2

9 1
.3

3

 1
.3

0

 1
.3

3

 1
.3

4

 1
.2

9

 1
.3

3

 1
.3

0

 1
.3

0

 1
.4

1

 1
.4

1

 1
.3

5 1
.4

0

 1
.3

8 1
.4

1

 1
.4

1

 1
.4

3

 1
.3

8 1
.4

3

 1
.4

1

 1
.3

9 1
.4

4

 1
.3

6

 1
.4

0

 1
.4

3

 1
.3

5 1
.4

3

 1
.4

0

 1
.3

9

 1
.4

0

 1
.4

1

 1
.4

1

 1
.3

8 1
.4

4

 1
.4

6

 1
.3

8 1
.4

8

 1
.4

3

 1
.4

1

 1
.6

8

 1
.4

7

 1
.6

2

 1
.7

7

 1
.6

2

 1
.6

5

 1
.6

6

 1
.6

0 1
.6

9

 1
.7

0

 1
.6

2

 1
.6

5

 1
.6

8

 1
.6

8

 1
.6

5

cu method incremental id structural hash heap path cu+heap path

Figure 2. Page fault reduction achieved by the proposed ordering strategies on AWFY.

micronaut
quarkus spring

1

1.5

2

2.5

3

Pa
ge

-Fa
ul

t R
ed

uc
tio

n
Fa

ct
or 2

.6
7

 2
.5

8

 2
.4

0

 2
.0

5

 0
.9

9 1
.2

0

 1
.0

4

 1
.2

2

 1
.1

6

 1
.0

3

 1
.0

6

 1
.0

0

 1
.1

8

 1
.2

6

 1
.2

4 1
.3

4 1
.6

0

 1
.4

6

Figure 3. Page fault reduc-
tion achieved by the pro-
posed ordering strategies
on microservices.

micronaut
quarkus spring

1

1.2

1.4

1.6

1.8

2

Ex
ec

ut
io

n-
Ti

m
e

Sp
ee

du
p

Fa
ct

or

 1
.5

9

 1
.5

1

 1
.3

6

 1
.5

2

 1
.0

0

 1
.0

5

 1
.0

3

 1
.0

0

 1
.0

3

 1
.0

3

 0
.9

9

 1
.0

1

 1
.0

4 1
.1

9

 1
.1

1

 1
.4

3

 1
.9

4

 1
.4

9

Figure 4. Execution-time
speedup achieved by the
proposed ordering strate-
gies on microservices.

of the binaries belonging to these sections. In both cases, we
compute the average of all the measurements.
All the figures shown in this section (except those in

Sec. 7.4) report factors computed as 𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒/𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ,
where𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 refers to the average measurement obtained
without using our strategies and 𝑀𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 refers to the
average measurement obtained using one of our strategies
(higher is better). The benchmarks are reported on the 𝑥-axis
of the plot, while the factors are reported on the 𝑦-axis. After
the AWFY benchmarks, we report the geometric mean across
all benchmarks. Above each bar, we report the exact factor.
The black error bars represent 95% confidence intervals (CI)
of the measurements.

For the structural hash strategy, we set MAX_DEPTH to 2, ex-
perimentally determined as a good trade-off between compu-
tational time, hash collision probability, and identity-matching
probability across compilations. For code-ordering strategies,
we report the page-fault reduction factors computed by con-
sidering only the page faults caused by the .text section
of the binary, while for heap ordering strategies, we report
the page-fault reduction factors computed by considering
only the page faults caused by the .svm_heap section of the
binary. To evaluate the combined benefits of the code- and

heap-ordering strategies, we report both the page fault re-
ductions and the execution-time speedups for a strategy
named cu+heap path. In this strategy, we order both code
and objects by combining the cu and heap path strategies,
i.e., the code- and heap-ordering strategies, respectively, that
yield to the highest reduction of page faults according to our
experiments.

7.2 Page-Fault Reduction
Fig. 2 and 3 report the page-fault reductions obtained by the
proposed ordering strategies.
Code-ordering strategies. Experimental results show that
the cu ordering and method ordering strategies are both ef-
fective in reducing page faults related to the .text section
of the binary for all the evaluated benchmarks. However,
cu ordering outperforms method ordering, as on average it
reduces page faults by 1.58× on AWFY and by 2.55× on mi-
croservices (while method ordering leads to factors of 1.52×
on SSD and 1.35× on microservices). The maximum page
fault reduction is achieved by cu ordering on the Mandelbrot
and Towers AWFY benchmarks (1.66×), and on themicronaut
microservice benchmark (2.67×).
Heap-ordering strategies. As the figures show, the incre-
mental id, structural hash, and heap path ordering strategies
introduce no page-fault increase on any benchmark (except
incremental id on quarkus with factor 0.99×). On AWFY,
while the average reductions of page faults related to the
.svm_heap section of the binary is similar for structural hash
and heap path (average of 1.40× and 1.41×, respectively),
incremental id is less effective (average of 1.30×). On mi-
croservices, heap path (average of 1.22×) outperforms incre-
mental id and structural hash (average of 1.14× and 1.03×,
respectively). Experimental results indicate that, despite the
segregation by type, one cannot rely on the encounter order
when traversing the heap object graph. Instead, hashing the
heap paths from the roots to the objects included in the heap
snapshot is more robust.
We note that the evaluated benchmarks access a small

percentage of the objects stored in the .svm_heap section

697

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Bounce CD
DeltaBlue Havlak Json List

Mandelbrot NBody
Permute Queens

Richards Sieve
Storage Towers

geomean
1

1.2

1.4

1.6

1.8

2

Ex
ec

ut
io

n-
Ti

m
e

Sp
ee

du
p

Fa
ct

or

 1
.2

7 1
.3

6

 1
.2

6

 1
.0

0

 1
.2

1

 1
.2

4 1
.3

0

 1
.3

0

 1
.3

1

 1
.2

8

 1
.3

0

 1
.3

1

 1
.2

7

 1
.2

8

 1
.2

6

 1
.2

9

 1
.2

8

 1
.2

8

 1
.0

0

 1
.1

9 1
.2

6

 1
.3

0

 1
.2

9

 1
.3

1

 1
.2

7

 1
.2

9 1
.3

6

 1
.2

6

 1
.2

8

 1
.2

6

 1
.0

9

 1
.0

5

 1
.0

6

 0
.9

7 1
.0

7

 1
.0

5

 1
.1

0

 1
.0

9

 1
.0

9

 1
.0

9

 1
.0

9

 1
.1

2

 1
.0

8

 1
.0

7

 1
.0

7

 1
.1

0

 1
.0

9

 1
.1

1

 0
.9

8

 0
.9

8

 1
.1

0

 1
.1

2

 1
.1

1

 1
.1

2

 1
.1

2

 1
.1

3 1
.2

0

 1
.0

9

 1
.0

8

 1
.0

9

 1
.1

2

 1
.0

8

 1
.1

2

 0
.9

8 1
.0

9

 1
.1

1

 1
.1

2

 1
.1

4

 1
.1

2

 1
.1

3

 1
.1

5

 1
.1

3

 1
.0

9

 1
.1

3

 1
.1

1

 1
.7

2

 1
.4

8 1
.5

7

 1
.0

0

 1
.4

4

 1
.6

9

 1
.7

5

 1
.6

9

 1
.7

3

 1
.7

4

 1
.5

3

 1
.7

5

 1
.6

7

 1
.7

0

 1
.5

9

cu method incremental id structural hash heap path cu+heap path

Figure 5. Execution-time speedup achieved by the proposed ordering strategies on AWFY.

of the binary (on average 4% on AWFY) and hence heap-
ordering strategies need to be rather precise. Indeed, the heap
snapshot does not only contain the user-allocated objects
but also many String literals, Class instances, metadata byte
arrays, and maps that dominate the size. The maximum page-
fault reduction factor is achieved by heap path on Storage
(1.48×) and quarkus (1.26×) on AWFY and microservices,
respectively.
Combining Code- and Heap-ordering. When used to-
gether, the cu and the heap path ordering strategies intro-
duce average page-fault reduction factors (related to both
the .text and .svm_heap sections of the binary) of 1.65× and
1.46× on AWFY and microservices, respectively.

7.3 Execution-Time Speedup
In this section, we report the execution-time speedups in-
troduced by the proposed ordering strategies. Fig. 4 and 5
show the speedup achieved by the code- and heap-ordering
strategies separately, as well as their combined speedups.

On AWFY, both code-ordering strategies (method and cu)
introduce an average speedup of 1.26×, while the incremental
id, structural hash, and heap path ordering strategies intro-
duce speedups of 1.07×, 1.09×, and 1.11×, respectively. On
microservices, the strategies introduce an average speedup
of 1.48× (cu), 1.17× (method), 1.02× (incremental id), 1.01×
(structural hash), and 1.11× (heap path). Experimental re-
sults show that, on the evaluated benchmarks, code-ordering
strategies achieve more speedups than heap-ordering ones.
When combined, the cu and the heap path strategies intro-
duce speedups of 1.59× onAWFY and 1.61× onmicroservices.
While code-ordering strategies do not introduce slowdowns
in any benchmark, heap-ordering strategies introduce mi-
nor slowdowns (0.97×–0.99×) on benchmarks Havlak and
quarkus.

7.4 Profiling Overhead
Our tracing profiler incurs moderate overhead on the evalu-
ated benchmarks. On AWFY, when employing the first buffer-
dumping mode, the execution-time overhead for code order-
ing strategies cu and method is on average 1.21× and 1.83×,

respectively, while the average execution-time overhead for
heap-ordering strategies is 1.36×. On microservice bench-
marks, when employing the second buffer-dumping mode
(i.e., memory-mapped files), the execution-time overhead is
1.90×, 3.68×, and 2.16× for cu, method, and heap-ordering
strategies, respectively. We note that the emitted instrumen-
tation code is the same for all the different heap-ordering
strategies. Hence, we report a single overhead factor associ-
ated with incremental id, structural hash, and heap path. We
note that a high overhead introduced by our tracing profiler
is a minor drawback since the observed workloads need to be
profiled only once to obtain the profiles used to perform our
ordering strategies and hence produce the optimized binary
file. Moreover, since we observe and optimize short-running
workloads typically executed on cloud environments, even a
high overhead factor leads to a moderate total running time
that does not impair the applicability of our approach.

8 Related Work
While our work focuses on the optimization of startup perfor-
mance by improving low-level metrics, related work tackles
startup performance improvements mostly by proposing
techniques at different abstract levels, focusing either on
the optimization of virtual machines, interpreter, and JIT
compilers or on the optimization of Serverless platforms
and functions. Instead, existing function- and heap-ordering
approaches either do not aim at optimizing startup perfor-
mance or are not suitable to Native Image, respectively. We
discuss them in the following text.
Startup Performance Optimization of startup performance
is a hot topic in the programming language community.
Widely used virtual machines such as GraalVM [38] and
the V8 JavaScript VM [18] implement techniques to pre-
initialize the execution context [39, 57, 60]. Amazon Web
Services Labs have recently announced LLRT (Low Latency
Runtime), “a lightweight JavaScript runtime designed to ad-
dress the growing demand for fast and efficient Serverless
applications” [2]. Several techniques improve VM interpreter
performance [6, 9, 45] and reduce the startup time of the JIT
compiler [5, 32, 42, 59]. In contrast to such techniques, our

698

Improving Native-Image Startup Performance CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

work focuses on a lower abstraction level, i.e., the reduction
of I/O traffic (and hence page faults) during startup. The
proposed ordering strategies are complementary to these
techniques.
Serverless and FaaS Optimization Recent research fo-
cuses on the optimization of Serverless platforms and func-
tions, as reported by a recent systematic review [55]. Tech-
niques that optimize the cold start of the Serverless platform
are intrinsically orthogonal to our approach and include, for
example, instance prewarm preparation, function schedul-
ing, and snapshot-based optimizations. The only approach
we are aware of that optimizes cold-start performance of
FaaS at the application level is FaaSLight [29], which reduces
the code size of the application by separating code related
to application functionalities from other code that can be
loaded on-demand only when needed. Hence, FaaSLight has
a different focus and is complementary to our approach.
Function Ordering Related work in the context of mobile
applications reorders functions to reduce page faults and
optimize startup time [23, 25] using PGO. However, these ap-
proaches do not focus on function inlining and divergences
between compilations. Instead, they exploit profiles to mod-
ify compilation to reduce the binary size by performing func-
tion outlining. In Native Image, Graal’s inlining is required to
remove programming abstractions and produce performant
binary code; outlining functions may potentially decrease
performance and increase the number of objects in the bi-
nary file due to missed PEA optimizations. Hence, the above
strategies do not work well in Native Image.
Differently from the proposed strategies, which focus

on improving the performance of short-running applica-
tions, several techniques try to improve cache locality of
long-running or large applications to speed up steady-state.
The PH algorithm [44] implements a heuristic based on
a weighted undirected dynamic call graph and is widely
used by state-of-the-art compilers and tools. The 𝐶3 algo-
rithm [43] improves the PH algorithm by using a directed
call graph instead of an undirected call graph. SARSA [11] is
a reinforcement learning algorithm that reorders functions
by exploiting a bidirectional function call graph. CodeMa-
son [56] reorders function by performing binary profiling
and rewriting. The GCC compiler offers several options to
reorder functions and basic blocks in the object file upon
linking time by using profiles or user-provided code annota-
tions [15]. In practice, GCC places hot and unlikely functions
into two distinct sections of the binary file named .text.hot

and .text.unlikely, respectively, but does not optimize their
ordering to reduce page faults.
Heap Ordering To the best of our knowledge, no previ-
ous work attempts to reorder objects in binary files to re-
duce page faults and improve startup time. Despite heap
ordering is particularly relevant in Native Image (where the
image heap occupies from 40% to 60% of the binary size),
related work mostly proposes dynamic memory allocators

to improve cache locality [10, 14, 19, 24], hence focusing
only on runtime allocation. We note that some of these tech-
niques exploit PGO. For instance, MaPHeA [37] collects heap
allocation and access profiles to optimize the heap object
management across all memory hierarchies. HALO [50] is a
post-link PGO tool and runtime memory allocator that rear-
ranges heap objects according to allocation profiles. Other
work [20, 48, 54] focuses on improving cache locality by
optimizing object data-layout. Finally, we are not aware of
any prior work that accurately maps object identities across
compilations or executions. Prior work exploits a time-based
technique to align execution traces obtained from separate
runs [21, 35, 36], possibly allowing performance analysis.
Unfortunately, these approaches do not map the semanti-
cally same objects across compilations and hence may not
be directly employed.

9 Concluding Remarks
In this paper, we propose a profile-guided methodology to
reorder the layout of Native-Image binaries during compi-
lation, with the goal of improving startup performance and
locality. In particular, we propose two code-ordering strate-
gies and three heap-ordering strategies, aiming at reducing
page faults related to the code section and the heap-snapshot
section of the binary, respectively. The heap-ordering strate-
gies are based on a methodology (proposed in this paper)
to match objects from a profile against the objects in the
profile-guided build, which is necessary as object identities
and the heap-snapshot contents are not persistent across
Native-Image builds of the same program.

To perform the ordering strategies, we propose a profiling
methodology to obtain the execution-order profile of meth-
ods and objects. We implement the ordering strategies in
GraalVM Native Image and implement the profiling method-
ology in a tracing profiler within the Graal compiler. Finally,
we evaluate the proposed code- and heap-ordering strate-
gies, showing that they are effective in both reducing page
faults and improving runtime performance, achieving an
average page-fault reduction factor of 1.61× and an average
execution-time speedup of 1.59×.

Acknowledgments
This work has been supported by Oracle (ERO project 1332)
and by the Swiss National Science Foundation
(project 200020_188688). We thank the VM Research Group
at Oracle Labs for their support. Oracle, Java, and HotSpot
are trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

A Appendix
In this appendix, we show a visual representation of the
effects of our code orderings.

699

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

Visual Representation of Code-Ordering Effects. Fig. 6a
and 6b show a visual representation of the page faults caused
by the .text section occurring upon the execution of a regu-
lar binary and an optimized binary—produced by employing
the cu strategy—of the AWFY Bounce workload, respectively.
In the figures, each cell represents a page of the .text section
of the binary files. Black cells represent physical pages in the
binary file that are not mapped to virtual addresses of the
process running the binary file. Green cells represent physi-
cal pages in the binary file that caused page faults. Red cells
represent physical pages in the binary file that are mapped
to virtual addresses of the process running the binary file
but caused no page fault—these pages have been paged in
by the operating system. Fig. 6a shows how page faults of
a regular Native Image binary are distributed across the en-
tire .text section. Instead, Fig. 6b shows how our technique
reduces the number of page faults and compacts most of
the executed methods in the first part of the .text section,
showing the effectiveness of our ordering. We note that the
executed methods which are placed at the end of the .text

section are native methods included in statically-linked li-
braries. In our strategies, we do not profile and hence reorder
native methods that are not compiled by the Graal compiler.
We consider reordering these methods part of our future
work. Furthermore, we plan to develop a similar visualiza-
tion for the heap-snapshot section of the binary. This visual-
ization may enable a fine-grained analysis of the included
objects and a better understanding of the results reported in
the paper, potentially enabling further improvements to our
heap-ordering strategies.

B Artifact Appendix
The artifact [8] consists of a ready-to-use Docker image
embedding our profiler as well as our modified GraalVM to
generate optimized Native-Image binaries that reduce I/O
traffic by changing their layout during compilation. A set of
tools/scripts can be used to execute the benchmarks, collect,
process, and plot page fault and performance measurements
to replicate the evaluation presented in the paper. The artifact
also contains the complete pre-collected measurements used
to generated the original figures of the paper.

B.1 Overview
• Approximate time to install: 5 minutes (Sec. B.2.2).
• Approximate time to reproduce the figures of the paper
using pre-collected data: 5 minutes (Sec. B.2.3).
• Approximate time to reproduce the results: minimum
5 hours (Sec. B.2.3).

(a) Regular binary

(b) Binary optimized by employing the cu strategy

Figure 6. Visual representation of the .text section of the
AWFY benchmark Bounce and the page faults caused by this
section.

B.2 Getting Started Guide
B.2.1 Requirements.

Hardware Requirements. Host machines should have at
least 16GB of RAM, at least 30GB of free space, bash script
support, and an Internet connection.

700

Improving Native-Image Startup Performance CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Software Requirements. Host machines should have
Docker installed (we have tested Docker version 27.1.1,

build 6312585 on Ubuntu 22.04 LTS). We have tested our
bash scripts on Ubuntu 22.04 LTS. The bash scripts may not
work on other operating systems.

B.2.2 Installing the Artifact.

1. Extract the artifact tgz available at the following URL:
https://doi.org/10.5281/zenodo.13302630. It includes
the ready-to-use evaluation Docker image, a script to
run the artifact, and an extended version of this artifact
appendix as a README file.

2. Verify the installation by executing the run.sh spec-
ifying verify as argument: ./run.sh verify. If the
artifact is correctly installed, you should see the fol-
lowing message to the standard output: The artifact

is correctly installed.

Note: We require sudo privileges to drop clean caches
between benchmark executions.
Note: This command tries to automatically install the

kernel-specific packages to run perf on the host machine.

B.2.3 Using the Artifact. The main script to reproduce
the evaluation of our paper is run.sh, which receives one of
the following arguments specifying the run mode:

1. precollected: Generates the figures shown in the pa-
per using pre-collected data.

2. evaluation: Runs the benchmarks in the container and
then generates the figures from the collected data.

3. clean: Cleans the environment by deleting the gener-
ated figures and the newly collected data.

Generating figures with pre-collected data. To gener-
ate the figures using pre-collected data (i.e., the same data
used to generate the figures that appear in the paper), follow
the instructions below:

1. Execute run.sh specifying precollected as argument:
./run.sh precollected

2. The generated figures will be saved in the
output/figures-paper folder in the host machine.

Generating figures with newly collected data. To gen-
erate the figures using newly collected data (i.e., to profile
and execute the benchmarks and then generate the figures),
follow the instructions below:

1. Execute run.sh specifying evaluation as argument:
./run.sh evaluation

2. After the measurements are completed, the generated
figures will be saved in the output/figures folder in
the host machine. The raw data will be saved into the
output/data folder, instead. The figures will be gener-
ated only after the execution of all the benchmarks.

Cleaning the Environment. To delete the generated fig-
ures and the newly collected data, follow the instructions
below:

1. Execute run.sh specifying clean as argument:
./run.sh clean

B.3 Overview of Claims
To reproduce the claims, we report the list of figures that
should be reproduced. For each figure in the paper, we re-
port a brief description and the list of generated PDFs to be
checked when executing both the precollected and
evaluation command.
The precollected command generates Figures 2 and 5

shown in the paper. These figures are saved in folder
output/figures-paper.
The evaluation command generates the figures using

newly collected data. These figures are saved in folder
output/figures.
With the goal of easing the evaluation of the artifact,

we ported our evaluation to a containerized environment.
Nonetheless, the use of containerization may significantly
impact our measurements, particularly those based on execu-
tion time. Moreover, different host machines with different
hardware capabilities may yield different execution times.
We note that the performance measurements used to gener-
ate the figures in the paper have been collected in an isolated
environment with minimal perturbation where (almost) no
other process was being executed. Newly collected data may
lead to the generation of figures with different numbers
w.r.t. those shown in the paper. However, we expect the data
trends and the figures generated with newly collected data to
be similar to the ones shown in the paper, as detailed below.

Note: We recommend disabling frequency scaling, turbo
boost, hyper-threading, and address space randomization.
Moreover, we recommend setting CPU governor to perfor-
mance (Sec. 7.1). Please find the commands at following URL:
https://llvm.org/docs/Benchmarking.html.

B.3.1 Page-Fault Reduction (Figure 2). In Figure 2, we
report the page-fault reductions obtained by the proposed
ordering strategies.

Precollected Data.

• Figure 2 in the paper should be compared with the
generated figure at
output/figures-paper/ssd_pagefault-reductions.pdf

Newly Collected Data.

• The generated figure is saved at
output/figures/pagefault-reductions.pdf.
• Weexpect the page-fault reductions of strategy cu+heap
path to be greater or similar to the page-fault reduc-
tions of strategies cu and method.

701

https://doi.org/10.5281/zenodo.13302630
https://llvm.org/docs/Benchmarking.html

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder

• We expect strategies cu and method to yield greater
page-fault reductions than strategies incremental id,
structural hash, and heap path.

B.3.2 Execution-Time Speedup (Figure 5). In Figure 5,
we evaluate the speedup achieved by the proposed ordering
strategies.

Precollected Data.
• Figure 5 in the paper should be compared with the
generated figure at
output/figures-paper/ssd_speedups.pdf

Newly Collected Data.
• The generated figure is saved at
output/figures/speedups.pdf.
• We expect no slowdown, with the exception of bench-
mark Havlak.
• We expect strategies cu and method to yield greater
speedups than strategies incremental id, structural hash,
and heap path.
• We expect greater speedups for strategy cu+heap path.

B.4 Reusing and Modifying the Artifact
In the README file of the artifact, we report additional notes
that are not needed for the "regular" artifact evaluation but
help in reusing and extending the artifact. These notes are
not needed for reproducing the evaluation of our paper. We
do not report these notes in this appendix due to a matter of
space.

B.5 Troubleshooting
• If the evaluation fails with an unexpected error, try
running the run.sh script with sudo. The reason is
that our evaluation scripts drop clean caches between
benchmark iterations (Sec. 7.1).
• If you have disk space issues with docker, try running
docker system prune -a or restart the docker service.

References
[1] Adam Horvath. 2012. MurMurHash3, An Ultra Fast Hash Algorithm

for C# / .NET. https://blog.teamleadnet.com/2012/08/murmurhash3-
ultra-fast-hash-algorithm.html

[2] Amazon Web Services - Labs. 2024. LLRT GitHub Repository. https:
//github.com/awslabs/llrt

[3] Amazon Web Services, Inc. or its affiliates. 2024. AWS Lambda. https:
//aws.amazon.com/lambda/

[4] Amazon Web Services, Inc. or its affiliates. 2024. Lambda execu-
tion environments. https://docs.aws.amazon.com/lambda/latest/
operatorguide/execution-environments.html

[5] Matthew Arnold, Adam Welc, and V. T. Rajan. 2005. Improving Vir-
tual Machine Performance Using a Cross-Run Profile Repository. In
OOPSLA. 297–311. https://doi.org/10.1145/1094811.1094835

[6] Matteo Basso, Daniele Bonetta, andWalter Binder. 2023. Automatically
Generated Supernodes for AST Interpreters Improve Virtual-Machine
Performance. In GPCE. 1–13. https://doi.org/10.1145/3624007.3624050

[7] Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder.
2023. Optimization-Aware Compiler-Level Event Profiling. ACM

Trans. Program. Lang. Syst. 45, 2, Article 10 (Jun 2023), 50 pages. https:
//doi.org/10.1145/3591473

[8] Matteo Basso, Aleksandar Prokopec, Andrea Rosà, and Walter Binder.
2024. Artifact associated to the paper "Improving Native-Image Startup
Performance" published in CGO’25. https://doi.org/10.5281/zenodo.
13760307 artifact.

[9] James R. Bell. 1973. Threaded Code. Commun. ACM 16, 6 (Jun 1973),
370–372. https://doi.org/10.1145/362248.362270

[10] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998.
Cache-Conscious Data Placement. In ASPLOS. 139–149. https://doi.
org/10.1145/291006.291036

[11] Weibin Chen and Yeh-Ching Chung. 2022. Profile-GuidedOptimization
for Function Reordering: A Reinforcement Learning Approach. In SMC.
2326–2333. https://doi.org/10.1109/SMC53654.2022.9945280

[12] Gilles Duboscq, Lukas Stadler, Thomas Wuerthinger, Doug Simon,
Christian Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An
Extensible Declarative Intermediate Representation (APPLC’13). 1–9.

[13] Gilles Duboscq, ThomasWürthinger, Lukas Stadler, ChristianWimmer,
Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate
Representation for Speculative Optimizations in a Dynamic Compiler.
In VMIL. 1–10. https://doi.org/10.1145/2542142.2542143

[14] Yi Feng and Emery D. Berger. 2005. A Locality-improving Dynamic
Memory Allocator. In MSP. 68–77. https://doi.org/10.1145/1111583.
1111594

[15] Free Software Foundation. 2024. Options That Control Optimization.
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

[16] Free Software Foundation. 2024. Program Instrumentation Options.
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

[17] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping
Serverless Computing Alive with Greedy-Dual Caching. In ASPLOS.
386–400. https://doi.org/10.1145/3445814.3446757

[18] Google. 2024. V8 JavaScript Engine. https://www.v8.dev
[19] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. 1993. Im-

proving the Cache Locality of Memory Allocation. In PLDI. 177–186.
https://doi.org/10.1145/173262.155107

[20] Christopher Haine, Olivier Aumage, and Denis Barthou. 2017. Rewrit-
ing System for Profile-Guided Data Layout Transformations on Bina-
ries. In Euro-Par. 260–272. https://doi.org/10.1007/978-3-319-64203-
1_19

[21] Matthias Hauswirth, Amer Diwan, Peter F. Sweeney, and Michael C.
Mozer. 2005. Automating Vertical Profiling. In OOPSLA. 281–296.
https://doi.org/10.1145/1094811.1094834

[22] Michael Hind. 2001. Pointer Analysis: Haven’tWe Solved This Problem
Yet?. In PASTE. 54–61.

[23] Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev. 2023.
Optimizing Function Layout for Mobile Applications. In LCTES. 52–63.
https://doi.org/10.1145/3589610.3596277

[24] Alin Jula and Lawrence Rauchwerger. 2009. Two Memory Allocators
that Use Hints to Improve Locality. In ISMM. 109–118. https://doi.org/
10.1145/1542431.1542447

[25] Kyungwoo Lee, Ellis Hoag, and Nikolai Tillmann. 2022. Efficient
Profile-guided Size Optimization for Native Mobile Applications. In
CC. 243–253. https://doi.org/10.1145/3497776.3517764

[26] David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger,
Thomas Würthinger, and Hanspeter Mössenböck. 2018. Fast-Path
Loop Unrolling of Non-Counted Loops to Enable Subsequent Compiler
Optimizations. In ManLang. 1–13. https://doi.org/10.1145/3237009.
3237013

[27] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl,
Doug Simon, and Hanspeter Mössenböck. 2018. Dominance-Based
Duplication Simulation (DBDS): Code Duplication to Enable Compiler
Optimizations. In CGO. 126–137. https://doi.org/10.1145/3168811

[28] Linus Torvalds. 2024. Linux perf GitHub Repository. https://github.
com/torvalds/linux/tree/master/tools/perf

702

https://blog.teamleadnet.com/2012/08/murmurhash3-ultra-fast-hash-algorithm.html
https://blog.teamleadnet.com/2012/08/murmurhash3-ultra-fast-hash-algorithm.html
https://github.com/awslabs/llrt
https://github.com/awslabs/llrt
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://doi.org/10.1145/1094811.1094835
https://doi.org/10.1145/3624007.3624050
https://doi.org/10.1145/3591473
https://doi.org/10.1145/3591473
https://doi.org/10.5281/zenodo.13760307
https://doi.org/10.5281/zenodo.13760307
https://doi.org/10.1145/362248.362270
https://doi.org/10.1145/291006.291036
https://doi.org/10.1145/291006.291036
https://doi.org/10.1109/SMC53654.2022.9945280
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/1111583.1111594
https://doi.org/10.1145/1111583.1111594
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://doi.org/10.1145/3445814.3446757
https://www.v8.dev
https://doi.org/10.1145/173262.155107
https://doi.org/10.1007/978-3-319-64203-1_19
https://doi.org/10.1007/978-3-319-64203-1_19
https://doi.org/10.1145/1094811.1094834
https://doi.org/10.1145/3589610.3596277
https://doi.org/10.1145/1542431.1542447
https://doi.org/10.1145/1542431.1542447
https://doi.org/10.1145/3497776.3517764
https://doi.org/10.1145/3237009.3237013
https://doi.org/10.1145/3237009.3237013
https://doi.org/10.1145/3168811
https://github.com/torvalds/linux/tree/master/tools/perf
https://github.com/torvalds/linux/tree/master/tools/perf

Improving Native-Image Startup Performance CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

[29] Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi
Liu, Haoyu Wang, and Xin Jin. 2023. FaaSLight: General Application-
level Cold-start Latency Optimization for Function-as-a-Service in
Serverless Computing. ACM Trans. Softw. Eng. Methodol. 32, 5, Article
119 (Jul 2023), 29 pages. https://doi.org/10.1145/3585007

[30] LLVM Project. 2024. Benchmarking Tips. https://llvm.org/docs/
Benchmarking.html

[31] LLVM Project. 2024. How To Build Clang and LLVM with Profile-
Guided Optimizations. https://llvm.org/docs/HowToBuildWithPGO.
html

[32] Zoltan Majo, Tobias Hartmann, Marcel Mohler, and Thomas R. Gross.
2017. Integrating Profile Caching into the HotSpot Multi-Tier Compi-
lation System. In ManLang. 105–118. https://doi.org/10.1145/3132190.
3132210

[33] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-
language Compiler Benchmarking: Are We Fast Yet?. In DLS. 120–131.
https://doi.org/10.1145/2989225.2989232

[34] Micronaut Foundation. 2024. Micronaut Framework. https://
micronaut.io/

[35] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. 2006. Aligning Traces for Performance Evaluation. In IPDPS.
291–298. https://doi.org/10.1109/IPDPS.2006.1639592

[36] Todd Mytkowicz, Peter F. Sweeney, Matthias Hauswirth, and Amer
Diwan. 2007. Time Interpolation: So Many Metrics, So Few Registers.
In MICRO. 286–300. https://doi.org/10.1109/MICRO.2007.27

[37] Deok-Jae Oh, Yaebin Moon, Do Kyu Ham, Tae Jun Ham, Yongjun
Park, Jae W. Lee, Jung Ho Ahn, and Eojin Lee. 2022. MaPHeA: A
Framework for Lightweight Memory Hierarchy-aware Profile-guided
Heap Allocation. 22, 1, Article 2 (Dec 2022), 28 pages. https://doi.org/
10.1145/3527853

[38] Oracle and/or its affiliates. 2021. GraalVM. https://www.graalvm.org
[39] Oracle and/or its affiliates. 2021. GraalVM: Native Image. https:

//www.graalvm.org/jdk21/reference-manual/native-image/
[40] Oracle and/or its affiliates. 2024. Class String. https://docs.oracle.com/

en/java/javase/21/docs//api/java.base/java/lang/String.html#intern()
[41] Oracle and/or its affiliates. 2024. Cloud Functions. https://www.oracle.

com/cloud/cloud-native/functions/
[42] Guilherme Ottoni and Bin Liu. 2021. HHVM Jump-Start: Boosting

BothWarmup and Steady-State Performance at Scale. In CGO. 340–350.
https://doi.org/10.1109/CGO51591.2021.9370314

[43] Guilherme Ottoni and Bertrand Maher. 2017. Optimizing Function
Placement for Large-scale Data-center Applications. In CGO. 233–244.
https://doi.org/10.1109/CGO.2017.7863743

[44] Karl Pettis and Robert C. Hansen. 1990. Profile Guided Code Position-
ing. In PLDI. 16–27. https://doi.org/10.1145/93542.93550

[45] Todd A. Proebsting. 1995. Optimizing an ANSI C Interpreter with
Superoperators. In POPL. 322–332. https://doi.org/10.1145/199448.
199526

[46] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and
ThomasWürthinger. 2019. An Optimization-Driven Incremental Inline
Substitution Algorithm for Just-In-Time Compilers. In CGO. 164–179.
https://doi.org/10.1109/CGO.2019.8661171

[47] Red Hat. 2024. Quarkus. https://quarkus.io/
[48] Shai Rubin, Rastislav Bodík, and Trishul Chilimbi. 2002. An Efficient

Profile-analysis Framework for Data-layout Optimizations. In POPL.
140–153. https://doi.org/10.1145/565816.503287

[49] Barbara G. Ryder. 2003. Dimensions of Precision in Reference Analysis
of Object-Oriented Programming Languages. In CC. 126–137. https:
//doi.org/10.1007/3-540-36579-6_10

[50] Joe Savage and Timothy M. Jones. 2020. HALO: Post-link Heap-
layout Optimisation. In CGO. 94–106. https://doi.org/10.1145/3368826.
3377914

[51] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.
Partial Escape Analysis and Scalar Replacement for Java. In CGO.
165–174. https://doi.org/10.1145/2581122.2544157

[52] The kernel development community. 2024. Documentation for
/proc/sys/vm/. https://www.kernel.org/doc/html/latest/admin-guide/
sysctl/vm.html?highlight=drop_caches#drop-caches

[53] VMware Tanzu. 2024. Spring Framework. https://spring.io/
[54] Yongliang Wang, Naijie Gu, Junjie Su, Dongsheng Qi, and Zhuorui

Ning. 2022. Data Layout Optimization based on the Spatio-Temporal
Model of Field Access. In AEMCSE. 238–244. https://doi.org/10.1109/
AEMCSE55572.2022.00055

[55] Jinfeng Wen, Zhenpeng Chen, Xin Jin, and Xuanzhe Liu. 2023. Rise
of the Planet of Serverless Computing: A Systematic Review. ACM
Trans. Softw. Eng. Methodol. 32, 5, Article 131 (Jul 2023), 61 pages.
https://doi.org/10.1145/3579643

[56] David Williams-King and Junfeng Yang. 2019. CodeMason: Binary-
Level Profile-Guided Optimization. In FEAST. 47–53. https://doi.org/
10.1145/3338502.3359763

[57] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul
Wögerer, Peter Bernard Kessler, Oleg Pliss, and Thomas Würthinger.
2019. Initialize Once, Start Fast: Application Initialization at Build
Time. Proc. ACM Program. Lang. 3, OOPSLA (2019), 184:1–184:29.
https://doi.org/10.1145/3360610

[58] Christian Wimmer, Codrut Stancu, David Kozak, and Thomas
Würthinger. 2024. Scaling Type-Based Points-to Analysis with Satura-
tion. In PLDI. 24 pages. https://doi.org/10.1145/3656417

[59] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and Handong
Ye. 2018. ShareJIT: JIT Code Cache Sharing across Processes and
Its Practical Implementation. Proc. ACM Program. Lang. 2, OOPSLA,
Article 124 (Oct 2018), 23 pages. https://doi.org/10.1145/3276494

[60] Yang Guo. 2015. Custom Startup Snapshots. https://www.v8.dev

Received 2024-05-30; accepted 2024-07-22

703

https://doi.org/10.1145/3585007
https://llvm.org/docs/Benchmarking.html
https://llvm.org/docs/Benchmarking.html
https://llvm.org/docs/HowToBuildWithPGO.html
https://llvm.org/docs/HowToBuildWithPGO.html
https://doi.org/10.1145/3132190.3132210
https://doi.org/10.1145/3132190.3132210
https://doi.org/10.1145/2989225.2989232
https://micronaut.io/
https://micronaut.io/
https://doi.org/10.1109/IPDPS.2006.1639592
https://doi.org/10.1109/MICRO.2007.27
https://doi.org/10.1145/3527853
https://doi.org/10.1145/3527853
https://www.graalvm.org
https://www.graalvm.org/jdk21/reference-manual/native-image/
https://www.graalvm.org/jdk21/reference-manual/native-image/
https://docs.oracle.com/en/java/javase/21/docs//api/java.base/java/lang/String.html#intern()
https://docs.oracle.com/en/java/javase/21/docs//api/java.base/java/lang/String.html#intern()
https://www.oracle.com/cloud/cloud-native/functions/
https://www.oracle.com/cloud/cloud-native/functions/
https://doi.org/10.1109/CGO51591.2021.9370314
https://doi.org/10.1109/CGO.2017.7863743
https://doi.org/10.1145/93542.93550
https://doi.org/10.1145/199448.199526
https://doi.org/10.1145/199448.199526
https://doi.org/10.1109/CGO.2019.8661171
https://quarkus.io/
https://doi.org/10.1145/565816.503287
https://doi.org/10.1007/3-540-36579-6_10
https://doi.org/10.1007/3-540-36579-6_10
https://doi.org/10.1145/3368826.3377914
https://doi.org/10.1145/3368826.3377914
https://doi.org/10.1145/2581122.2544157
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html?highlight=drop_caches#drop-caches
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/vm.html?highlight=drop_caches#drop-caches
https://spring.io/
https://doi.org/10.1109/AEMCSE55572.2022.00055
https://doi.org/10.1109/AEMCSE55572.2022.00055
https://doi.org/10.1145/3579643
https://doi.org/10.1145/3338502.3359763
https://doi.org/10.1145/3338502.3359763
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3656417
https://doi.org/10.1145/3276494
https://www.v8.dev

	Abstract
	1 Introduction
	2 Background
	3 Profile-Guided Binary Reordering
	4 Code Ordering
	4.1 Compilation-Unit-Based Ordering
	4.2 Method-Based Ordering

	5 Heap-Snapshot Ordering
	5.1 Incremental ID
	5.2 Structural Hash
	5.3 Heap Path

	6 Profiling Methodology
	6.1 Tracing Profiler
	6.2 Post-processing Analyses

	7 Evaluation
	7.1 Evaluation Settings
	7.2 Page-Fault Reduction
	7.3 Execution-Time Speedup
	7.4 Profiling Overhead

	8 Related Work
	9 Concluding Remarks
	A Appendix
	B Artifact Appendix
	B.1 Overview
	B.2 Getting Started Guide
	B.3 Overview of Claims
	B.4 Reusing and Modifying the Artifact
	B.5 Troubleshooting

	References

