
PreFix: Optimizing the Performance of
Heap-Intensive Applications

Chaitanya Mamatha Ananda
University of California

Riverside, USA
cmama002@ucr.edu

Rajiv Gupta
University of California

Riverside, USA
rajivg@ucr.edu

Sriraman Tallam
Google

Mountain View, USA
tmsriram@google.com

Han Shen
Google

Mountain View, USA
shenhan@google.com

Xinliang David Li
Google

Mountain View, USA
davidxl@google.com

Abstract
Analyses of heap-intensive applications show that a small
fraction of heap objects account for the majority of heap
accesses and data cache misses. Prior works like HDS and
HALO have shown that allocating hot objects in separate
memory regions can improve spatial locality leading to bet-
ter application performance. However, these techniques are
constrained in two primary ways, limiting their gains. First,
these techniques have Imperfect Separation, polluting the hot
memory region with several cold objects. Second, reordering
of objects across allocations is not possible as the original ob-
ject allocation order is preserved. This paper presents a novel
technique that achieves near perfect separation of hot ob-
jects via a new context mechanism that efficiently identifies
hot objects with high precision. This technique, named Pre-
Fix, is based upon Preallocating memory for a Fixed small
number of hot objects. The program, guided by profiles, is
instrumented to compute context information derived from
dynamic object identifiers, that precisely identifies hot object
allocations that are then placed at predetermined locations
in the preallocated memory. The preallocated memory re-
gion for hot objects provides the flexibility to reorder objects
across allocations and allows colocation of objects that are
part of a hot data stream (HDS), improving spatial local-
ity. The runtime overhead of identifying hot objects is not
significant as this optimization is only focused on a small
number of static hot allocation sites and dynamic hot ob-
jects. While there is an increase in the program’s memory
foot-print, it is manageable and can be controlled by limit-
ing the size of the preallocated memory. In addition, PreFix
incorporates an object recycling optimization that reuses
the same preallocated space to store different objects whose

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CGO ’25, March 01–05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708960

lifetimes are not expected to overlap. Our experiments with
13 heap-intensive applications yield reductions in execution
times ranging from 2.77% to 74%. On average PreFix re-
duces execution time by 21.7% compared to 7.3% by HDS
and 14% by HALO. This is due to PreFix’s precision in hot
object identification, hot object colocation, and low runtime
overhead.

CCS Concepts: • Software and its engineering→ Soft-
ware notations and tools; Compilers; Runtime environ-
ments;

Keywords: Hot heap objects, Hot data streams, Object colo-
cation, Cache locality
ACM Reference Format:
Chaitanya Mamatha Ananda, Rajiv Gupta, Sriraman Tallam, Han
Shen, and Xinliang David Li. 2025. PreFix: Optimizing the Per-
formance of Heap-Intensive Applications. In Proceedings of the
23rd ACM/IEEE International Symposium on Code Generation and
Optimization (CGO ’25), March 01–05, 2025, Las Vegas, NV, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3696443.
3708960

1 Introduction
Heap-intensive applications allocate large number of heap
objects whose allocation order frequently differs from their
access order. To achieve spatial locality, prior works have
developed techniques that separate hot objects from other
(colder) objects by allocating them in separate memory re-
gions. While this has helped with locality, it is still limited
by the fact that objects across allocations are not reordered
and appear in the same order as they are allocated. In [8], a
hot data stream (HDS) is defined as a set of hot objects that
are accessed together and allocated in a separate memory
region, increasing the likelihood of objects in a HDS set to be
colocated, yielding improved inter-object spatial locality. In
HALO [21], allocation site instances are disambiguated based
on calling contexts and grouped based on access affinity. Al-
locations from the same group are then placed into a distinct
memory pool to improve spatial locality of grouped objects.
However, these techniques have following limitations:

405

https://orcid.org/0009-0008-7198-6766
https://orcid.org/0000-0002-9348-3974
https://orcid.org/0000-0002-6303-8132
https://orcid.org/0000-0001-9869-2591
https://orcid.org/0000-0002-4223-2796
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696443.3708960
https://doi.org/10.1145/3696443.3708960
https://doi.org/10.1145/3696443.3708960
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696443.3708960&domain=pdf&date_stamp=2025-03-01

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA C. Mamatha Ananda, R. Gupta, S. Tallam, H. Shen, and X.D. Li

• Imperfect Separation. Both HDS [8] and HALO [21]
are imperfect in separating objects in each HDS set
and HALO allocation group from all other objects re-
spectively. Object signatures used are not unique and
hence spurious objects, potentially a large number of
them, are directed to memory regions dedicated to
HDS or HALO allocation groups.
• Inability to Reorder Objects. The objects belonging to
a single HDS or a HALO allocation group are placed
in the memory region in the same order as they were
allocated. That is, their order is not rearranged to ex-
actly match the desired layout and further improve
spatial locality.

In this paper, we present PreFix that overcomes both
these limitations and substantially improves performance.
The PreFix technique Preallocates memory for a Fixed
small number of hot objects. By using object ids that are
unique, PreFix achieves perfect separation of hot objects
from others and hence the preallocated memory region is
not polluted by additional spurious objects. The program is
instrumented to compute context information in the form of
unique dynamic object instances, which is utilized to iden-
tify hot objects and place them in predetermined locations.
Within the preallocated memory region the objects can be
placed in any order; that is, objects can be reordered to colo-
cate objects belonging to HDSs or HALO allocation groups
within the preallocated memory region. Via reordering, we
can maximally exploit spatial locality among the objects.
In summary, PreFix overcomes the above two limitations
present in both HDS [8] and HALO [21].

The increase in the program’s peak memory demand due
to preallocation is small and controllable as only a chosen
small number of objects are targeted. In addition, PreFix
incorporates an object recycling mechanism that reuses
the same preallocated space to store different objects whose
lifetimes are not expected to overlap. The data in Figure 1
shows the percentage of memory accesses from all heap
objects and hot heap objects with the absolute number of
dynamic objects numbered within each bar. The figure shows
that only 5 to 438 dynamic objects need to be preallocated
for 10 of 13 benchmarks to account for most of the heap
object memory accesses even though the programs allocate
thousands of heap objects across all benchmarks.

Our experimentswith 13 heap-intensive applications yields
reductions in execution times ranging from 2.77% to 74%. On
average, PreFix reduces execution time by 21.7% compared
to 7.3% by HDS and 14% by HALO. This is due to PreFix’s
precision in hot object identification, hot object colocation,
and low runtime overhead.

The key contributions of PreFix as can be observed from
the comparison summary in Table 1 are as follows:

mysq
l

pe
rl mcf

om
ne

tpp
xa

lan
c

po
vra

y
rom

s
lee

la

sw
iss

map libc
he

alt
h ft

an
aly

zer
0

10

20

30

40

50

60

70

%
 o

f T
ot

al
 M

em
. A

cc
es

se
s f

ro
m

 H
ea

p
Ob

je
ct

s

3K

22
K

13
8K

26
K

27
K

4K

10
K

11
K

16
9K

8K 1.
7M 13

2K

26
6K

13

17
4 6 23

0

23
6

20

20

5

8

43
8

1.
7M 20
K

10
4K

All Heap Objects
Hot Heap Objects

Figure 1. Memory Accesses Attributable to All Heap
Objects vs. Hot Heap Objects in Profiling Runs.

• The column Hot Object Detection explains that only
PreFix sends fixed predetermined number of hot ob-
jects to the separate (preallocated) memory region
while other techniques send an unknown often very
large number of objects;
• The column Layout Optimization explains that only
PreFix can perform object reordering within the (pre-
allocated) memory region for hot objects. In other tech-
niques, the hot object layout is in the order in which
those objects are allocated;
• The column Runtime Overhead explains that PreFix
is efficient due to its use of limited lightweight instru-
mentation;
• Finally, our evaluation shows that PreFix delivers
significant reductions in runtimes across 13 bench-
marks and substantially outperforms HDS [8] and
HALO [21].

The remainder of this paper is organized as follows. In
Section 2 we present our approach along with details on how
context is defined to generate unique ids for detecting hot
objects, performing object reordering for spatial locality, and
performing object recycling. In Section 3 presents experi-
mental results. Sections 4 and 5 present the related work and
our conclusions.

2 Our Approach: PreFix
In designing PreFix we set out to overcome the two major
limitations of prior techniques, that is, imperfect separation
leading to pollution1 of memory regions meant to hold hot ob-
jects and inability to reorder hot objects within the separated
memory region limiting inter-object spatial locality.

Like other techniques, using program profiling and tracing,
PreFix first selects a fixed number of hot objects that will
be exploited. A program optimized via PreFix Preallocates
a separate memory region to hold the chosen Fixed number

1Pollution is defined as the number of irrelevant objects in the hot memory
region.

406

PreFix: Optimizing the Performance of Heap-Intensive Applications CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Table 1. Comparison of PreFix with Prior Works: HDS and HALO.

Technique Hot Object Detection Layout Optimization Runtime Overhead
HDS [8]:
Hot Data
Streams

Signatures are Static Ids of
malloc sites allocating HDS ob-
jects (profile-guided).
Number of objects captured is
not fixed and can grow very large.

Significant Pollution from cho-
sen malloc sites also allocat-
ing non-HDS objects.
Layout of captured objects is in
allocation order (i.e., no object re-
ordering).

Hot Object Check. No checks
and no overhead.

Hot Object RAM Manage-
ment. malloc / free overhead
similar to other heap objects.

HALO [21]:
Heap Lay-
out Optimi-
zation

Call Stack Signatures of hot
object allocations (profile-guided)
used to detect hot objects at
runtime.
Number of objects captured is
not fixed and can grow very large.

Significant Pollution from
irrelevant objects having the
same call stack signatures.

Layout of captured objects
is in allocation order (i.e., no
object reordering).

Hot Object Check. Get the
call stack of the malloc instance
and check against a signature.

Hot Object RAM Manage-
ment. Reserved regions, grown
on demand. Managed chunked
deallocation of reserved region.

PreFix:
Our
Approach

Signatures are Dynamic Allo-
cation Instances (identifiers) of
selected malloc sites allocating
hot objects (profile-guided).

Number of objects cap-
tured is fixed as objects ids are
unique.

No Pollution as specific hot
object instances are mapped
to a preallocated region.

Layout of captured objects
controlled via pre-determined
object placement. HDS[8]
and HALO[21] cannot reorder
objects.

Hot Object Check. Dynamic
allocation instances matched to
predetermined hot instance ids.

Hot Object RAM Manage-
ment. Space for a fixed number
of hot objects is preallocated once
and freed at the end, minimal
overhead.

of objects at the beginning and then uses this region to avoid
pollution and perform object reordering as follows.

• Layout Determination With Object Reordering (§ 2.1)
A new data layout algorithm is presented that deter-
mines where each hot object will be located within the
preallocated memory. With no restriction on the order
in which the objects appear; thus, inter-object spatial
locality can be exploited.
• Context Determination and Lightweight Instrumenta-
tion (§ 2.2) We employ a strategy that generates unique
ids for objects allocated by relevant malloc sites and
then uses them to identify chosen hot objects and lo-
cates them in predetermined position in the preallo-
cated memory region. Since ids are unique, pollution
is avoided.
• Object Recycling (§ 2.4)We have observed that, in some
applications, though a large number of objects is al-
located at runtime, only a small number of them are
simultaneously live. Therefore, we preallocate a mem-
ory region for only a small fixed number of objects and
recycle the memory among the very large number to
reduce memory footprint and memory allocation/deal-
location overhead.

Thus, the combination of preallocation of a fixed sizememory
region and unique object ids avoids pollution and permits

reordering. Finally, object recycling limits memory usage.
All of the above require lightweight instrumentation and
involve safe code transformations.

2.1 Layout Determination Via Object Reordering
The program is profiled and memory access traces2 are ob-
tained which point to the interesting malloc sites where hot
objects are allocated. Further, groups of objects that repre-
sent hot data streams (HDS [8]) are identified from these
traces. This is then used to determine the size of the preallo-
cated memory and the order in which the hot objects must
be placed in this region to maximize spatial locality.

Our layout determination algorithm takes as its input an
ordered list of HDS (OHDS), sorted in the descending order
of memory accesses based on profiles. The algorithm outputs
an ordered list of Reconstituted HDS (RHDS) and the objects
will be placed in the preallocated memory region in the same
order as they appear in RHDSs. Any hot objects that are not
part of any reconstituted HDS will be placed at the end of
the preallocated region.
It is important to note that all OHDS are not exploitable

because same object may appear in multiple HDS in OHDS.
However, RHDS are constructed such that all HDS in it are
exploitable, that is, no object appears in more than one HDS

2profiling & tracing used interchangeably implies memory tracing

407

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA C. Mamatha Ananda, R. Gupta, S. Tallam, H. Shen, and X.D. Li

Algorithm 1 Reconstituting HDSs for Layout Optimization
Input: OHDS - Set of all observed HDSs in descending order of memory

references.
Output: RHDS - Reconstituted HDSs for optimized layout.

Globals
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 : Current HDS set processed
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 : Set of Objects
𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 () : Returns objects in a HDS or set of HDS.
𝑀𝑎𝑘𝑒_𝐻𝐷𝑆 () : Constructs an HDS from an object set.

end Globals

for 𝑜ℎ𝑑𝑠 ∈ 𝑂𝐻𝐷𝑆 do
𝑚𝑒𝑟𝑔𝑒𝑑 (𝑜ℎ𝑑𝑠) ← 𝑓 𝑎𝑙𝑠𝑒 ⊲ Initialization

end for
𝑅𝐻𝐷𝑆 ← 𝑁𝑒𝑥𝑡 (𝑂𝐻𝐷𝑆) ⊲ Initialization

while𝑂𝐻𝐷𝑆 ≠ ∅ do ⊲ Iterate over all HDS
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑁𝑒𝑥𝑡 (𝑂𝐻𝐷𝑆)
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔← 𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) −𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑅𝐻𝐷𝑆)
if 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 == ∅ then

continue ⊲ Nothing to do!
end if

if 𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∩𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑅𝐻𝐷𝑆) == ∅ then
𝑅𝐻𝐷𝑆 ← 𝑅𝐻𝐷𝑆 ∪ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ⊲ Merge 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
continue

end if

𝑑𝑜𝑛𝑒 ← 𝐹𝑎𝑙𝑠𝑒 ⊲ |𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 | > 0
for 𝑟ℎ𝑑𝑠 ∈ 𝑅𝐻𝐷𝑆 do

𝑒𝑥𝑖𝑠𝑡𝑠 ← 𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ∩𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 (𝑟ℎ𝑑𝑠)
if !𝑚𝑒𝑟𝑔𝑒𝑑 (𝑟ℎ𝑑𝑠) && 𝑒𝑥𝑖𝑠𝑡𝑠 ≠ ∅ then

𝑚𝑒𝑟𝑔𝑒𝑑 (𝑟ℎ𝑑𝑠) ← 𝑇𝑟𝑢𝑒

𝑟ℎ𝑑𝑠 ← 𝑟ℎ𝑑𝑠 ∪ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑑𝑜𝑛𝑒 ← 𝑇𝑟𝑢𝑒

break
end if

end for

if !𝑑𝑜𝑛𝑒 && |𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 | > 1 then
𝑅𝐻𝐷𝑆 ← 𝑅𝐻𝐷𝑆 ∪𝑀𝑎𝑘𝑒_𝐻𝐷𝑆 (𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔)

end if
end while

belonging to RHDSs. Next we describe how RHDS are con-
structed – presented in Algorithm 1.
This algorithm always adds the first HDS in the set of

OHDS, the one with the most memory accesses, to the RHDS
set. Then, for every other HDS in OHDS, the algorithm takes
one of the following actions to determine if it can be included
either fully or partially in the RHDS set:
• Unchanged Inclusion: The HDS is added to RHDS in its
original form if there are no shared objects with the
current set of RHDS;
• Merging: The given HDS may be completely merged
with another existing HDS in RHDS with common
objects; or
• Splitting: The given HDS may be split, merging a sub-
set of its objects with another HDS in RHDS. Any

OHDS (Original HDS)

{2012, 2009}
{2009, 2018}
{2012, 2009, 2018}
{24, 2009}
{1967, 2419}
{24, 2017}
{1963, 1967}
{1967, 2422}
{2016, 2009}
{22, 23}

OHDS Covered by RHDS

{2012, 2009}
{2009, 2018}
{2012, 2009, 2018}
{24, 2009}
{1967, 2419}
{24, 2017}
{1963, 1967}
{1967, 2422}
{2016, 2009}
{22, 23}

RHDS (Reconstituted)

{2018, 2009, 2012}
{1963, 1967, 2419}
{24, 2017}
{22, 23}
{2422, 2016}

Figure 2. An illustration of layout determination from the
trace of cc1 benchmark.

remaining objects will be treated as an HDS if there
are at least two objects. If only one object remains, it
is added to a set of singleton objects that are placed at
the end of the preallocated memory region.

Note that we do not fully merge more than two HDS with
each other because an effective layout for two HDS can al-
ways be found by placing them adjacent to each other with
common objects in the middle; however, the same cannot be
achieved for three HDS or more in general. That is why we
resort to splitting of an HDS so that part of it can be merged
while the remaining objects can be treated as a separate HDS
to be added to RHDS or simply discarded (i.e., left unex-
ploited). Also note that a HDS must have at least two objects
for it to be useful. Thus after splitting, if a singleton object
results, it will be simply added at the end of preallocated
memory region along with other hot singleton objects.
We illustrate the benefit of this algorithm with an exam-

ple in Figure 2. This example is based on a trace collected
from a short run of cc1 program. From the pruned trace, we
identified 10 hot HDS shown on the extreme left (OHDS)
in sorted order of memory references. Each HDS is a set of
objects whose object ids are listed. For example object ids
2012 and 2009 are part of a single HDS that accounts for
the most memory accesses. The object ids that are shown in
red appear in multiple HDS. Therefore not all the original
HDS are exploitable in their current form. The reconstituted
HDS are also shown in the middle. The new HDS are shown
in green while the last set highlighted represents singleton
objects. We observe the following about computed RHDS:
• Nearly all objects are covered by HDS in RHDSs – of
the total of 12 hot objects in OHDS, 10 are covered by
reconstituted HDS and remaining 2 (highlighted) are
treated as singleton objects.
• Majority of HDS from OHDS are Fully Covered or Par-
tially Covered in RHDS enabling exploitation of spatial
locality. The covered HDS are shown in blue on the
right side in Figure 2.
• Object Reordering Enabled Layout in the preallocated
memory region is as follows: {2018, 2009, 2012, 1963,
1967, 2419, 24, 2017, 22, 23, 2422, 2016}.

408

PreFix: Optimizing the Performance of Heap-Intensive Applications CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

If we were to use the HDS [8] algorithm or the HALO [21]
methods, the opportunities exploited would have been lim-
ited. For the above example in Figure 2, the HDS [8] algo-
rithm would only be able to colocate objects to exploit one
HDS: {22, 23}. This is because the interesting malloc sites
that create the HDS objects also allocate other objects that
also get colocated with the HDS objects, thereby polluting
the memory region. HALO [21] may perform better than
HDS [8] because it introduces less pollution. However, it is
still constrained in its ability to colocate relevant hot objects,
thereby limiting spatial locality.
Once the RHDS has been constructed and the layout of

the objects has been determined, we can compute the precise
offsets at which these objects will be stored in the preallo-
cated memory region using the sizes of the objects. The sizes
of some hot objects are fixed and hence known at compile-
time whereas the sizes of other objects are input dependent
and only known during execution. The object sizes that are
used are based on the traces collected from the profiling
run. A mapping between objects and offsets in preallocated
memory is generated and used at runtime to place objects in
appropriate locations.

2.2 Context Definition and Identification
Previous works [6, 21, 22, 31] use the dynamic calling context
of the allocation call-site to determine hot object allocations.
HDS [8] directs all objects allocated by an interesting call-site
to a separate memory region. To motivate the need for a new
context definition that can accurately capture hot objects at
runtime, we describe the drawbacks of existing techniques
used in HDS [8] and HALO [21] that pollute the memory
regions for hot objects. Figure 3 is a simplified code fragment
based on the pattern observed in themcf benchmark with a
loop that contains a single malloc site that creates 5 objects
(𝑂1,𝑂2,𝑂3,𝑂4,𝑂5). Two of the objects are hot as they are
repeatedly accessed later in the code (not shown) causing
them to form a HDS or HALO allocation group.

Since HDS [8] directs all five objects to a separate memory
region,𝑂1 and𝑂5 are not colocated and thus the transforma-
tion does not capture the spatial locality between𝑂1 and𝑂5.
Similarly, since HALO [21] uses call-stack signatures that
will be identical for all five objects, they will all be directed
to the same memory region and once again 𝑂1 and 𝑂5 will

while (...) { // high trip count
...
// Objects Created: 𝑂1,𝑂2,𝑂3,𝑂4,𝑂5
malloc(...)
// Accessed repeatedly: 𝑂1,𝑂5

}

Figure 3. Simplified code similar to the mcf benchmark
illustrating drawbacks of previous approaches [8, 21].

not be colocated, limiting spatial locality. The above situa-
tion was frequently observed in the benchmarks used in our
experiments.

Stability of calling context based approaches. We col-
lected data for the benchmarks to understand the effective-
ness of using the calling context (dynamic call-stack) in
uniquely identifying hot object allocations. For example, for
the mcf benchmark, 6 static hot allocation sites allocated
1 hot object each, corresponding to a total of 6 interesting
hot objects. Of these 6 allocation sites, only 3 sites uniquely
identified the hot object with the calling context. The re-
maining 3 sites had a total of 30 other object allocations also
having the same call-stack signature. We observed similar
patterns in other benchmarks. We experimented with other
approaches to more precisely capture hot object allocations
and came up with an approach that uses object identifiers.

2.2.1 New Context Definition. Here, we describe our
approach for identifying hot dynamic objects of interest at
runtime and then assigning an appropriate portion of the
space in the preallocated memory region to place them. Since
we only preallocate space for a fixed number of RHDS objects,
it is important that the relevant objects are captured precisely
and efficiently. Next we describe our solution.

Our solution is based upon assigning unique ids to objects
created by malloc sites as a combination of:

• Static malloc site – each object is identified by the
malloc site that allocates it; and
• Dynamic allocation instance – the dynamic alloca-
tion instance of the malloc site.

The runtime generated object ids are compared with ob-
ject ids that were identified during the profiling run. Upon a
match, they are placed in the preallocated region at a precom-
puted spot using the mapping between objects and memory
region offsets.

The object ids used to identify hot objects generated by a
malloc site Mi fall into the following three categories:

• Fixed : A set of fixed dynamic instances. For example,
{1,3,8} representing the first, third, and eighth dynamic
objects created byMi.
• Regular : A set of dynamic instances that can be cap-
tured via a regular pattern. For example, {1,3,5,..15}
represent the first eight odd numbered dynamic in-
stances created byMi.
• All : Every dynamic instance generated by Mi is a hot
object, and thus no check is needed to detect the hot
objects and the object id is simply used for placement
of the object in the preallocated memory region.

We automatically identify the pattern that must be used to
detect hot objects generated by a malloc site. The dynamic
instance ids of the hot objects for a given malloc site are
inspected and are categorized into one of the above three

409

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA C. Mamatha Ananda, R. Gupta, S. Tallam, H. Shen, and X.D. Li

patterns. For instance, if the ids fall into an arithmetic pro-
gression, the regular pattern will be used. Then, we create
a counter per malloc site that generates one or more hot
objects of interest, say Ci for static malloc siteMi. Each time
Mi is encountered, the Ci is incremented to compute the
dynamic allocation instance of the object.

Note that by using different counters for different malloc
sites, and associating the code that increments the counters
with the malloc sites, the static id is implicitly matched
and only runtime checks for matching the dynamic ids are
needed. The code size increase, shown in Figure 14, is small
formost benchmarks, because the number ofmalloc sites that
are instrumented to detect hot objects is small. The number
of counters that are needed is even smaller because multi-
ple malloc sites that work in tandem can share a counter .
Two malloc sites can share a counter if sharing results in
object ids for the sharing malloc sites that follow one of
three supported patterns (i.e., Fixed, Regular, and All). To au-
tomatically identify counter sharing opportunities, sharing
is simulated over the allocation trace and updated object ids
are generated. If the sequence of object ids of the sharing
malloc sites in the allocation trace reveal a pattern, sharing
is employed.

Table 2. Context Used.

Benchmark [type, (#sites, #counters)]
mysql [fixed ids, (10, 6)]
perl [regular & fixed, (15, 7)]
mcf [fixed ids, (6, 2)]
omnetpp [fixed ids, (52, 6)]
xalanc [fixed ids, (2, 2)]
povray [all ids, (8, 1)]
roms [all ids, (20, 1)]
leela [all ids, (4, 1)]
swissmap [all ids, (1, 1)]
libc [fixed ids, (6, 2)]
health [fixed & all ids, (3, 2)]
ft [fixed & all ids, (3, 2)]
analyzer [fixed & all ids, (5, 3)]

Table 2 presents the contexts that were used in the various
benchmarks considered in this work. For each benchmark
we provide the types (type: fixed, regular, and/or all) of ob-
ject ids that were used, the number of static malloc sites
involved (#sites), and number of counters (#counters) that
these sites together used. The number of relevant malloc
sites that allocate hot objects range from 1 to 52 and the
numbers of counters that were used ranged from 1 to 7.
We also examined the source code of these applications

to understand what the hot objects represent and why the
simple context prediction we propose works. Let us consider
the mcf benchmark which involves a network flow prob-
lem which has six objects allocated by six distinct malloc

sites. The first three objects created by this program are hot
and they represent the input network graph itself – the first
object stores all the nodes of the graph, the second object
stores the maximum number of edges or arcs that the net-
work can handle, and the third object is for storing additional
dummy_arcs. The other three hot objects are part of an opti-
mization algorithm used by the compute intensive psimplex
algorithm [14]. The two groups of hot objects have fixed
ids and each group of three can share a single counter. In
swissmap there is a single malloc site that generates large
number of objects to which object recycling can be applied
as a small group of objects are created, used, and freed, and
this pattern is repeated. Thus, in this case all ids are of in-
terest and a single counter is used to decide where to store
the object in preallocated region.

2.2.2 Case for a hybrid approach. For the benchmarks
we considered, object ids identified hot objects really well.
The ids used to identify a hot object or a HDS in the profiling
run using training inputs also largely corresponded to the
actual run. On the other hand, our analysis of several pre-
vious approaches using calling context showed that it can
suffer from high imprecision in several call sites leading to
polluting the memory regions allocated for hot objects with
several cold objects. However, it is important to note that
calling context does work precisely on a subset of call sites.
In the larger picture, any of these techniques could pro-

duce undesired results when applied to non-deterministic
programs, like large data center server applications. In such
cases, it could make sense to use both mechanisms together,
object IDs and calling context, to accurately target hot ob-
jects. As part of future work, we intend to study and scale
our approaches to work on such large applications.

2.3 Instrumentation of malloc and free sites
Next we show how malloc and free sites are instrumented
to obtain the optimized program.

(a) malloc: As shown in Figure 4, using the Counter cor-
responding to the malloc site, the dynamic instance ObjectId
is generated which is checked against the preallocated hot
objects. Upon a match, using the mapping between ObjectId
and address in preallocated space, the ObjectId is assigned
an appropriate ObjectAddress. Otherwise, that object is allo-
cated using a call to malloc. Only relevant malloc sites that
generate objects of interest are instrumented.

(b) free: Any free that can potentially deallocate a preallo-
cated memory object must be instrumented with code that
checks if the ObjectAddress is from the preallocated mem-
ory. If a preallocated object is freed by the user program, we
simply mark that the object has been deallocated but we do
not call free as no space is returned to the heap. However, if
the object was allocated from the heap then a call to free is
made as shown in Figure 5.

410

PreFix: Optimizing the Performance of Heap-Intensive Applications CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

ObjectID = Counter + 1;
// if an object is preallocated and size fits
if (ObjectID ∈ PreallocObjectIDS &&

ObjectSize ≤ PreallocSize[ObjectID]) {
// Return position in Preallocated memory
ObjectAddress = PreallocMemory[ObjectID];

} else {
// Default call to the memory allocator
ObjectAddress = malloc(ObjectSize);

}

Figure 4. Instrumentation of chosen malloc sites.

if (ObjectAddress ∈ PreallocMemory) {
Mark ObjectAddress as free;

} else {
free(ObjectAddress);

}

Figure 5. Instrumentation for all free sites.

if (ObjectAddress ∈ PreallocMemory) {
if (NewSize ≤

PreallocAddrSize[ObjectAddress]) {
NewObjectAddress = ObjectAddress;

} else {
NewObjectAddress = malloc(NewSize);
// Copy contents from old object to new
memcpy(NewObjectAddress,

ObjectAddress, ObjectSize);
Mark ObjectAddress as free;

}
} else {

// Default call to the memory reallocator
NewObjectAddress =

realloc(ObjectAddress, NewSize);
}

Figure 6. Instrumentation for all realloc sites.

(c) realloc: Similar to frees, reallocs must also be instru-
mented with code that checks if an object being reallocated
is from the preallocated memory. As shown in Figure 6, if a
preallocated object is reallocated in the program, we check if
the new size of the object is within the bounds of the space
allocated in the preallocated memory region. If the size does
not fit, we move the object away from the preallocated re-
gion. However, the common case for preallocated objects is
that the new size is less than the preallocated size as this
information was already obtained from the original trace.

Correctness of above Transformations. The above in-
strumentation based transformations preserve program se-
mantics. Instead of allocating some objects individually from
the heap, they are simply placed in a large preallocated heap
memory region. Calls to free simply skip returning the object

Counter++;
Map = (Counter - 1) % N;
// if mapped object is freed and size fits
if (isFree(PreallocMemory[Map]) &&

ObjectSize ≤ PreallocSize[Map]) {
ObjectAddress = PreallocMemory[Map];

} else {
// Default call to the memory allocator
ObjectAddress = malloc(ObjectSize);

}

Figure 7. Instrumentation for Object Recycling.

memory to the heap if it was allocated in the preallocated
memory region. Since the program’s logic does not depend
on where in the heap an object is allocated memory, the
program semantics is preserved.

2.4 Object Recycling
For recycling N preallocated objects, a modulo operator is
used to increment and update the Counter associated with
the malloc site to determine the space where the object must
be mapped (see Figure 7). For each of the N preallocated
objects we remember whether the space is free or not. When
placing another object in the same space, we check to make
sure no live object currently resides there. If that is the case,
the object being created can reuse the space.

Correctness of Object Recycling. The above transforma-
tion involves selecting N, that is number of objects that can
be held in the preallocated region. During a program run, if
the number of objects that are simultaneously live is greater
than N, the code still functions correctly since additional
objects are not stored in the preallocated memory but rather
they are simply allocated via malloc calls. If the number of
simultaneously live objects is less than N, it simply alters
where the objects are stored, but they will all be held in
preallocated memory.

3 Experimental Evaluation
3.1 Implementation
Figure 8 shows our implementation of PreFix. From the orig-
inal baseline executable, the allocation, free and access trace
is generated using DynamoRIO [5]. The generated trace is
analyzed to identify Hot Singleton objects and HDSs. Un-
like the HDS [8] work that uses Sequitur [15] to identify
hot data streams, we employ the Longest Common Subse-
quence [10] algorithm because it is highly efficient and as
effective as Sequitur. Once the HDS and the Hot Singleton
objects are identified, the original executable is instrumented
to perform memory region preallocation, compute object ids,
and map the corresponding objects to the right places in
the preallocated memory. The instrumentation is achieved

411

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA C. Mamatha Ananda, R. Gupta, S. Tallam, H. Shen, and X.D. Li

using LLVM-BOLT [16] which transforms the relevant mal-
loc/free sites to obtain the optimized executable. Cache and
TLB performance data are collected using DrCacheSim [5].

 HDS & Hot Singleton
 Objects

Mem. Access
 TraceDynamoRIO Trace Analysis

Gen. Prealloc
Code

BOLT
Transformation

s

Original
Executable

Optimized
Executable

DrCacheSim
Cache Stats

Figure 8. PreFix Implementation.

3.2 Experimental Setup
We evaluate the following algorithms to compare the perfor-
mance and effectiveness of our approach with prior works.

HDS - Implemented using our framework but it exploits
only those HDSs that are constructed by the technique
described in [8], that is, HDSs are not reconstituted.

HALO -Code was available [20] and hence we used the
authors’ original implementation.

PreFix:Hot - All hot objects are placed in preallocated
space in the order they are allocated.

PreFix:HDS - Places reconstituted and reordered HDS
objects as constructed by our layout determination
algorithm in the preallocated space.

PreFix:HDS+Hot - First lays out objects as in
PreFix:HDS and then places remainder of the hot
objects, not part of any HDS, at the end of the preallo-
cated region.

The benchmarks used in the experiments are from Spec [23],
Olden [17], Ptrdist [3], FreeBench [19] and fleetbench [1]. In
addition, we also use mysql. The baseline runs used in our
experiments range from a few seconds to several hundred
seconds corresponding to 560 million to 837 billion memory
references. The profiling runs used to transform the pro-
grams were training inputs involving significantly shorter
program runs. Experiments were performed on an Intel ma-
chine with the following configuration: 32 KB, 8-way L1 data
cache with 64 B line size; 40MB, 20-way LLC with 64 B line
size; and TLB with 64 entry 4-way L1 and 1536 entry 6-way
LLC. The baseline binary was generated by compiling the
programs using −𝑂3 level of optimization.

3.3 Reductions in Execution Times
Table 3 presents the baseline execution times and the reduc-
tions (negative numbers) and increases (positive numbers)
in execution times relative to the baseline for all five opti-
mization algorithms.

Overall Performance Comparison. PreFix outperforms
HDS and HALO. This shows that exploiting all hot objects is
much better than only handling a subset of hot objects, as is
the case with HDS. While HALO can exploit all hot objects,
it does not perform object reordering within each allocation
group. Best performing versions of PreFix reduce execution
times by 2.77% to 74% with an overall average reduction
of 21.7% across all 13 benchmarks. In contrast, HDS [8]
results in average reduction of 7.3% across 13 benchmarks
and HALO [21] 14% for a subset of 8 benchmarks. We also
observe that the standard HDS [8] technique is substantially
outperformed by PreFix:HDS because of our algorithm for
reconstituting HDSs and achieving a superior data layout.

In four benchmarks, povray, roms, leela, and swissmap, op-
portunities for object recycling yield 3.44%, 17.8%, 25.3%,
and 11.1% reductions in execution times respectively. These
improvements are due to reductions in memorymanagement
overhead and memory footprint. Finally, health’s behavior is
unique in that it has large number of objects that are equally
hot. Therefore PreFix:Hot, PreFix:HDS+Hot, and HALO
perform very well giving 43.4% reduction in execution time.
On the other hand, PreFix:HDS provides only a small

improvement because very few objects belong to hot data
streams. However, HDS delivers 35.9% reduction in time
because in this case pollution helps performance by sending
hot objects, along with HDS objects, to the separate memory
region. That is, pollution causes HDS to behave like HALO.

Pollution Analysis. Table 4 shows how many polluting
objects are added by HDS and HALO to memory regions
allocated for HDSs and HALO allocation groups. As we can
see, a large number of objects are directed to these memory
regions even though only a few hot objects are present. This
is a key limitation of these works that limits their ability to
effectively exploit spatial locality.

In contrast to prior work, the data in Table 5 for best per-
forming version of PreFix shows that the behavior of objects
captured during the long program run is comparable to those
determined by analyzing the profiling run. In both runs the
percentage of heap accesses (column HA) that are due to
objects placed in preallocated memory is high. Vast majority
of objects captured during the long run are indeed hot ob-
jects (column Hot). Finally, the objects that are observed as
forming HDSs (column HDS) are also comparable. The small
differences are due to differing program behaviors across the
profiling run and long run inputs. That is, spurious objects
are not being assigned to the preallocated memory region
by PreFix. In contrast, as we saw in Table 4, HDS [8] and
HALO [21] send thousands of non-hot objects to separate
memory regions. Figure 9 plots the heap accesses for the
same hot and interesting objects in the baseline and the Pre-
Fix optimized versions of leela benchmark. In the plot, the
x-axis is time and the y-axis is heap virtual address offset.
For the baseline, the heap footprint is about 10M for these

412

PreFix: Optimizing the Performance of Heap-Intensive Applications CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Table 3. Execution Times of Baseline and Relative Changes in execution times achieved by HDS, HALO, and PreFix Versions.
Positive percentages are increases in execution times while negative percentages are reductions in execution times. Execution
time reductions via best performing versions of PreFix are in bold. Execution times for all the benchmarks are averaged over 10

runs and the variations across the runs are small except for the first run.

Benchmark Baseline HDS [8] HALO [21] PreFix
Time (s) Mem. Refs. Hot HDS HDS+Hot Best

mysql 152.7 560 million +3.9% na -13.7% -10.2% -5.2% -13.7%
perl 106.0 337 billion -6.3% na -7.6% -8.30% -7.8% -8.30%
mcf 11.74 13.3 billion +0.8% -1.20% -4.9% -5.10% -7.3% -7.30%
omnetpp 434.5 556 billion +0.6% na -10.6% -13.2% -10.2% -13.2%
xalanc 43.38 138 billion -1.2% na -4.0% -3.90% -4.3% -4.3%
povray 502.3 1.6 trillion +0.001% na -3.44% -3.44%
roms 390.2 450 billion -0.02% -0.10% -17.8% -17.8%
leela 555.8 837 billion +0.9% -0.80% -25.3% -25.3%
swissmap 2.275 1.6 billion +1.1% -1.50% -11.1% -11.1%
libc 1.080 630 million +0.01% -0.73% -1.85% -2.77% -0.93% -2.77%
health 32.73 5.6 billion -35.9% -43.1% -43.3% -1.31% -43.4% -43.4%
ft 5.04 768 million -42.8% -47.0% -73.0% -1.00% -74.0% -74.0%
analyzer 18.08 10.1 billion -15.9% -17.6% -57.1% -18.4% -58.9% -58.9%
na – HALO [21] could not be run using the BOLT 2018 version required by the BOLT patch used by HALO [21]

Figure 9. Data Access HeatMaps of Baseline (left) and PreFix Optimized (right) binaries.
X-axis is time and Y-axis is relative heap offset.

Table 4. Pollution in HDS and HALO.

Benchmark HDS HALO
Hot All Hot All

mysql 2 80 na na
perl 76 32,977,460 na na
mcf 4 33 10 59,847
omnetpp 67 123,727 na na
xalanc 54 27,464 na na
povray 0 16,879 na na
roms 0 10,690 0 226,552
leela 0 809 1 198,816
swissmap 7 149,191 4 59,864
libc 8 1,072 6 6,639
health 683,334 683,334 1,318,819 1,318,819
ft 13,334 40,000 20,000 59,998
analyzer 2,242 2,242 8,196 8,196

Table 5. PreFix Object Capture in Profiling vs. Long Run:
(HA) % of Heap Accesses by Preallocated Objects; (Hot) # of

hot objects; and (HDS) # of hot objects in HDSs.

Benchmark Profiling Run Long Run
HA Hot HDS HAs Hot HDS

mysql 93.0% 13 7 86.5% 7 5
perl 60.8% 174 120 53.5% 109 85
mcf 89.3% 6 3 99.9% 6 3
omnetpp 61.1% 230 94 52.1% 153 80
xalanc 75.4% 236 67 72.9% 101 67
povray 50.1% 20 20 28.9% 20 20
roms 33.4% 20 20 74.5% 20 20
leela 37.2% 5 5 70.1% 5 5
swissmap 87.5% 8 8 97.5% 8 8
libc 94.5% 438 384 93.1% 429 376
health 97.2% 1,733,377 213 99.9% 1,733,377 213
ft 82.2% 20,000 868 98.5% 20,000 868
analyzer 98.5% 103,613 3 88.5% 103,613 3

413

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA C. Mamatha Ananda, R. Gupta, S. Tallam, H. Shen, and X.D. Li

objects, whereas, in the optimized it is about 0.2M. By us-
ing preallocated memory, we have significantly reduced the
heap access footprint leading to much better spatial locality.

Relative Benefits of PreFix Versions. As the data in Ta-
ble 3 shows, different versions of PreFix perform the best for
different benchmarks. Below, we discuss some of the reasons
for these differences.

perl, omnetpp and libc - The PreFix:HDS version
gives the best speed up. It is because the Hot singleton
objects at the end, in the HDS+HOT version, are short
lived and their original ordering with the cold object
seems to be better for locality compared to them be-
ing colocated with other Hot singleton objects. Also,
for these benchmarks, performance is better than the
HOT-only version, which means that the ordering of
HDS objects is also important.

mcf, xalanc, health, ft and analyzer - HDS object re-
ordering and placement of remaining hot objects at
the end of the preallocated space improve locality.

povray, roms, swissmap, and leela - The speedups are
mainly due to the recycling of objects. In these bench-
marks, there are no spurious objects and hence all
versions of PreFix perform the same.

mysql - The PreFix:HOT version gives the best per-
formance. This is because the sizes of the hot objects
in mysql are very large with significant intra-object
spatial locality. Thus, the impact of object reordering
on performance is insignificant.

PreFix on Multithreaded Executions. We also evalu-
ated the benefits of PreFix on applications that are multi-
threaded, particularly mysql and mcf, where the number of
threads can be varied. The traces were collected only once
from these benchmarks with the number of threads set to
the default value. 𝑃𝑟𝑒𝐹𝑖𝑥 , with the best configuration for
that benchmark, was then used to optimize each benchmark.
The final optimized binary was then run several times but
with different number of threads each time. Figure 10 shows
the relative performance improvements of each run with 𝑘

threads, relative to the baseline run with 𝑘 threads.
Almost always,PreFix optimized runs are faster than their

corresponding baseline runs, with improvements ranging
from 4.6% to 15.4% in mysql and 1.3% to 10.1% in mcf. With
8 threads, mcf experienced a regression of 1.2%.
In mysql, the hot objects are allocated and accessed by a

unique thread, whereas with mcf, a single thread allocates
the hot objects and are accessed by several threads. PreFix is
able to optimize and improve these benchmarks nevertheless.

3.4 Costs and Benefits of PreFix
In this section we further study the costs and benefits of the
best performing versions of PreFix.

mysql mcf

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

ts
 (%

)

Threads 1
Threads 2
Threads 4
Threads 8
Threads 16
Threads 32
Threads 64

Figure 10. PreFix: Effect of Multithreading.

Table 6. Best PreFix: Benefits and Costs.

Benchmark Calls Dynamic Instr. Peak Memory
Avoided Count Change Change (MB)

mysql 12 -1.50% 18→ 426
perl 119 +0.07% 92→ 94
mcf 5 +0.30% 292→ 333
omnetpp 93 +1.60% 248→ 250
xalanc 235 -0.31% 368→ 405
povray 10,833 -0.2% 8.8→ 8.6
roms 1,415,999 -0.1% 867→ 862
leela 30,263,160 -25.2% 28→ 20
swissmap 148,479 +9.50% 619→ 318
libc 383 -7.10% 81→ 88
health 1,733,376 -2.0% 56→ 43
ft 19,999 -1.1% 7.1→ 6.5
analyzer 103,612 -0.1% 18→ 10

Figures 11 and 12 show the cache misses encountered
by L1 and LLC (Last level Cache) caches by the baseline
binary and the PreFix transformed version. This measures
the percentage of memory accesses that missed in the L1
and LLC respectively. As we can see, in some programs L1
misses are significantly reduced, while in most benchmarks
the benefits come from substantial reductions in LLC misses
(shown in log scale). Figure 13 further shows that there is
a reduction in the percentage of CPU cycles stalled by the
backend [29], a clear improvement in thememory bottleneck,
across all benchmarks. TLB miss rates improved significantly
and measurably for the health (10% to 0.1%) and the analyzer
(0.62% to 0%) benchmarks.

Table 6 shows the number of malloc/free calls eliminated
and the net change in the number of instructions executed.
Even though the instrumentation added to programs to im-
plement our optimizations causes additional instructions to
be executed, this increase is offset to a significant extent by
the malloc/free calls that are avoided via the use of preallo-
cated memory. Therefore, in most programs, there is a fairly
small reduction in the number of executed instructions. In

414

PreFix: Optimizing the Performance of Heap-Intensive Applications CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

mysq
l

pe
rl mcf

om
ne

tpp
xa

lan
c

po
vra

y
rom

s
lee

la

sw
iss

map libc
he

alt
h ft

an
aly

zer
0

10

20

30

40

50

60

70

%
 L

1
m

iss
 ra

te

Baseline L1 miss rate
Optimized L1 miss rate

Figure 11. PreFix: Change in L1 miss rate.

mysq
l

pe
rl mcf

om
ne

tpp
xa

lan
c

po
vra

y
rom

s
lee

la

sw
iss

map libc
he

alt
h ft

an
aly

zer

10−1

100

101

102

%
 L

LC
 m

iss
 ra

te
 (l

og
 sc

al
e)

Baseline
Optimized

Figure 12. PreFix: Change in LLC miss rate.

mysq
l

pe
rl mcf

om
ne

tpp
xa

lan
c
po

vra
y

rom
s

lee
la

sw
iss

map libc
he

alt
h ft

an
aly

zer
0

20

40

60

80

100

%
 C

PU
 c

yc
le

s s
ta

lle
d

by
 B

ac
ke

nd
(M

em
or

y
Bo

ttl
en

ec
k)

Baseline Backend Stalls
Optimized Backend Stalls

Figure 13. PreFix: Change in Backend Stalls.

leela there is a significant reduction because a very large
number of malloc/free calls are avoided. Finally, prealloca-
tion can cause an increase in peak memory usage. The last
column shows the peak memory usage without (baseline)
and with optimization (PreFix). In most benchmarks, there
is a modest increase with mysql being an outlier with a sig-
nificant increase. The exceptions, like leela and swissmap,
show substantial reductions in peak memory usage due to
the use of object recycling.

mysq
l

pe
rl mcf

om
ne

tpp
xa

lan
c

po
vra

y
rom

s
lee

la

sw
iss

map libc
he

alt
h ft

an
aly

zer
0

25

50

75

100

125

150

175

200

St
at

ic
Co

de
 S

ize
 %

 re
la

tiv
e

to
 b

as
el

in
e

12
.4

 M

4.
7

M

68
 K

2.
8

M

7.
2

M

1.
7

M

3.
3

M

52
3

K

3.
7

M

3.
1

M

12
 K

27
 K

15
 K

19
.1

 M

4.
7

M

72
 K

5.
4

M

13
.9

 M

2.
9

M

3.
3

M 65
7

K

3.
8

M

3.
5

M 16
 K

35
 K

16
 K

Baseline
Optimized

Figure 14. Binary Sizes: Baseline→ Best PreFix

Figure 14 shows the increases in the static sizes of binaries
due to the transformations of the malloc / free sites. Bench-
marks where a large number of static malloc sites allocate
hot objects also experienced increased code growth as a re-
sult of the required instrumentation. For themysql, omnetpp,
xalanc, and povray benchmarks, the excessive bloat in code
size is not due to the overheads of the instrumentation. For
these benchmarks alone, BOLT retained the original code
in a separate section called ".bolt.orig.text". This section can
be completely deleted and excluding this section makes the
code size bloat of these benchmarks similar to the other ones.
Although there are costs associated with PreFix, such

as the increased memory footprint and static code size, the
overall benefits far exceed the costs.

4 Related Work
PreFix performs layout optimization by separating hot ob-
jects from other objects as well as changing the order in
which they are stored. As we have shown, HDS [8] and
HALO [20, 21] which fall in the same category have signif-
icant limitations and by overcoming them, PreFix greatly
outperforms them. Next we describe more related works on
enhancing performance of heap-intensive applications.

Data layout optimizations [12, 18, 25, 27] that rearrange
fields, objects within objects and perform structure splitting
have been proposed to improve cache utilization via better
spatial locality. Efficient heap allocation of pointer-based
data structures [7, 13] have been proposed where structure
elements accessed contemporaneously are colocated or dis-
similar instances of such structures are allocated in different
pools. These techniques use a combination of the structure’s
topology, static analysis, and profile information to drive the
optimizations. While PreFix will allocate and colocate hot
data structure instances in the preallocated region guided by
profile information, fine-grained layout of individual objects
is not within the scope of this work and is orthogonal.

415

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA C. Mamatha Ananda, R. Gupta, S. Tallam, H. Shen, and X.D. Li

Run-time techniques [26, 31] to track hot call-site allo-
cations and placing them in separate pools have been studied.
A run-time framework like DynamoRIO [5] is used to track
calling contexts of interesting call-sites and hot allocations
are placed in separate pools, guided by either profiles or
static analysis. PreFix optimizes the binary to be run as
standalone and uses simple checks to identify allocations to
be placed in the preallocated regions.

Object Lifetimes. Techniques that use lifetimes [4, 22] to
place short-lived objects together have been evaluated. Pre-
Fix uses object lifetimes implicitly to determine allocation
decisions. Colocated HDS objects will likely have similar
lifetimes as they are more likely to occur together.

Calling context. Several techniques [6, 21, 22, 31] use the
calling context of the call-sites to determine hot allocations.
In contrast, PreFix proposes a highly precise numbering
scheme using the static call-site id and its dynamic instance
to determine the objects that must be preallocated.

Arena allocators [9, 24, 28] also use preallocatedmemory
called arenas to perform allocations. These are intended to
reduce the cost of allocation and deallocation and works
very well when objects with largely overlapping lifetimes
are grouped into the same arena. The cost of deallocation is
reduced to finally garbage collecting the entire arena and the
cost of allocation is a pointer increment. PreFix, HALO and
our implementation of HDS use preallocated memory similar
to arenas and the cost of allocating and deallocating objects
is cheap similarly. However, with object recycling, PreFix
also drastically reduces the memory foot-print. Using several
arenas for objects with different lifetime ranges is left for
future work.

Other techniquesAlso,Other layout techniques have been
explored, like [30], which introduce a class of transforma-
tions to modify the representation of dynamic data struc-
tures used in programs with the objective of compressing
their sizes. The compression is made possible by frequently
occurring values that have a common prefix or represent
narrow-data values. In [2], the authors propose a GC locality
optimization that uses heuristics to guide GC threads pro-
cessing local objects. The design of Temeriare [11] shows
how a huge page aware memory allocator can reduce mem-
ory usage by improving fragmentation and also improve
TLB utilization. In [32], a comprehensive characterization
of data center workloads and tuning several aspects of the
memory allocators like per-CPU cache sizes, allocation al-
gorithms per workload to achieve performance speedups is
presented. It should be noted that all of these techniques are
complementary and can be used in conjunction with PreFix.

5 Conclusions
Prior works on optimizing heap layout for performance have
looked at separating the small fraction of hot dynamic heap

objects by allocating them in independent memory regions.
Further, the techniques to identify such objects have relied
primarily and heavily on the dynamic calling context of
the allocation site. In this work we have shown that merely
redirecting hot objects to independent memory regions is
suboptimal and does not exploit the full inter-object spatial
locality (object order across allocation sites) that can maxi-
mize performance gains. Instead, PreFix uses preallocated
memory to separate and group hot objects across allocation
sites for maximal locality. Further, while using calling con-
texts is effective in some cases to identify hot objects, there
are several instances where it contributes to significant pollu-
tion of the hot memory regions with irrelevant/cold objects.
In PreFix, we have shown that a simple technique that uses
dynamic object IDs can effectively identify hot objects with
low static and dynamic instrumentation overheads.
Evaluation of PreFix on 13 memory intensive bench-

marks, large and small, has shown that our technique has con-
sistently outperformed previous techniques and yielded per-
formance improvements averaging 22%. PreFix has clearly
demonstrated the performance potential of exploiting spa-
tial locality by reordering hot objects across allocation sites.
Future work would look at scaling our techniques to very
large warehouse-scale applications, like servers, and using
hardware tracing to reduce the overheads of trace collection
and analysis.

Acknowledgment
This work was supported by a research award from Google
and National Science Foundation Grants CCF-2226448 and
CCF-2002554 to the University of California, Riverside.

References
[1] Andreas Abel, Yuying Li, Richard O’Grady, Chris Kennelly, and Darryl

Gove. 2024. A Profiling-Based Benchmark Suite for Warehouse-Scale
Computers. In 2024 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 325–327. https://doi.org/10.
1109/ISPASS61541.2024.00046

[2] Khaled Alnowaiser. 2014. A study of connected object locality in
NUMA heaps. In Proceedings of the Workshop on Memory Systems
Performance and Correctness (MSPC ’14). Association for Computing
Machinery, New York, NY, USA, Article 1, 9 pages. https://doi.org/10.
1145/2618128.2618132

[3] Todd Austin. 1995. The Pointer-intensive Benchmark Suite. https:
//pages.cs.wisc.edu/~austin/ptr-dist.html. (1995).

[4] David A Barrett and Benjamin G Zorn. 1993. Using lifetime predictors
to improve memory allocation performance. In Proceedings of the
ACM SIGPLAN 1993 conference on Programming Language Design and
Implementation. 187–196.

[5] Derek L. Bruening and Saman Amarasinghe. 2004. Efficient, trans-
parent, and comprehensive runtime code manipulation. (2004).
AAI0807735.

[6] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998.
Cache-conscious data placement. In Proceedings of the eighth interna-
tional conference on Architectural support for programming languages
and operating systems. 139–149.

416

https://doi.org/10.1109/ISPASS61541.2024.00046
https://doi.org/10.1109/ISPASS61541.2024.00046
https://doi.org/10.1145/2618128.2618132
https://doi.org/10.1145/2618128.2618132
https://pages.cs.wisc.edu/~austin/ptr-dist.html
https://pages.cs.wisc.edu/~austin/ptr-dist.html

PreFix: Optimizing the Performance of Heap-Intensive Applications CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

[7] Trishul M Chilimbi, Mark D Hill, and James R Larus. 1999. Cache-
conscious structure layout. In Proceedings of the ACM SIGPLAN 1999
conference on Programming language design and implementation. 1–12.

[8] Trishul M Chilimbi and Ran Shaham. 2006. Cache-conscious coallo-
cation of hot data streams. In Proceedings of the 27th ACM SIGPLAN
Conf. on Programming Language Design and Implementation. 252–262.

[9] Ryan Fleury. 2022. Untangling Lifetimes: The Arena Allocator. https://
www.rfleury.com/p/untangling-lifetimes-the-arena-allocator. (2022).
[Online; accessed August-2024].

[10] GeeksforGeeks. Longest Common Subsequence. https://www.
geeksforgeeks.org/longest-common-subsequence-dp-4/.

[11] Andrew Hamilton Hunter, Chris Kennelly, Paul Turner, Darryl Gove,
Tipp Moseley, and Parthasarathy Ranganathan. 2021. Beyond malloc
efficiency to fleet efficiency: a hugepage-aware memory allocator. In
15th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 21). 257–273.

[12] Thomas Kistler and Michael Franz. 2000. Automated data-member
layout of heap objects to improve memory-hierarchy performance.
ACM Transactions on Programming Languages and Systems (TOPLAS)
22, 3 (2000), 490–505.

[13] Chris Lattner and Vikram Adve. 2005. Automatic pool allocation:
improving performance by controlling data structure layout in the
heap. ACM Sigplan Notices 40, 6 (2005), 129–142.

[14] Andreas Lobel. 2011. 429.mcf: SPEC CPU2006 Benchmark Description.
https://www.spec.org/cpu2006/Docs/429.mcf.html. (2011). [Online;
accessed August-2024].

[15] Craig Nevill-Manning and Ian Witten. 1997. Linear-time, incremental
hierarchy inference for compression. 3–11. https://doi.org/10.1109/
DCC.1997.581951

[16] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
2019. BOLT: a practical binary optimizer for data centers and beyond.
In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2019). IEEE Press, 2–14.

[17] Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren.
1995. Supporting dynamic data structures on distributed-memory
machines. ACM Trans. Program. Lang. Syst. 17, 2 (mar 1995), 233–263.
https://doi.org/10.1145/201059.201065

[18] Shai Rubin, Rastislav Bodík, and Trishul M. Chilimbi. 2002. An efficient
profile-analysis framework for data-layout optimizations. In Confer-
ence Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland, OR, USA, January 16-
18, 2002, John Launchbury and John C. Mitchell (Eds.). ACM, 140–153.
https://doi.org/10.1145/503272.503287

[19] Peter Rundberg and Fredrik Warg. 1995. The FreeBench v1.03 Bench-
mark Suite. https://web.archive.org/web/20020601092519/http://www.
freebench.org/. (1995).

[20] Joe Savage and Timothy M Jones. 2019. Research data supporting
"HALO: Post-Link Heap-Layout Optimisation". Apollo - University of
Cambridge Repository. https://doi.org/10.17863/cam.46071. (2019).

[21] Joe Savage and Timothy M Jones. 2020. Halo: Post-link heap-layout
optimisation. In Proceedings of the 18th ACM/IEEE International Sym-
posium on Code Generation and Optimization. 94–106.

[22] Matthew L Seidl and Benjamin G Zorn. 1998. Segregating heap objects
by reference behavior and lifetime. ACM SIGPLAN Notices 33, 11 (1998),
12–23.

[23] Standard Performance Evaluation Corporation. 2017. SPEC CPU2017.
https://www.spec.org/cpu2017. (2017).

[24] Protocol Buffer Team. 2022. C++ Arena Allocation Guide. https://
protobuf.dev/reference/cpp/arenas/. (2022). [Online; accessed August-
2024].

[25] Dan N Truong, Francois Bodin, and André Seznec. 1998. Improving
cache behavior of dynamically allocated data structures. In Proceedings.
1998 International Conference on Parallel Architectures and Compilation
Techniques (Cat. No. 98EX192). IEEE, 322–329.

[26] Zhenjiang Wang, Chenggang Wu, and Pen-Chung Yew. 2010. On
improving heap memory layout by dynamic pool allocation. In Pro-
ceedings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization. 92–100.

[27] Zhenjiang Wang, Chenggang Wu, Pen-Chung Yew, Jianjun Li, and
Di Xu. 2012. On-the-fly structure splitting for heap objects. ACM
Trans. Archit. Code Optim. 8, 4, Article 26 (jan 2012), 20 pages. https:
//doi.org/10.1145/2086696.2086705

[28] Chris Wellons. 2023. Arena Allocator tips and tricks. https://
nullprogram.com/blog/2023/09/27/. (2023). [Online; accessed August-
2024].

[29] Ahmad Yasin. 2014. A Top-Down method for performance analysis
and counters architecture. In 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 35–44. https:
//doi.org/10.1109/ISPASS.2014.6844459

[30] Youtao Zhang and Rajiv Gupta. 2002. Data Compression Transfor-
mations for Dynamically Allocated Data Structures. In Proceedings of
the 11th International Conference on Compiler Construction (CC ’02).
Springer-Verlag, Berlin, Heidelberg, 14–28.

[31] Qin Zhao, Rodric Rabbah, and Weng-Fai Wong. 2005. Dynamic mem-
ory optimization using pool allocation and prefetching. ACM SIGARCH
Computer Architecture News 33, 5 (2005), 27–32.

[32] Zhuangzhuang Zhou, Vaibhav Gogte, Nilay Vaish, Chris Kennelly,
Patrick Xia, Svilen Kanev, Tipp Moseley, Christina Delimitrou, and
Parthasarathy Ranganathan. 2024. Characterizing a Memory Allocator
at Warehouse Scale (ASPLOS ’24). Association for Computing Machin-
ery, New York, NY, USA, 192–206. https://doi.org/10.1145/3620666.
3651350

Received 2024-09-12; accepted 2024-11-04

417

https://www.rfleury.com/p/untangling-lifetimes-the-arena-allocator
https://www.rfleury.com/p/untangling-lifetimes-the-arena-allocator
https://www.geeksforgeeks.org/longest-common-subsequence-dp-4/
https://www.geeksforgeeks.org/longest-common-subsequence-dp-4/
https://www.spec.org/cpu2006/Docs/429.mcf.html
https://doi.org/10.1109/DCC.1997.581951
https://doi.org/10.1109/DCC.1997.581951
https://doi.org/10.1145/201059.201065
https://doi.org/10.1145/503272.503287
https://web.archive.org/web/20020601092519/http://www.freebench.org/
https://web.archive.org/web/20020601092519/http://www.freebench.org/
https://doi.org/10.17863/cam.46071
https://www.spec.org/cpu2017
https://protobuf.dev/reference/cpp/arenas/
https://protobuf.dev/reference/cpp/arenas/
https://doi.org/10.1145/2086696.2086705
https://doi.org/10.1145/2086696.2086705
https://nullprogram.com/blog/2023/09/27/
https://nullprogram.com/blog/2023/09/27/
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1145/3620666.3651350
https://doi.org/10.1145/3620666.3651350

	Abstract
	1 Introduction
	2 Our Approach: PreFix
	2.1 Layout Determination Via Object Reordering
	2.2 Context Definition and Identification
	2.3 Instrumentation of malloc and free sites
	2.4 Object Recycling

	3 Experimental Evaluation
	3.1 Implementation
	3.2 Experimental Setup
	3.3 Reductions in Execution Times
	3.4 Costs and Benefits of PreFix

	4 Related Work
	5 Conclusions
	References

