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Abstract
Profile-guided optimizations rely on profile data for directing
compilers to generate optimized code. To achieve the maxi-
mum performance boost, profile data needs to be collected
on the same version of the binary that is being optimized.
In practice however, there is typically a gap between the
profile collection and the release, which makes a portion
of the profile invalid for optimizations. This phenomenon
is known as profile staleness, and it is a serious practical
problem for data-center workloads both for compilers and
binary optimizers.
In this paper we thoroughly study the staleness problem

and propose the first practical solution for utilizing profiles
collected on binaries built from several revisions behind the
release. Our algorithm is developed and implemented in a
mainstream open-source post-link optimizer, BOLT. An ex-
tensive evaluation on a variety of standalone benchmarks
and production services indicates that the new method re-
covers up to 0.8 of the maximum BOLT benefit, even when
most of the input profile data is stale and would have been
discarded by the optimizer otherwise.

CCS Concepts: • Software and its engineering→ Com-
pilers; • Theory of computation → Graph algorithms
analysis.

Keywords: compilers, profile-guided optimizations, profile
inference, graph matching, network flow
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1 Introduction
Mobile applications and ubiquitous AI workloads became
an essential part of everyday life, making it crucial to opti-
mize for their efficiency and reliability. Profile-guided opti-
mizations (PGO), also called feedback-driven optimizations,
are a collection of compiler techniques that use runtime
information collected via profiling for improving the pro-
gram execution. Modern PGO is successful in speeding up
server workloads by providing up to a double-digit percent-
age boost in performance [9, 28, 38]. Similarly, PGO applied
formobile applications reduces their size and the launch time,
which directly impacts user experience, and hence, user re-
tention [10, 14, 17]. Therefore, PGO is nowadays a standard
feature in most commercial and open-source compilers.

Traditionally, PGO is a combination of compiler optimiza-
tions, including function inlining, register allocation, and
code layout. It relies on execution profiles of a program, such
as the execution frequencies of basic blocks and function
invocations, to guide compilers to optimize critical parts
of the program more effectively. While many optimization
passes can be applied without profile data, knowing the
execution behavior of a program allows the compiler to
generate a significantly optimized code. Early efforts on
PGO were implemented via compile-time instrumentation,
which injects code to count the execution frequencies of
basic blocks, jumps, and function calls. This approach, how-
ever, not only complicates the build process, but also incurs
significant performance overhead, which may alter the pro-
gram’s default behavior and make the collected profiles non-
representative. Later works on PGO employ sampling-based
approach that rely on hardware performance counters avail-
able in modern CPUs, such as Intel’s Last Branch Records
(LBR). Sampling-based PGO enables profiling in the pro-
duction environment with a negligible runtime overhead,
although the collected profiles may require an extra post-
processing adjustment [9, 13, 46]. AutoFDO [3], BOLT [28],
and Propeller [38] are examples of frameworks for optimiz-
ing data-center workloads based on the technology.

Continuous Profiling. While PGO systems have been
successfully deployed at scale in production, there is one
challenge that often remains overlooked. In order to achieve
the maximum performance boost, profile data supplied to
PGO needs to be statistically representative of the typical
usage scenarios. Otherwise, an optimization has the potential
to regress the performance instead of improving it. Consider
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Figure 1. Continuous profiling causes a mismatch between
revisions used to produce the profile (𝑅0) and to which the
profile is applied (𝑅𝑛).

for example, a function that is hot according to a profile
but is rarely executed in real-world usage. A compiler may
decide to inline the function, which might cause a worsened
instruction cache performance due to the increased code size
while not providing any runtime benefits [5, 39].

In order to collect a representative profile, continuous pro-
filing systems are employed at large software companies [32].
These systems collect a sampled profile from the fleet and ag-
gregate them for subsequent use in compiler optimizations.
However, in such systems, the profile is always lagging the
most recent source [3]; see Figure 1.
Another related issue occurs when the source code of a

program is modified right before the release (which is known
as a hotfix). Even when such changes touch a single line of
the source code, they can lead to substantial changes in the
generated machine code, making previously collected pro-
files stale, that is, invalid for optimizations. For these reasons,
modern PGO systems assume that profiles are collected on
exactly the same version of a program that is being optimized,
whereas stale profile data is completely discarded.

How severe is the staleness problem in practice? One
would assume that the code for large programs, referred
to as applications or simply binaries, does not change too
frequently and the majority of the profile data remains un-
changed between consecutive releases. However, empirical
data collected by the BOLT binary optimizer used for optimiz-
ing large-scale services [28, 29] disagrees with the intuition.
We record 70% stale samples between two (weekly) releases
for one large-scale service, and over 92% staleness after only
a three-week delay of updating the profiles for another one.
Thus, the benefit of applying BOLT reduces by two thirds
for the former service and almost diminishes for the latter
one. The phenomena are explained as follows. Profiling in-
formation is captured at the machine code level and stored at
the function granularity. If a function is unchanged between
two releases, the profile data can be reused for optimizations.
In contrast, when the content of the function is modified,
then the profile data becomes stale. Generally even inno-
cent changes, such as adding or removing padding, result in
modified jump and call addresses and their offsets from the
beginning of the function, which leads to invalid profiles. In
addition, function inlining results in waterfall modifications
at all call sites.

With these problems inmind, we develop a novel approach
for stale profile matching, which is a technique for adjusting
and re-using profile information gathered on a pre-release
version of a program. In a sense, we relax the requirement
of profiling and releasing the same version of a binary. That
significantly simplifies the development process and eases
the adoption of PGO systems in the real-world environment.
As our key example, we show that for the large-scale clang
binary, we recover 0.78 of PGO benefits even when over 90%
of its profile data (collected on a six-month-old release) is
stale. This is equivalent to a 5.9% absolute speedup of the
binary on top of the state-of-the-art optimizations.

Our Contributions. The primary contributions of the
work are summarized as follows.

• Firstly, we thoroughly investigate profile staleness in PGO
and propose a formal model for the problem, capturing
practical constraints and objectives. Then, we develop a
novel two-stage algorithm for the problem and demon-
strate how it is applied for reducing profile staleness.

• Secondly, we present an implementation of the new ap-
proach in a post-link binary optimizer, BOLT, which is a
part of LLVM [11]. The implementation is fully integrated
into the main branch of the optimizer and requires no
changes to the workflow for BOLT users. The algorithm is
relatively simple and efficient, being able to process large
production binaries without noticeable runtime overhead.

• Finally, we extensively evaluate the new approach on a
variety of benchmarks, including five large open-source
binaries and four production workloads at Meta. The ex-
periments indicate that the new method recovers 0.6−0.8
of the maximum BOLT speedup, even when most of the
input profile data is stale.

We emphasize that existing literature on the topic is rather
sparse with only two works tackling the problem. Wang,
Pierce, and McFarling [40] design a binary matching tool for
stale profile propagation forMicrosoft NT (2000) applications.
A very recent preprint of Moreira, Pereira, and Ottoni [21]
independently explore a method for using a stale profile
in binary optimizers. Both methods rely on a hash-based
matching between basic blocks of a program. As we argue in
Section 2 and experimentally demonstrate in Section 4, such
approaches are unable to provide adequate performance ben-
efits for real-world instances. In contrast, our work presents
the first two-stage algorithm comprised of matching and in-
ference (defined in Section 3), which produces optimal and
near-optimal results in practice.
We also stress that while our implementation and evalu-

ation is done for a mainstream post-link binary optimizer,
BOLT, the approach discussed in the paper is general enough
to be used in other contexts. In particular, we believe that it is
possible to adapt the technique to Propeller [38] or use it in
conjunction with LLVM’s profile-guided optimizations [3].
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(b) Performance regression of clang optimized with BOLT uti-
lizing stale profile data

Figure 2. Investigation of profile staleness for the clang binary (release_15) built in different modes.

Paper Organization. The rest of the paper is organized
as follows. We first investigate the phenomena of profile
staleness in Section 2 and analyze the limitations of existing
PGO tools. Building upon the knowledge, we develop a novel
approach for re-using stale profiles. Section 3 describes the
two components of our methodology, matching and infer-
ence, and describes an implementation in an open-source
binary optimizer, BOLT, developed on top of LLVM. Next in
Section 4, we provide a detailed experimental evaluation of
the algorithm on a rich collection of open-source binaries
and production workloads. Section 5 discuss related work in
the area. We conclude the paper and propose possible future
directions in Section 6.

2 Investigating Profile Staleness
To shed light on the staleness problem, we investigate dif-
ferences between consecutive releases of a binary optimized
with BOLT.We chose to experiment with a standalone binary
of the clang compiler, which has a relatively large code size,
and can be easily integrated with various PGO technologies.
As a baseline, we utilize release_15 of the binary cut at
January 2023, and consider up to 3000 commits prior to the
release so that the most stale data (3000 commits behind
release_15) corresponds to June 2022.
Our first experiment, whose results are visualized in Fig-

ure 2a, measures the percentage of stale samples in the pro-
file data collected on a binary built for the source code cor-
responding to 𝑥 commits behind release_15. We vary 𝑥

between 0 and 3000 so that 𝑥 = 0 corresponds to the re-
lease. The level of staleness depends on how the baseline
binary is built. In the “simplest” mode with the optimization
level O3 and link-time optimizations (LTO) enabled, profile
staleness starts at 0% for 𝑥 = 0, that is, the profile has no
stale samples. The quality of the profiles slowly degrades,
as the gap between the release and the profiled binary in-
creases. In this setup, collecting profiles on a 3-month-old
binary (500 commits behind the release) invalidates less
than 3% of samples, while profiling a 6-month-old binary

(𝑥 = 3000) yields 12.8% stale samples in the profile. The re-
sults look quite different when we start utilizing compiler’s
PGO for building the baselines binary; in the evaluation
we experiment with sampling-based AutoFDO [3]. Profile
staleness reported by BOLT reaches 83% even when we re-
build clang using the same source code (the rebuild process,
however, involves re-running the AutoFDO step); the value
remains stable across the experiment. Such staleness almost
entirely invalidates the profile data supplied to BOLT. To
further understand the issue, we repeated the experiment
by building the binary with inlining disabled, that is, using
the O3+LTO+AutoFDO+no-inline mode. In that experiment,
profile staleness is recorded at the initial value of 28% and
slowly grows with the number of commits, 𝑥 .

Figure 2b illustrates the performance impact of using the
stale profile data. The plot reports the fraction of the maxi-
mum speedup on the clang binary achieved by BOLT uti-
lizing stale profiles, relative to the maximum speedup it can
achieve using fresh profile data collected on the same revi-
sion. In the evaluation, the BOLT speedup is recorded at 28%
on top of the non-BOLTed counterpart in the O3+LTO mode
and 12% in the O3+LTO+AutoFDOmode; the values agree with
the original speedups reported by the BOLT team in [28, 29].
As expected, the impact of applying BOLT is inverse propor-
tional to profile staleness. For the simpler O3+LTO build mode,
stale profile data yields amodest 2%−3% regression. However,
for the practical O3+LTO+AutoFDOmode, utilizing a 6-month-
old profile results in a substantial regression: instead of the
maximum possible speedup of 13%, BOLT realizes only 3.5%,
which is an equivalent of value 0.26 on the plot.

In order to further understand the problem, we analyze
individual functions in clang, whose profile data is marked
stale. We identified three primary reasons for profile stale-
ness. Firstly, developers modify the source code, which di-
rectly causes changes in the generated binary. Such changes
include, for example, code being added or removed and func-
tion renaming or type changes. Secondly, we noticed many
minor differences in the generated code, such as extra nop
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BB0:

0000: movq (%rdi), %rax

0003: movq (%rax), %rax

0006: testq %rdi, %rdi

0009: je BB2
BB1:

000b: jmp getType # tail call

BB2:

0010: movzbl 0x8(%rdi), %ecx

0014: leal -0x13(%rcx), %edx

0017: cmpl $-0x2, %edx

001a: jb BB4
001c: nop

001e: nop

BB3:

0020: movl 0x20(%rdi), %edx

0023: xorl %esi, %esi

0025: cmpl $0x12, %ecx

0028: sete %sil

002c: shlq $0x20, %rsi

0030: orq %rdx, %rsi

0033: addq $0x6a0, %rax

0039: movq %rax, %rdi

003c: jmp getCount # tail call

BB4:

0041: addq $0x6a0, %rax

0047: retq

BBO:

0000: movq (%rdi), %rcx

0003: movl $0x6a0, %eax

0008: addq (%rcx), %rax

000b: testq %rdi, %rdi

000e: jne getType # tail call

BB1:

0013: movzbl 0x8(%rdi), %ecx

0017: leal -0x13(%rcx), %edx

001a: cmpl $-0x2, %edx

001d: jb BB3

BB2:

001f: movl 0x20(%rdi), %edx

0022: xorl %esi, %esi

0024: cmpl $0x12, %ecx

0027: sete %sil

002b: shlq $0x20, %rsi

002f: orq %rdx, %rsi

0032: movq %rax, %rdi

0035: jmp getCount # tail call

BB3:

003a: retq

Figure 3. An example of a function in clang built with
AutoFDO in the profiled (left) and the release (right) binaries.

instructions or a different treatment of tail calls. Figure 3
illustrates one such example with the code of the same func-
tion in the profiled binary (left) and the release one (right).
While it is easy for a human to map the basic blocks be-
tween the two versions, BOLT’s conservative strategy is to
discard the function profile whenever there is a mismatch
in the number of basic blocks or jumps. Such differences are
a result of the existing compiler being non-stable and pro-
ducing non-identical results when there are small changes
in the source code or in the profile data. Finally, the above
two types of modifications are often amplified by function
inlining, which propagates changes in individual functions
across many instances.

3 A New Approach
We assume that a binary (some representation of a com-
piled program) is a collection of functions. Each function
is represented by a directed (possibly cyclic) control-flow
graph, denoted 𝐺 = (𝑉 , 𝐸). The vertices of 𝐺 correspond to
basic blocks and directed edges represent jumps between
the blocks. We assume that the graph contains a unique
source, 𝑠∗ ∈ 𝑉 (that is, the entry block of the function) but
may have multiple sinks (exit blocks), denoted 𝑇 ∗ ⊂ 𝑉 , that
are reachable from 𝑠∗ via a directed path. The binary is as-
sociated with a profile dataset collected on a representative
benchmark suite. The profile contains vertex and edge counts,
cnt(𝑣) ≥ 0 for 𝑣 ∈ 𝑉 and cnt(𝑢, 𝑣) ≥ 0 for (𝑢, 𝑣) ∈ 𝐸, that
represent the execution counts of basic blocks and jumps,
respectively. As noted above, the counts might be imprecise
and serve just as an estimation of actual execution counts
during profiling. The profile may also contain additional

meta-data, such as the names of the functions or the sizes of
the basic blocks; refer to Figure 6 for an example.
We assume that there are two releases of a binary: the

older one, 𝐵𝑜𝑙𝑑 , and the most recent one, 𝐵𝑛𝑒𝑤 . The binaries
are associated with profiles 𝑃𝑜𝑙𝑑 and 𝑃𝑛𝑒𝑤 , respectively. We
refer to Figure 4 for an example of the same function (foo) in
the two releases of the binary along with the corresponding
profiles. In the example we assume that every basic block is
associated uniquely with a hash value, computed based on its
content, that is, the opcodes and operands of its instructions.
Using the hashes, it is straightforward to find a one-to-one
mapping between basic blocks in the binary and in the profile,
as long as the hash values stay the same, that is, when the
content of the basic blocks is unchanged. However, as we
argue in Section 2, that is often not the case. Our goal is to
infer the counts of the basic blocks and jumps in binary 𝐵𝑛𝑒𝑤
using profile 𝑃𝑜𝑙𝑑 . We stress that the strategy prior our work
is to discard the profile and keep unoptimized function foo,
since its meta-data (e.g., the number of the basic blocks) does
not match in 𝐵𝑛𝑒𝑤 and 𝑃𝑜𝑙𝑑 .

Now we describe the high-level strategy of our algorithm.
As a pre-processing step independent from stale matching,
BOLT finds one-to-one mapping between the functions in
𝐵𝑛𝑒𝑤 and 𝑃𝑜𝑙𝑑 based on their names. It first attempts to match
function names exactly. For functions with unique suffixes
such as produced by LLVM LTO for internal linkage sym-
bols that may drift between compilations, BOLT attempts to
match using heuristics ignoring the suffix: (i) match using a
function hash, (ii) for cases where there is only one function
in 𝐵𝑛𝑒𝑤 and 𝑃𝑜𝑙𝑑 after stripping the suffix, match them up
despite hash mismatch. In the case of the remaining ambigu-
ity, BOLT ignores the function profile. Hence, functions that
have been added or deleted are discarded.

The main step of the algorithm consists of two phases, the
matching phase and the inference phase. We refer to Figure 5
for an overview, which illustrates the process for function
foo from Figure 4.

The matching phase is used to extract partial information
from the profile, 𝑃𝑜𝑙𝑑 , and assign initial counts to basic blocks
and jumps in the function of 𝐵𝑛𝑒𝑤 . In the example, three
blocks with hashes 0xA1, 0xB2, and 0xC3 are not modified;
thus, we can compute and assign their counts. Similarly,
we assign initial counts for jumps whose both endpoints are
matched based on the hashes. The main challenge is to define
the computation of the hash values. Very strict hashes that
are based on opcodes and operands of all block’s instructions
are unstable to minor changes in the generated code, such as
adding nops or a different register allocation. Loose hashes
are more stable but might result in collisions, which is often
hard to resolve correctly. Our strategy, described in detail
in Section 3.1, is to define a hierarchy of hashes ranging
from the strictest (based on all relevant block’s features) to
the weakest (based on a few features). This strategy allows
matching unchanged blocks with high confidence using the
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BB1 [0xA1]:
0000: testq %rdi, %rdi
0003: je BB5

BB2 [0xB2]:
0005: testq %rdi, %rdi
0008: je BB6

BB3 [0xC3]:
000a: testq %rdi, %rdi
000d: je BB7

BB4 [0xD4]:
000f: movq %rax, %rdi
0012: retq

BB5 [0xE5]:
0013: nopw %cs:(%eax,%eax)
0020: callq log_error_x
0025: retq

BB6 [0xF6]:
0026: callq log_error_y
002b: retq

BB7 [0xG7]:
0033: callq log_error_z
0038: retq

function_name : foo
execution_count: 400
num_blocks : 7
blocks:
- block_id: 1

hash: 0xA1
successors: {id : 2, cnt : 300}, {id : 5, cnt : 100}

- block_id: 2
hash: 0xB2
successors: {id : 3, cnt : 150}, {id : 6, cnt : 150}

- block_id: 3
hash: 0xC3
successors: {id : 4, cnt : 50}, {id : 7, cnt : 100}

- block_id: 4
hash: 0xD4

- block_id: 5
hash: 0xE5

- block_id: 6
hash: 0xF6

- block_id: 7
hash: 0xG7

(a) Binary 𝐵𝑜𝑙𝑑 (left) with profile 𝑃𝑜𝑙𝑑 (right)

BB1 [0xA1]:
0000: testq %rdi, %rdi
0003: je BB5

BB2 [0xB2]:
0005: testq %rdi, %rdi
0008: je BB5

BB3 [0xC3]:
000a: testq %rdi, %rdi
000d: je BB5

BB4 [0xXX]:
000f: movq %rax, %rdi
0012: setne %al
0015: retq

BB5 [0xYY]:
0016: callq log_error_xyz
001b: retq

function_name : foo
execution_count: 400
num_blocks : 5
blocks:
- block_id: 1

hash: 0xA1
successors: {id : 2, cnt : 300}, {id : 5, cnt : 100}

- block_id: 2
hash: 0xB2
successors: {id : 3, cnt : 150}, {id : 5, cnt : 150}

- block_id: 3
hash: 0xC3
successors: {id : 4, cnt : 50}, {id : 5, cnt : 100}

- block_id: 4
hash: 0xXX

- block_id: 5
hash: 0xYY

(b) Binary 𝐵𝑛𝑒𝑤 (left) with profile 𝑃𝑛𝑒𝑤 (right)

Figure 4. An example of a function, foo, modified between two releases (old and new) of the binary. 𝐵𝑛𝑒𝑤 and 𝑃𝑜𝑙𝑑 comprise
the input for the stale profile matching problem. The goal is to infer a profile, which is as close to 𝑃𝑛𝑒𝑤 as possible.

strict hash and, at the same time, provide some matches for
blocks with modifications. We note that a similar hash-based
matching is utilized in the earlier work [40]. The difference is
that we use the assigned counts as the initial guesses which
can be modified at the second phase.

Once the initial counts are determined, we propagate the
values through the graph and fill in the missing counts. To
this end, we extend a recent work of He, Mestre, Pupyrev,
Wang, and Yu [9] for profile inference. The goal of the sub-
routine is to guess the control flow in a graph given a partial
assignment of block and jump counts. The algorithm prop-
agates the counts along the control-flow graph to make it
consistent and realistic. The former objective ensures that the
sum of incoming and outgoing counts for each non-terminal
vertex is the same, as in the actual program execution. The
latter objective is used to distribute the counts evenly when
there are multiple equally likely solutions, such as for the
successors of block 0xC3 in Figure 5. Our extension of the
algorithm in [9] is based of computing the maximum flow
of minimum cost and described in Section 3.2.

3.1 Matching
The goal of the phase is to find matches between basic blocks
within a pair of functions. This is done by calculating a 64-bit
hash value for each block based on its code content. Recall
that basic blocks often change between two releases of a
binary; hence, a naive one-to-one comparison of the hashes
will likely result in a very few matches. In order to accom-
modate minor changes and match as many basic blocks as
possible, we introduce multiple levels of hash computation.

• A loose hash of a basic block is based on all distinct instruc-
tion opcodes of the block; that is, instruction operands are
excluded from the computation, as they may change from
one version to another. The hash is computed by creating a

string from lexicographically ordered instruction opcodes,
which is then hashed with a machine-independent xxHash.
We ignore pseudo and nop instructions as well as uncon-
ditional jumps, as they are often added or removed as a
result of basic block reordering.

• A strict hash is based on all instruction opcodes and their
operands. The computation is order-dependent, that is,
two blocks have the same strict hash if and only if they
are comprised of the same instructions and their order is
the same. Similarly to the previous case, we ignore pseudo
instructions and unconditional jumps in the computation.

• A full hash of a basic block is based on the block’s strict
hash combined with loose hashes of its successors and
predecessors. Empirically, the value is useful to resolve
collisions between blocks with identical code content that
are often a result of the function inlining pass, which sub-
stitutes calls to the same function with (identical) basic
blocks of the callee.

In addition to the three values defined above, we associate
each basic block with the offset of its address from the begin-
ning of the function in the binary; the offset is guaranteed to
be unique across basic blocks of a function. Thus, we have
four hash values for every block in the binary. The values
are lowered into 16-bit integers and concatenated to form a
64-bit hash value, which is stored in the profile.

In order to find a match for a basic block from 𝑃𝑜𝑙𝑑 in the
set of blocks corresponding to the function in 𝐵𝑛𝑒𝑤 , we first
check if there is a matching block with the same full hash. At
this stage, the collisions (that is, blocks with the same hash
value) are rare. If we find a matching candidate, we stop the
matching for the block. Otherwise, we try to find a match
based on the strict hash, followed by the loose hash. At these
levels the probability of collisions are higher, and we break
ties by choosing the candidate whose offset is the closest to
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Figure 5. An overview of our algorithm for the stale profile matching problem.

the offset of the considered basic block. In addition to the rule
above, we always match the first (entry) basic block from
the profile to the first block in the binary. We emphasize
that the hash definitions and the matching strategy is of
a heuristic nature, which has been tuned on several large-
scale binaries described in Section 4.1. It is likely that further
fine-tuning is possible, e.g., by introducing more hash levels
and including extra code features, such as function calls.
In this paper, we opted for simplicity of the computation
rather than potentially more accurate but less interpretable
schemes based, for example, on machine learning.

3.2 Inference
The goal of the phase is to reconstruct the counts of all basic
blocks and jumps, while respecting, as much as possible,
the initially assigned estimations. Denote 𝑓 (𝑣) ≥ 0, 𝑣 ∈ 𝑉

and 𝑓 (𝑢, 𝑣) ≥ 0, (𝑢, 𝑣) ∈ 𝐸 to be vertex and edge counts,
respectively, that we seek to find. Recall that some but not
necessarily all vertices and edges have initial counts, denoted
cnt(·); the case when a block or a jump is missing the initial
count is indicated by cnt(·) = ∅.

We want the counts to be consistent with a real execution
of a function, which starts at the entry block, then traverses
the blocks in some order along the edges, and ends at an exit
block. Thus, we introduce the flow conservation rules:

𝑓 (𝑣) =
∑︁

(𝑢,𝑣) ∈𝐸
𝑓 (𝑢, 𝑣) =

∑︁
(𝑣,𝑤 ) ∈𝐸

𝑓 (𝑣,𝑤)

for all non-entry non-exit vertices 𝑣 ∈ 𝑉 \𝑇 ∗, 𝑣 ≠ 𝑠∗, and

𝑓 (𝑠∗) =
∑︁

(𝑠∗,𝑢 ) ∈𝐸
𝑓 (𝑠∗, 𝑢), 𝑓 (𝑡∗) =

∑︁
(𝑢,𝑡∗ ) ∈𝐸

𝑓 (𝑢, 𝑡∗)

for the entry 𝑠∗ and for all exits 𝑡∗ ∈ 𝑇 ∗, respectively.
We also want to preserve the initial estimates derived at

the matching phase. To measure how close the counts to the
estimations, we introduce the following objective:∑︁

𝑣∈𝑉
cnt(𝑣)≠∅

𝑐𝑜𝑠𝑡
(
𝑓 (𝑣), cnt(𝑣)

)
+

∑︁
(𝑢,𝑣) ∈𝐸

cnt(𝑢,𝑣)≠∅

𝑐𝑜𝑠𝑡
(
𝑓 (𝑢, 𝑣), cnt(𝑢, 𝑣)

)
,

(1)

where the sum is taken over all vertices and edges with
an assigned count. Here the term 𝑐𝑜𝑠𝑡 (𝑓 , cnt) penalizes the
change of a count from 𝑓 to cnt:

𝑐𝑜𝑠𝑡 (𝑓 , cnt) =
{
𝑘𝑖𝑛𝑐 (𝑓 − cnt) if 𝑓 ≥ cnt
𝑘𝑑𝑒𝑐 (cnt−𝑓 ) if 𝑓 < cnt

Here 𝑘𝑖𝑛𝑐 and 𝑘𝑑𝑒𝑐 are non-negative penalty coefficients,
whose exact values are determined in Section 4.3.

Overall, we seek to solve an optimization problem of find-
ing consistent counts of vertices and edges of a given control-
flow graph, 𝐺 = (𝑉 , 𝐸), with prescribed count estimations,
cnt(𝑣), 𝑣 ∈ 𝑉 and cnt(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝐸, while minimizing ob-
jective (1). He et al. [9] show how a variant of the problem,
which has cnt(𝑢, 𝑣) = ∅ for all edges of 𝐺 , can be mapped
to an instance of the minimum-cost maximum flow prob-
lem, and hence, can be solved optimally in polynomial time.
Observe that their algorithm can in addition preserve (as a
secondary objective) provided branch probabilities. We can
use the feature to evenly distribute the counts among the
successors, when they do not have initial counts, such as for
the successors of block 0xC3 in Figure 5.
Next we show how to reduce our problem to the more

restricted variant studied in [9]. To this end, we identify and
subdivide all edges of 𝐺 that have an initial count. That is,
for all (𝑢, 𝑣) ∈ 𝐸 with cnt(𝑢, 𝑣) > 0, we replace the edge by a
new vertex𝑤 and two (directed) edges (𝑢,𝑤) and (𝑤, 𝑣); then
we set cnt(𝑤) = cnt(𝑢, 𝑣) and cnt(𝑢,𝑤) = cnt(𝑤, 𝑣) = ∅.
For example, the graph in Figure 5 (middle) is modified by
subdividing two edges, (0xA1, 0xB2) and (0xB2, 0xC3), and
setting their initial counts to 300 and 150, respectively. Note
that the new graph contains at most |𝑉 | + |𝐸 | vertices and at
most 2|𝐸 | edges, and only vertices may have initial counts. It
is easy to verify that the reduction preserves the optimality
of solutions. Therefore, we can apply the algorithm from [9]
to solve the inference problem. We conclude that the work
provides a near-linear time implementation of the algorithm
in practice; we verify the runtime in Section 4.4.
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functions:

function name : foo

function id : 1

execution count: 400

num blocks : 7

blocks:

- block id: 1

execution count: 400

num instructions: 20

hash: 0xA1

successors: [bid: 2, count: 300, bid: 5, count: 100]

- block id: 2

execution count: 300

num instructions: 7

hash: 0xB2

calls: [fid: 2, count: 300, offset: 0x30]

successors: [bid: 3, count: 150, bid: 6, count: 150]

- block id: 3

execution count: 150

num instructions: 13

hash: 0xC3

successors: [bid: 4, count: 50, bid: 7, count: 100]

...

function name : bar

function id : 2

...

Figure 6. An example of the profile data in YAML format.

3.3 Implementation and Engineering
Here we give an overview of profiles supported by BOLT.
• Fdata profile is an offset-based profile, which encodes
taken control-flow edges with their frequency and branch
misprediction information. While the profile format is
currently the default, it does not permit any discrepancies
between the binary it was collected from and the binary
it is applied to. Therefore, it is unsuitable for the stale
matching use case.

• Pre-aggregated perf profile contains aggregated LBR
data without binary knowledge. It encodes less informa-
tion than fdata, as it lacks symbol information and omits
fallthrough edges. It can be efficiently collected and stored
but needs to be augmented with the binary it was collected
on. This format is not self-contained and hence unsuitable
for our use case.

• YAML profile is a structured representation, which en-
codes control-flow information along with function and
basic block metadata. YAML profile explicitly encodes ba-
sic blocks and control-flow edges and therefore, permits
some discrepancies between the profiled and the input bi-
naries. The format is the most flexible of all three and can
easily be extended with necessary basic block metadata.
The primary downside is that processing YAML profile
takes longer than fdata — in one representative case by
about 70%. Figure 6 illustrates the YAML format.
Stale matching is implemented as a part of the BOLT YAML-

ProfileReader class. Matching is abstracted from BOLT IR
by basic block hashes, which is added to YAML serialization
format. Basic block hashing is extended to capture necessary

instruction and control-flow information. Inference is done
on an IR-independent CFG representation (FlowFunction),
and reused in other parts of LLVM. Stale profile matching
is applied immediately after attaching the profile to CFG.
At this point, it is known if the function failed to match up
with the profile. Therefore, the algorithm works only with
function profiles that would otherwise be discarded.

4 Experimental Evaluation
To validate the effectiveness of our approach, we (i) compare
the performance of binaries generated with the use of the
new profile data, and (ii) evaluate the precision of the inferred
block and jump frequencies. The experiments presented in
this section were conducted on a Linux-based server with a
dual-node 40-core 2.0 GHz Intel Xeon Gold 6138 (Skylake)
having 256GB RAM, except chromium which was conducted
on a Linux-based desktop with a 12-core 3.6 GHz Intel Core
i7-12700K (Alder Lake) having 128GB RAM. The algorithms
are implemented on top of release_16 of LLVM.

4.1 Benchmarks
We evaluated our approach on large open-source applica-
tions and real-world binaries deployed at Meta’s data centers;
see Table 1. As publicly available benchmarks, we selected
widely used programs that have large code size: two open-
source compilers (clang and gcc), two database servers
(rocksdb and mysql), and a browser (chromium). Next we
discuss the testing setup for each of them.
• For clang, we use the release_15 branch of LLVM as
the base (𝐵𝑛𝑒𝑤 ) release and the release with 3000 commits
behind that for 𝐵𝑜𝑙𝑑 . They are built in O3+LTO+AutoFDO
mode, and the profiles are collected by compiling several
medium-sized template-heavy C++14 source files.

• For gcc, we use release-9.3.0 and release-8.3.0 that
were released approximately one year apart. We build the
binaries with O3+LTO and collect the profiles on the same
standalone benchmark of C++14 files.

• rocksdb is a fast key-value storage; we utilize
release-8.1.fb and release-7.1.fb with ≈1000 com-
mits from each other. The binaries are built in the Release
mode with interprocedural optimization; AutoFDO is used
to further speedup the binary. To collect profiles and mea-
sure performance, we run db_bench on three built-in bench-
marks, fillrandom, fillseekseq, and overwrite.

• Experiments with mysql server are based on mysql-8.1.0
and mysql-8.0.28 released one year apart; we use the
release version of the build using O3+LTO mode. We use
oltp_read_only test from the sysbench benchmark suite,
running 4 threads to read from the database initialized by
inserting 100, 000 records into 8 tables.

• For chromium, we use milestones 111-115, that are aligned
with Chrome releases. We utilize the official build con-
figuration, which makes use of bundled clang and enables
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Table 1. Basic properties of evaluated binaries

code size (MB) functions blocks per function
hot all hot all p50 p95 max

clang 10.4 83.2 13,444 95,943 20 274 12,464
gcc 3.6 24.1 6,971 35,442 28 278 5,974
rocksdb 0.4 5.1 1,014 9,610 13 238 1,282
mysql 1.5 23.3 2,501 46,133 6 64 5,152
chromium 18.3 171 21,244 541,722 18 151 15,856

hhvm 14 230 20,906 476,861 7 62 13,156
dc1 28.5 853 56,578 1,759,240 13 151 9,773
dc2 15.2 892 31,630 2,146,062 13 156 25,979
dc3 17.7 874 45,256 2,119,651 13 146 20,379

both LTO and PGO, with two tweaks: (i) disabled control-
flow integrity, and (ii) disabled debug information gen-
eration to speed up builds. Speedometer2.0 is used to
measure the performance of chromium.
Note that while the intended use of our technique is with

software deployments having short release cycle, the open-
source benchmarks have releases that are months apart. The
aim of the experiment is to show that the approach general-
izes to the large number of accumulated differences.

For data-center workloads, we selected four binaries. The
first system is the HipHop Virtual Machine (hhvm), that
serves as an execution engine for PHP at Meta, Wikipedia,
and other large websites. The other three binaries are large
application running inside Meta’s data centers. We use two
consecutive releases for each of the binaries, which are typi-
cally done on a weekly and bi-weekly basis. These binaries
are built with clang in O3+LTO mode and use the compiler’s
PGO to enhance their performance.

4.2 Binary Performance
Figure 7 presents an evaluation on the open-source bench-
marks. Here we compare the following alternatives:
• the original non-BOLTed binary created by the compiler;
this is our baseline for the comparison;

• the existing strategy in BOLT that uses stale profile dis-
carding all functions with invalid profiles;

• an optimization using the most recent fresh profile data;
note that the option is not practical and used only as an
upper bound for optimizations;

• the newly proposed stale profile matching approach.
For each benchmark, the figure shows the absolute speedup

of the three strategies on top of baseline, indicated by the
number on top of the bars. The height of each bar is propor-
tional to the fraction of the maximum possible performance
improvement achieved by each strategy. The values are ob-
tained by repeating each experiment 100 times to increase
the precision of the measurements so that the average mean
deviation is within 0.05%; thus, we omit the deviations from
the figure. We observe that stale profile matching is able to re-
cover 0.64−0.79 of the maximum possible speedup achieved
by BOLT using fresh profile data. This is equivalent to 6.7%
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Figure 7. Relative and absolute performance improvements
on the open-source benchmarks. The heights of the bars
correspond to the fraction of the maximum performance
improvement for each of the modes, while the values on top
indicate absolute speedups.

(for mysql) and 5.9% (for clang) absolute performance boosts
on the benchmark. In contrast, the existing strategy recovers
only 0.15−0.45 of the maximum speedup.
To better understand the benefits of applying the new

algorithm, we collect several perf metrics related to code
layout. As expected, the main advantage of the algorithm
is an improved performance of the L1 instruction and I-
TLB caches; refer to Figure 8 where we use frontend_re-
tired.l1i_miss and frontend_retired.itlb_miss hard-
ware events for estimating I-cache and I-TLB misses, respec-
tively. We also see a modest improvement in the number of
branch misses and the performance of the last level cache,
though the absolute difference is less prominent.
In order to measure the impact of stale profile matching

on production workloads, we use internal performance mea-
surement tools for running A/B experiments at Meta. We
stress that the obtained measurements on the workloads
are noticeably noisier than on the standalone open-source
benchmarks; empirically typical deviations are up to 0.4% for
dc binaries and up to 0.2% for hhvm. For hhvm, we record a
5.7%±0.2% performance improvement by using fresh profile,
which degrades to a 3.1% value for stale profile containing
64% of stale samples. The new stale profile matching achieves
4.5% performance boost on top of baseline, which is equiv-
alent to recovering 0.79 of the maximum speedup. For dc
services, the existing experimentation infrastructure only al-
lows to measure absolute speedups of the new approach over
stale profile. We record a 0.2%±0.4% boost for dc1 contain-
ing 14% stale samples, 0.5%±0.3% boost for dc2 containing
21% stale samples, and 0.6%±0.3% boost for dc3 containing
29% stale samples. That is, for three out of four production
workloads, we are able to measure a statistically significant
improvement by turning on the technique.

Finally, we discuss the performance of stale profile match-
ing with respect to alternative solutions. A recent work of
Moreira et al. [21] provides an evaluation of their technique,
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Figure 8. Improvements of the instruction cache perf met-
rics on top of non-BOLTed binaries.

referred to as Beetle, as well as the earlier approach, BMAT,
by Wang et al. [40]. In the evaluation, Moreira et al. [21]
estimates the impact of Beetle and BMAT on a number of
open-source binaries. We observe that their evaluation dif-
fers from our setup described in Section 4.1 in that it does not
employ a compiler’s PGO, and hence, a direct comparison
of the results is impossible. To mimic the setup of [21], we
repeat the experiment with the clang binary by building
its release_14 with O3+LTO, while using release_10 for
collecting profile data. Similar to [21], we record 75% of stale
functions in the profile, and the speedups achieved by fresh
profile and stale profile are 28% and 6%, respectively; all three
measurements closely match the reported values in the paper.
Moreira et al. [21] provide evaluations of multiple techniques
on the benchmark, including Beetle and BMAT, and none of
them exceeds a 7% speedup on top of non-BOLTed binary. In
contrast, stale profile matching yields a substantially higher
18% performance boost. Analogously, [21] reports the mean
recovered fraction of the maximum BOLT speedup on sev-
eral benchmarks to be 0.25 for BMAT and 0.43 for Beetle,
while stale profile matching recovers 0.6−0.8 of the speedup
on the arguably more challenging O3+LTO+AutoFDO setup.
Therefore, we do not consider earlier studies in [21, 40] as
viable alternatives for the problem.

4.3 Quality of Inferred Profiles
To evaluate the accuracy of the algorithm, we compare the
resulting profile data of with fresh profile. To this end, we
employ two measures that quantify the similarity between
the two profiles. The first one follows earlier works on pro-
file inference and referred to as the edge overlap [4, 9]. Let
𝑓 (𝑒), 𝑒 ∈ 𝐸 be the constructed edge counts by the algorithm,
and𝑔𝑡 (𝑒), 𝑒 ∈ 𝐸 be the counts of the edges in the fresh profile.
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Figure 9. Edge overlap and tsp score for the benchmarks.

The edge overlap is defined as∑︁
𝑒∈𝐸

min
( 𝑓 (𝑒)∑

𝑒∈𝐸 𝑓 (𝑒) ,
𝑔𝑡 (𝑒)∑
𝑒∈𝐸 𝑔𝑡 (𝑒)

)
,

where the sum is taken over all edges of the graph. If the
counts in the two profiles match exactly, the overlap is equal
to 1; otherwise, the measure takes values between 0 and 1.
The second measure is called the tsp score. It is motivated by
studies on code layout [20, 23, 30] in which co-locating basic
blocks that frequently call each other is beneficial for the
performance. To compute the value, we apply basic block
reordering for all functions in a binary based on the fresh
profile, and calculate the sum of counts for all fallthrough
edges, that is, edges between pairs of consecutive blocks; de-
note the value by TSP(𝑔𝑡). Next, we compute TSP(𝑓 ), where
we use inferred counts, 𝑓 , for basic block reordering but fresh
counts for the summation. Observe that TSP(𝑔𝑡) ≥ TSP(𝑓 )
for the majority of instances since existing algorithms for
basic block reordering produce near-optimal layouts with
respect to the measure [20, 23]. The tsp score is defined by
0 ≤ TSP(𝑓 )

TSP(𝑔𝑡 ) ≤ 1 and estimates how suitable are the con-
structed profiles for code layout.
Figure 9 demonstrates the analysis of the two measures

on open-source benchmarks and hhvm. Edge overlap values
range from 0.76 (for chromium) to 0.91 (for clang, gcc, and
hhvm), which is a substantial improvement over 0.24−0.6 for
the stale data. For the tsp score, we record an improvement
from 0.8−0.9 to 0.93−0.96 on the open-source benchmarks
and to the value of 0.99 on hhvm. Loosely speaking, the latter
result indicates that in 99% of instances, the generated profile
is as good for basic block reordering as the fresh one. We
summarize the findings by noting that stale profile matching
is able to significantly reduce but not completely eliminate
the gap to the fresh profile data.
The primary parameters of stale profile matching are pe-

nalty coefficients, 𝑘𝑖𝑛𝑐 and 𝑘𝑑𝑒𝑐 , introduced in Section 3.2.
Using the edge overlap score, we identified the following
combination resulting in the highest value: 𝑘𝑖𝑛𝑐 = 1 and
𝑘𝑑𝑒𝑐 = 2. Intuitively, it is twice more expensive to decrease a
block count from its initial estimate than to increase it.
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Figure 10. The runtime (in milliseconds) of profi as a func-
tion of the number of basic blocks measured on hhvm.

4.4 Build Time
Here we evaluate the runtime of stale profile matching and
its impact on the overall BOLT’s processing time. The ab-
solute running times (in milliseconds) of the algorithm are
illustrated in Figure 10. While the observed complexity of
the algorithm is super-linear in the number of basic blocks,
the runtime does not exceed 0.1 second even for instances
containing |𝑉 | = 1000 blocks. The majority of real-world
instances contain much fewer vertices (see Table 1), and the
largest recorded runtime across all functions in our dataset is
0.8 second. Hence, our algorithm is unlikely to introduce an
overhead to the existing build process of data-center applica-
tions. The total time taken by stale profile matching for 21K
functions of hhvm is under 20 seconds, which is only a small
fraction of the overall processing time for the binary [29].

5 Related Work
There exists a rich literature on profile-guided compiler opti-
mizations. Traditionally profile data is used for function inlin-
ing and outlining [6, 15], basic block reordering [12, 23, 30],
function layout [10, 27, 30], merging similar functions [34,
35], loop optimization [33], register allocation [7, 18], and
many others. These techniques are implemented in a variety
of compilers and binary optimizers used for static and dy-
namic languages [25, 26], and can be applied at the compile
time [3], link time [17, 37], or post-link time [19, 28, 38].

Most of the above tools assume that a representative pro-
file dataset is available. In practice, however, it is often diffi-
cult to generate an adequate profile even for a binary process-
ing a specific benchmark. Chen et al. [4] observe hardware-
related problems that lead to inaccurate profiles and suggest
several tricks to mitigate the hardware bias. Later studies
explore alternative profile improvement techniques, such as
varying the sampling rate [41] and utilizing LBR technology
available on modern Intel x86 processors [3, 24]. However,
not all processor vendors provide such logging functionality,
and moreover, recent studies indicate that LBRs still suffer
from sampling bias [43, 44]. Therefore, it is common to apply
a post-processing step to correct the profiles[9, 16]. An al-
ternative direction to improve profile accuracy is to employ

machine learning to predict the frequencies of the blocks,
functions, and branch probabilities [2, 42]. Despite a wealth
of recent studies in the area [22, 31, 36], we are not aware
of a successful application of such a technique at scale in
production environment.
The problem explored in this paper is complementary to

the above studies and has been mostly overlooked by the
community. In order to reuse profile data collected on previ-
ous releases of an application, the BMAT system by Wang
et al. [40] uses a hash-based matching between basic blocks.
Their approach is equivalent to the first phase of our al-
gorithm; this phase alone, as we show in the experimental
evaluation, is not competitive with the two-phase approach.
Another closely related (and still unpublished) work is the
Beetle technique by Moreira et al. [21]. The authors suggest
to extract certain branch characteristics (e.g., direction and
opcode) and use them to map profile information across re-
leases. Similarly to our study, the work [21] is evaluated in
BOLT. Section 4 indicates that our approach achieves sub-
stantial performance gains over Beetle. Finally, we mention
another recent stream of work that might mitigate the profile
staleness: an online (or just-in-time) system for optimizing
binaries written in unmanaged languages. In that scenario,
the binary starts running in an unoptimized state and its
profile is collected during a certain warm-up period. Once
enough profile data is collected, we apply optimizations and
shift the execution to the new code. Ocolos is one recent
prototype implementing such an approach [45]. While the
profile staleness problem is eliminated, this approach intro-
duces significant profiling and optimization overhead that
could be amortized for long-running binaries.

More generally, the problem of inferring stale profiles can
be seen as a special variant of binary code similarity, whose
goal is to identify differences and similarities between two
pieces of binary code. This is fundamental task for many
applications; refer to the recent surveys on the topic [1, 8].

6 Conclusion
We designed and implemented a novel approach for re-using
profile data collected on binaries built from several revisions
behind the release. Based on an extensive evaluation, we con-
clude that the proposed technique can recover a large portion
of the performance loss due to outdated profiles. One di-
rect implication is a simplified maintenance of performance-
critical applications that are frequently released; by introduc-
ing stale profile matching, such applications can be released
without re-collecting profiles after every hotfix. A possible
future direction is to adapt our implementation in BOLT
to other PGO tools, such as Propeller [38] or AutoFDO [3].
While we do not foresee any high-level obstacles, there might
be non-trivial implementation challenges.
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