
Fast and Accurate Context-Aware Basic Block Timing
Prediction using Transformers

Abderaouf Nassim Amalou
University of Rennes - Inria - CNRS -

IRISA
Rennes, France

abderaouf.amalou@irisa.fr

Elisa Fromont
University of Rennes - IUF - Inria -

CNRS - IRISA
Rennes, France

elisa.fromont@irisa.fr

Isabelle Puaut
University of Rennes - Inria - CNRS -

IRISA
Rennes, France

isabelle.puaut@irisa.fr

Abstract
This paper introduces ORXESTRA, a context-aware exe-
cution time prediction model based on Transformers XL,
specifically designed to accurately estimate performance in
embedded system applications. Unlike traditional machine
learning models that often overlook contextual information,
resulting in biased predictions for individual isolated basic
blocks, ORXESTRA overcomes this limitation by incorporat-
ing execution context awareness. By doing so, ORXESTRA
effectively accounts for the processor micro-architecture
without explicitly modeling micro-architectural elements
such as caches, pipelines, and branch predictors. Our evalu-
ations demonstrate ORXESTRA’s ability to provide precise
timing estimations for different ARM targets (Cortex M4,
M7, A53, and A72), surpassing existing machine learning-
based approaches in both prediction accuracy and prediction
speed.

CCS Concepts: • Computer systems organization→ Em-
bedded software.

Keywords: Execution time estimation, Machine learning,
long-short term memory, transformers model

ACM Reference Format:
Abderaouf Nassim Amalou, Elisa Fromont, and Isabelle Puaut. 2024.
Fast and Accurate Context-Aware Basic Block Timing Prediction
using Transformers. In Proceedings of the 33rd ACM SIGPLAN In-
ternational Conference on Compiler Construction (CC ’24), March
2–3, 2024, Edinburgh, United Kingdom. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3640537.3641572

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CC ’24, March 2–3, 2024, Edinburgh, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0507-6/24/03
https://doi.org/10.1145/3640537.3641572

1 Introduction
Over the past few years, numerous studies have explored
the use of machine learning (ML) techniques for compiler
optimization, specifically employing these techniques as
cost functions that predict performance metrics such as exe-
cution time, energy consumption, and resource utilization
[5, 21, 22, 27, 32]. These metrics are crucial for optimizing
complex processors, where creating an accurate analytical
model of the micro-architecture is often challenging, error-
prone, or sometimes impossible due to the lack of detailed
documentation and the necessary human expertise for model
design.
The basic block1 (BB) granularity is frequently used to

profile program performance (execution time or energy con-
sumption). However, existing techniques for BB timing esti-
mation, for example, tools [22, 29], consider each BB in iso-
lation, which results in biased solutions that do not account
for the impact of pipelines, branch predictors, and cache
memory, thereby lacking consideration of execution context
in BB timing estimation. Some studies have attempted to
address this limitation by incorporating context awareness
into BB execution time estimation using stacked Long-Short
Term Memory (LSTM) networks [5]. Nevertheless, LSTMs
struggle with long sequences (exceeding 200 tokens, as em-
pirically shown in [17]). More recently, transformer architec-
tures have shown promise in overcoming the limitations of
LSTMs, leading researchers to use them in binary analysis
[20].
This paper presents ORXESTRA or cOntext-awaRe eXE-

cution Time eStimation using TRAnsformers. ORXESTRA
accurately predicts the execution time of BBs within com-
piled binaries. Inspired by deep learning techniques com-
monly used in natural language processing, ORXESTRA uses
a type of ML technique named Transformers [30], a particular
attention-based architecture, to deliver fast and precise pre-
dictions. More specifically, our approach predicts execution
time at the BB granularity using a Transformers XL [11], a
recurrent variant of Transformers. The timing prediction of
a BB uses the execution context of the BB (i.e., instructions
executed before the BB under study). Furthermore, unlike
LSTM-based models or traditional transformers, ORXESTRA

1A Basic Block (BB) is a straight-line sequence of instructions with no
branches in except to the entry and no branches out except at the end.

227

https://orcid.org/0000-0001-7668-2560
https://orcid.org/0000-0003-0133-3491
https://orcid.org/0000-0001-9310-9651
https://doi.org/10.1145/3640537.3641572
https://doi.org/10.1145/3640537.3641572
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3640537.3641572&domain=pdf&date_stamp=2024-02-20

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Abderaouf Nassim Amalou, Elisa Fromont and Isabelle Puaut

provides accurate predictions for long basic blocks, typically
present in real-world applications (e.g., see the study con-
ducted in [27]) and long basic block sequences. ORXESTRA
further includes automatic recognition of the structure of
machine code (list of instructions, operands, and addressing
modes), avoiding the cumbersome task of manually express-
ing this information from hardware documentation.
ORXESTRA has been tested on a range of Arm embed-

ded processors, each with its own level of complexity. Al-
though it can be used for the x86 architecture, we focused
on testing our solution across architectures of varying com-
plexity, and the ARM architecture was a good fit for this
purpose. The tested processors include the Cortex-M4, a ba-
sic pipeline-only processor [3], the Cortex-M7 [4], which
features a data cache, an instruction cache, and a branch
predictor, the super-scalar Cortex-A53 [1], and the out-of-
order Cortex-A72 [2]. Our experimental results demonstrate
that ORXESTRA surpasses LSTM-based models [5, 22] and
traditional Transformers-based solutions [20], showing a
28% improvement in estimation accuracy over the best com-
petitor CATREEN (on average across all targets), while also
being 98% faster in prediction timing than CATREEN [5].
ORXESTRA comes as a standalone tool that can be used

directly by the application developer to profile programs’ per-
formance. In this case, its prediction efficiency allowsORXES-
TRA to replace costly performance measurement campaigns,
either directly on the target processor or on a processor sim-
ulator. ORXESTRA can also be used as a companion tool
for the compiler, allowing the compiler to quickly estimate
the quality of the compilation optimizations adopted, for
example, when using iterative compilation [10, 18].
The remainder of this paper is organized as follows: Sec-

tion 2 presents an overview of related works that have uti-
lized transformers or LSTMs to learn the representations of
basic blocks (BBs) or their performance. Section 3 contains a
comprehensive presentation of ORXESTRA, both regarding
training and actual predictions. The dataset, competitors,
processor targets, and experimental setup are described in
Section 4. The performance of ORXESTRA during pretrain-
ing and fine-tuning is compared against state-of-the-art tech-
niques in Section 5. Lastly, Section 6 concludes the paper.

2 Related Works
Performance estimation techniques using heuristics have
been developed over the years to guide code optimization.
Such techniques range from simple methods, such as count-
ing the number of instructions, to complex machine learning
(ML) techniques that predict the performance of code snip-
pets, using, for example, multilayer perceptrons, recurrent
neural networks such as Long Short-Term Memory (LSTM),
and, more recently, transformers. This section provides an
overview of works using ML-based techniques to estimate
execution time for complex micro-architectures, as well as

related research for automatic learning of the representation
of machine code.

2.1 Execution Time Estimation ML-based
Techniques

ITHEMAL [23] is the first model utilizing a hierarchical
multi-scale RNN, specifically LSTM layers, to predict basic
block performance, focusing on best-case execution time. It
effectively captures interactions between instructions within
the same basic block by sequentially processing each element
(operations and operands). Alongside, the authors introduced
BHive [9], a dataset of basic blocks for X86. However, BHive’s
data collection methodology, including isolating basic blocks,
ensuring first-level cache memory accesses, and omitting
branch instructions, does not truly represent processor exe-
cution. Our aim, in contrast to BHive, is to realize execution
time representation authentic to the processor, enabling pre-
cise differentiation at the cycle level.
Granit [29] employs a Graph Neural Network (GNN) ap-

proach to model the dependencies between instructions
within a basic block. This method relies on the user’s exper-
tise to define dependencies, which are then enforced by the
GNN structure. In contrast, ORXESTRA adopts a matrix rep-
resentation for depicting these dependencies. Specifically, it
utilizes transformer-based mechanisms, where dependencies
are learned through matrix attention techniques. ORXES-
TRA’s approach is more autonomous, enabling it to uncover
microarchitectural nuances without the need for predefined
dependency structures by the user. This fundamental dif-
ference highlights ORXESTRA’s ability to adaptively learn
and discover intricate relationships within instruction sets,
potentially offering a more efficient and user-independent
pathway for modeling instruction dependencies.
DeepPM [27] in the same fashion as ITHEMAL [23] pre-

dicts the execution time of a basic block in isolation using
a simplified Transformers architecture. The lack of details
on the paper and the unavailability of the code made the
reproduction of this solution impossible.
In contrast to these three previous works, CATREEN [5]

relaxes the assumption that a basic block is executed in iso-
lation and predicts the execution time of a basic block based
on its actual context of execution, using three LSTM layers.
However, ORXESTRA advances beyond this by employing
Transformers XL, offering superior management of execu-
tion contexts, including support for longer sequences and
more efficient handling of historical information. The differ-
ences between CATREEN and ORXESTRA, however, extend
beyond just the choice of model. In the experiments Sec-
tion 5, and for a fair comparison, we align CATREEN to the
same configuration as ORXESTRA, but the two approaches
differ in several key aspects:

• Input language: CATREEN uses a predefined input
language where all memory addresses are constants,

228

josenelsonamaral
Highlight

josenelsonamaral
Highlight

josenelsonamaral
Highlight

Fast and Accurate Context-Aware Basic Block Timing Prediction using Transformers CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

while ORXESTRA learns its input language, treating
each address as a separate token for better cache effect
learning.

• Deployment: ORXESTRA is more practical to use than
CATREEN as it automates the calculation of all execu-
tion contexts leading to a basic block, which is not the
case in CATREEN.

• Dataset and targets: CATREEN has only been trained
using a dataset formed of synthetic programs and on
a single target (Cortex M7). In contrast, ORXESTRA
uses a dataset formed of real programs and is trained
on several different targets of varying complexity.

2.2 Learning Code Representation for Performance
Estimation

Word2Vec [24] has been widely utilized in instruction repre-
sentation learning, including performance models like ITHE-
MAL and CATREEN. However, there are notable limitations
associated with Word2Vec: The absence of embeddings for
out-of-vocabulary words poses a challenge when working
with specialized languages, such as assembly code, where
the vocabulary may contain domain-specific or rare words.
In addition, Word2Vec treats each word as a single entity, dis-
regarding its multiple meanings. This can lead to ambiguities
in word representations, which becomes problematic when
dealing with data dependencies in pipelines, vital for perfor-
mance analysis. While Word2Vec has its merits and offers
computational efficiency, Transformers have surpassed it
in various aspects by employing more advanced techniques
and models. Transformers provide enhanced contextualiza-
tion, improved handling of long-range dependencies, and
state-of-the-art performance. Palmtree [20] is a BERT-based
[12] assembly encoder specifically designed to capture the
characteristics of machine instruction sequences by gen-
erating general-purpose instruction embeddings through
pre-training in assembly language. However, our work dif-
fers from Palmtree in two significant ways. Firstly, we em-
ploy a Transformers XL architecture to overcome limitations
present in Transformers like BERT when dealing with se-
quence size. Secondly, we concentrate on the ARM assembly
code instead of the Intel assembly code. Nevertheless, both
Palmtree and ORXESTRA an be adapted to function with ei-
ther Instruction Set Architecture (ISA). Other research efforts
focusing on code representations, such as Graphcodebert
[15] and CodeBert [13], are primarily interested in high-level
code for tasks like code debugging, commenting, or code gen-
eration. In contrast, our research focuses on low-level code
(which makes it a different language to understand, so it is
not usable in our case) for performance estimation, aiming
to improve performance estimation models for embedded
systems.

Average execution time estimation
of BBUA executed after the context input

Transformer
for context

Transformer
 for BBUA

Feed forward

BB1BB2BB6BB7

Sentence piece tokenizer

Context

BB7
Tokens

Local attention matrix
(BBUA)

Global attention matrix
(context)

BB under analysis (BBUA)

BB1
Tokens

BB2
Tokens

BB6
Tokens

BB7
Tokens

Figure 1. ORXESTRA Transformers XL-based architecture

3 Overview of ORXESTRA
ORXESTRA uses Transformer-XL (TXL) for performance
prediction. Introduced in [30], transformers are neural archi-
tectures initially designed for Natural Language Processing
(NLP) tasks like language translation and text summarization.
They incorporate self-attention mechanisms, which enable
the model to give appropriate importance to different parts
of a sequence in the input data. This capability allows them
to effectively capture the relationships between elements in
a sequence and consider the overall context. However, the
original Transformer architecture [31] has a fixed context
window length, which limits its effectiveness for sequen-
tial data with long-term dependencies. This issue leads to
’context fragmentation,’ where longer inputs are broken into
smaller, independently processed fragments. Dai et al. [11]
addressed this limitation by developing TXL, designed to
more efficiently handle longer sequences.

3.1 Transformer XL
Transformers XL [11] marks a significant advancement in
Transformers architectures by addressing the challenge of
context fragmentation. One of its standout features is its ca-
pacity to "recall" or remember previously treated fragments
of data. Instead of processing each fragment in isolation,
Transformers XL integrates information from previous frag-
ments, using this accumulated knowledge as a foundation
when interpreting new data. This continuity is facilitated by
a technique known as the "recurrence mechanism," which is
somewhat akin to the workings of RNNs or LSTMs.

3.2 Architecture of ORXESTRA
ORXESTRA’s architecture, as depicted in Figure 1, consists of
several components. At its core, it utilizes a tokenizer called
Sentencepiece [19]. A tokenizer is a common NLP function
that transforms sequence elements into codes (often integers)
that a neural network can process.

229

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Abderaouf Nassim Amalou, Elisa Fromont and Isabelle Puaut

The entire system uses two TXLs, each serving a specific
purpose. The first Transformer, displayed on the right side of
the figure, focuses on creating an embedding representation
of the execution context. The second transformer, depicted
on the left side of the figure, takes care of processing the basic
block under analysis (BBUA), as it holds themain information
to predict the execution time.
When operating, the two transformers each produce an

attention matrix, specifically a weight matrix-attention ma-
trix of size #𝑡𝑜𝑘𝑒𝑛×#𝑡𝑜𝑘𝑒𝑛. The size of #𝑡𝑜𝑘𝑒𝑛 is fixed at 512,
which is the default setting for a small Transformer XL, as
per Dai et al. [11].When processing input, whether it is a con-
text or a BBUA, the system divides it into smaller segments
of 512 tokens. The Transformer XL’s memory mechanism
allows the system to retain information from the previously
processed 512 tokens recursively, thus enabling the efficient
processing of longer sequences. Padding is strategically ap-
plied at the beginning of each token sequence in the context
input. This arrangement (e.g., BB1, BB2, BB6, and BB7 in
the figure, with BB7 being the last one processed) ensures
a "fresh" perspective on the BBUA. Consequently, the most
recent information, especially about the BBUA, is prioritized
in the final processing steps.
ORXESTRA generates two types of attention matrices:

the global attention matrix for processing the context and
the local attention matrix for the BBUA. These matrices are
concatenated and then fed into a subsequent feed-forward
neural network, as depicted at the bottom of the figure. This
network is designed to estimate the average execution time
(AET) associated with the BBUA.

3.3 Training of ORXESTRA
TrainingORXESTRA consists of twomain stages: pre-training
each TXL (in practice, the same pre-trained model is used
twice) and fine-tuning the entire architecture.
Pre-training: during the pre-training phase, the TXL is

first trained using a self-supervised learning approach. Self-
supervised pre-training is a technique often used in machine
learning to leverage unlabeled data in order to "initialize"
the weights of an (often large) neural network and help it
learn better data representation to solve the final task. Train-
ing for this final task often involves a much smaller set of
labeled data than the amount of data used during the pre-
training phase. A pre-training supervised learning task is
designed from the unlabeled data. For example, in Natural
Language Processing (NLP), a standard pre-training task in-
volves predicting a’masked’ word in a sequence, where these
masked words are randomly chosen. Importantly, the num-
ber of words to be masked is a hyperparameter, and in our
approach, it is fixed to 15% of the sequence size. This learn-
ing task is thus supervised since the masked word is known
from the model when parsing the sentence, but the label
is generated automatically (randomly) without any human

intervention (thus, it is called "self-supervised" learning). In
our working context, our goal for this pre-training phase
is to enable the model to understand the structure of as-
sembly instructions presented in a textual format. This is
also achieved by masking random operations or operands
within the instruction sequence and training the model to
predict them as output in a self-supervised training scheme.
By doing so, we can leverage a very large (unlabeled) dataset
consisting of thousands of disassembled binary programs to
learn a trustworthy representation of assembly code (i.e., to
have a relevant initialization of the weights of our TXL) that
can be used for the final training phase. This final training
phase consists of "fine-tuning" the pre-trained models.
Fine-Tuning: in the fine-tuning stage, ORXESTRA is

trained to predict the execution time of individual BBs in
context. In this phase, a specific set of programs, a target
processor, and a measurement tool are employed. The ex-
ecution times of basic blocks are measured (to obtain the
training labels), and the corresponding instruction sequences
are tokenized using the Sentencepiece technique presented
before. To construct the training dataset, each BB’s median
execution time is considered instead of the mean (to filter the
outliers), along with the tokenized BB itself and its associ-
ated context. The context size, which represents the number
of basic blocks, serves as a hyperparameter for the TXL ar-
chitecture.

3.4 Timing Predictions Using ORXESTRA
Figure 2 shows an overview of the deployment of ORXESTRA
(e.g., its inputs and outputs). Once trained, using ORXESTRA
requires performing three main steps:

1. CFG generation: the process of generating a control
flow graph involves creating a CFG from the binary
or assembly code of programs. Various binary analysis
tools, such as Angr [28], can be used for this CFG
generation.

2. Context extraction: to extract the sequence of BB form-
ing the context, we currently ask the user to annotate
each loop with its maximum number of iterations. foot-
noteBecause parametric loop handling is a complex
problem itself. and use this information to unroll the
loops. The degree to which we unroll these loops de-
pends on the desired context size. As for function calls,
they are virtually inlined during context extraction
(recursivity is not handled in our case). Using the re-
sulting CFG, we unroll loops and eliminate back edges,
resulting in the creation of an acyclic graph. The edges
in the graph are then reversed. Next, utilizing a depth-
limited breadth-first search (BFS) algorithm, we locate
paths from each basic block to its predecessors. The
BFS algorithm takes the context size as input to limit the
search. The resulting extracted context BB sequences
are provided as inputs to ORXESTRA.

230

josenelsonamaral
Highlight

josenelsonamaral
Highlight

josenelsonamaral
Highlight

josenelsonamaral
Highlight

josenelsonamaral
Highlight

josenelsonamaral
Highlight

Fast and Accurate Context-Aware Basic Block Timing Prediction using Transformers CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

(1)
CFG extraction

Binary
program

CFG

(2)
BB and context

extraction

(3)
ORXESTRA

Context
size

<output_file>
...
<BB4> (mean_AET=5)
<t0BB4> (AET=4) </t0BB4>
<t1BB4> (AET=6) </t1BB4>
<t2BB4> (AET=5) </t2BB4>
</BB4>
...
</output_file>

Target
CPU

1 2 3 5

context BB average ET

? cycles1 2 3 5

context BB average ET

? cycles1 2 3 5

context BB average ET

? cycles1 2 3 5

context BB average ET

? cycles1 2 3 5

context BB average ET

? cycles1 2 3 5

context BB average ET

? cycles1 2 3 5

context BB average ET

? cycles1 2 3 5

context BB average ET

? cycles1 2 3 5

context BB average ET

? cycles

Figure 2. Timing predictions using ORXESTRA

3. Inference: In the final step, ORXESTRA loads themodel
based on the selected target CPU and proceeds to an-
alyze all the given sequences of BB as inputs. It then
predicts the execution time for the last BB of each
sequence. If a BB appears at the end of multiple se-
quences, the BB is assigned the average execution time
from all of these sequences. The final prediction gives
the execution time among predictions for each BB.

4 Dataset, Competitors, Targets and Setup
We detail the data used to train (for both phases) and test
ORXESTRA n Section 4.1. Section 4.2 describes the baseline
methods used to assess the effectiveness of ORXESTRA The
hardware and software setups are described in Section 4.3.
Finally, Section 4.4 provides detailed information about the
learning setup of ORXESTRA including all relevant hyper-
parameters.

4.1 Datasets and Benchmarks
As stated before, training ORXESTRA nvolves two primary
steps: pre-training and fine-tuning. In the pre-training phase,
which learns the structure of machine code, a large dataset of
programs from CodeNet [25] is used. This dataset contains
about 900,000 C programs obtained from public submissions
on competitive programming websites. These programs un-
dergo cross-compilation to the target architecture using O3
optimization option and are disassembled using the GNU
binary tool objdump. From each assembly program, we ex-
tract relevant information such as instruction addresses and
identification of BB limits (the start of a basic block and the
end of it). It is important to note that the programs them-
selves are not executed during this process; they are used
as a form of natural language data. The pre-training dataset
is further used by Sentencepiece which performs its own
learning phase and produces a model to tokenize our data.
The Sentencepiece procedure progressively merges characters
and character sequences, generating a vocabulary of smaller
subword units based on statistical patterns. The model then

uses these subword units to tokenize the input text, facilitat-
ing language modeling and addressing the issue of out-of-
vocabulary. OOV in machine learning can have detrimental
effects as it reduces generalization, results in information
loss, triggers cascading errors, and presents difficulties in
domain adaptation words. Once trained, Sentencepiece is able
to tokenize binary programs written in the target instruction
set, enabling efficient processing by the Transformers.

To fine-tune ORXESTRA a varied set of publicly available
programs is employed2, namely The Algorithms 3, MiBench
[16], and Polybench [33]. Basic blocks and their respective
contexts are extracted from these programs with a few modi-
fications to obtain relevant data. For example, all instances of
printf and system calls, which introduce redundant BBs and
can potentially lead to overfitting, are eliminated from these
programs. In Table 1, a summary of each benchmark suite is
provided, including the number of programs in each dataset
and the total count of basic blocks encountered during the
execution of each program.
For more details, both the pre-training dataset and the

fine-tuning dataset can be found in our public deposite [6].

Table 1. Composition of the dataset for the finetuning phase,
showing benchmarks, the number of programs, and the total
count of basic blocks retrieved per program. This dataset
serves to the training and testing of all competitors also

Dataset name Nb. of programs Nb. of BB
The Algorithms 200 12123

PolyBench 30 11224
MiBench 14 8324
Total 244 31671

4.2 Baselines
ORXESTRA is compared to three context-agnostic timing
predictors and one context-aware timing predictor. The first
context-agnostic competitor is a Multi-Layer Perceptron
(MLP) regressor, loosely referred to as a neural network (NN)
[7]. Although not a naive approach, the neural network fol-
lows a feed-forward architecture that does not incorporate
context information and further requires a fixed-size input.
For our NN implementation, we input 233 static features
from the basic blocks, mainly consisting of the proportions
of various machine instruction types (e.g., MOV, ADD, LDR)
with the associated access type (direct, indirect, or imme-
diate). We use a greedy search algorithm to determine the
optimal hyperparameters for the NN, including its number
of hidden layers, the optimizer, the learning rate, and the loss
function. Based on the validation dataset, the best parame-
ters are: hidden layer sizes set to 512, 256, and 128; learning
rate set to ’adaptive’ with an initialization of 0.001; and use
2We also cross-compile this program using O3 option.
3Available here: https://github.com/TheAlgorithms/C

231

josenelsonamaral
Highlight

josenelsonamaral
Highlight

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Abderaouf Nassim Amalou, Elisa Fromont and Isabelle Puaut

of the ’adam’ solver. These hyper-parameters are coherent
with what is used in [7].

Our second context-agnostic baseline is ITHEMAL [23],
which uses LSTMs for execution time prediction. We re-
implemented ITHEMAL from the original paper, porting
the tokenization and embedding step of ITHEMAL to the
ARM instruction set. Additionally, we tuned the model’s
hyperparameters to better fit the new data.

The third context-agnostic baseline is a re-implementation
of BERT [12]4 here called "PalmTree ARM" [20]. This ap-
proach as Palmtree, involves pre-training BERT, and simi-
larly to ORXESTRA using the masked language modeling
pretext task specifically designed for ARM assembly code.
Palmtree ARM takes a single basic block as input and pre-
dicts its timing hence without considering the execution
context information. Our objective with this competitor is
to compare ORXESTRA ith a Transformers model that per-
forms similarly to ITHEMAL to assess the influence of the
context awareness on the same type of neural architecture.

Finally, ORXESTRA s comparedwith its closest competitor,
CATREEN, a context-aware execution time predictor intro-
duced in [5]. We re-implemented CATREEN using the same
hyperparameters as in the original study. Unlike ORXES-
TRAwhich relies on Transformers XL, CATREENuses LSTMs
which are recurrent neural architectures. Transformers XL
excel at capturing dependencies using self-attention mecha-
nisms, while LSTMs struggle due to the vanishing gradient
problem when capturing long-range dependencies. Addi-
tionally, Transformers architectures are easier to design and
train compared to LSTMs, even with pre-training.

In Table 2, a summary of the hyperparameters employed
by all competitors is presented. To ensure a fair compar-
ison, the context size parameter for both ORXESTRA nd
CATREEN was selected to be the same.

Table 2. hyper-parameters used for ITHEMAL CATREEN,
the PalmTree ARM, and ORXESTRA (NA: Non Applicable).

Hyperparameter ITHEMAL CATREEN PalmTree ARM ORXESTRA
Loss function MAPE sMAPE MAPE MAPE
Optimizer ’SGD’ ’Adam’ ’Adam’ ’Adam’

Learning rate 0.001 0.0001 0.0001 0.0001
Embedding size 512 512 512 512
Feed forward

structure and size 128 256, 256 512, 256, 128 512, 256, 128

Number of layers 2 LSTMs 3 LSTMs 6 4
Number of attention

head NA NA 8 4

Memory length NA NA NA 1024

4BERT (Bidirectional Encoder Representations from Transformers) is a type
of language model based on the Transformers architecture.

4.3 Hardware and Software Setups
To obtain the timing values (labels) necessary to trainORXES-
TRA n the fine-tuning phase, we employ either a hardware-
based or a software-based approach, depending on the avail-
ability of each solution. The hardware solution is always
preferred when available for its negligible interference with
execution (probe effect).

The hardware-based timing instrumentation leverages the
Joint Test Action Group (JTAG) interface for the hardware
solution and utilizes the J-Trace Pro trace solution from Seg-
ger [26]. This allows us to connect to the JTAG interface of
the target processors, specifically the Cortex-M4 and Cortex-
M7 in our case. To generate execution traces, we use Ozone
[14], a cross-platform debugger and performance analyzer,
in conjunction with J-Trace Pro. These traces provide valu-
able information such as the cycle counter value, instruction
address, opcode, operands, and corresponding assembly code
for each instruction.

The software-based solution involves adding instrumenta-
tion code to measure the execution time of individual BBs in
a program. We retrieve the execution trace using GDB (the
GNU Debugger) to obtain context and assembly code for the
timed BB.

We measure the execution times of each basic block (BB)
by running each program from each dataset using the default
input.We intentionally start with a cold state of the processor
and do not intervene during the program’s execution to
capture all possible microarchitecture aspects.

Our experiments encompass a variety of Arm processors,
summarized in Table 3. The Cortex-M4 processor features a
simple in-order pipeline with three stages and no cache. This
processor enables us to validate our method on a determin-
istic processor with precise timing measurements obtained
through the JTAG interface. The more advanced Cortex-M7
processor possesses a 6-stage in-order pipeline, data and in-
struction caches, and a branch predictor. The Cortex-A53
processor, hosted in a Raspberry Pi 3 features a dual issue
8-stage in-order pipeline, two levels of data and instruction
caches, and a branch predictor. The Cortex-A72 processor,
hosted in a Raspberry Pi 4 differs from the A53 through its
out-of-order pipeline. Since the Cortex-A53 and Cortex-A72
lack a JTAG interface, we rely on reading the cycle counter
register for timing measurements.

4.4 Setup for the Learning Phase
PyTorch was used to implement our model and the baseline
ones. ORXESTRA as trained on a Tesla V100. Each setting
(processor) required two days for ORXESTRA raining: 1,5
days for pre-training and 0,5 days to fine-tune the model.
Perplexity[8]5 score was chosen as the value to optimize

5Perplexity is a measure of how well a probability model predicts a sample
or a sequence of events. A lower perplexity indicates a better model fit to
the data.

232

Fast and Accurate Context-Aware Basic Block Timing Prediction using Transformers CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

Table 3. Summary of the processors used and their micro-
architectural features; I: Inordre processor, S: Superscalar, O:
Out of Ordre processor.

Target M4 M7 A53 A72
Measurement tool JTAG JTAG Software Software
OS? Baremetal Baremetal Linux Linux
Pipeline/#stages I 3 I 6 I-S 8 O 15
Branch predictor Yes Yes Yes Yes
Cache memory No L1 L2 L2

during pre-training (see Equation 2) and Mean absolute per-
centage errors were used as loss during fine-tuning (see
Equation 1). All the datasets (even in the pre-training phase)
were split into training (70%), validation (10%), and test (the
rest) sets containing different BBs. The MAPE (Mean Abso-
lute Percentage Error) is also used to assess the performance
of each model. It evaluates how far (as a percentage) the
prediction is from the true timing. It is defined as:

𝑀𝐴𝑃𝐸𝑙𝑜𝑠𝑠 =
1
𝑛
∗

𝑛∑︁
𝑖=0

|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖 |
𝑎𝑐𝑡𝑢𝑎𝑙𝑖

(1)

Perplexity(𝐷) = 𝑁

√√√
𝑁∏
𝑖=1

1
𝑃 (𝑤𝑖)

(2)

Where:
• 𝑁 is the total number of events or words in the dataset.
• 𝑤𝑖 represents the 𝑖th event or word in the dataset.
• 𝑃 (𝑤𝑖) is the probability assigned to event 𝑤𝑖 by the
probability model. It is the estimated likelihood of ob-
serving event𝑤𝑖 based on the model.

5 Experimental Results
Following the typical evaluation methodology of language
models, ORXESTRA s evaluated in two ways: through intrin-
sic evaluation and extrinsic evaluation. Intrinsic evaluation
involves assessing the model obtained at the end of the pre-
training phase using specific unsupervised learning metrics
(e.g. the perplexity score). It is provided in Section 5.1. On the
other hand, extrinsic evaluation involves employing the mod-
els in actual tasks, such as the execution time estimation in
our case, and evaluating their performance based on metrics
such as the mean absolute percentage error (MAPE). This
is provided in Section 5.2. The context-awareness feature of
ORXESTRA s evaluated in Section 5.3, in which the impact of
the context size on the estimations is investigated. Section 5.4
demonstrates that ORXESTRA xhibits superior scalability
compared to other models when estimating the timing of
large BBs. Section 5.5 study the robustness of the models
to the unused optimization options. Lastly, Section 5.6, pro-
vides insights into the processing speed of each model by
offering estimations of the number of instructions that can
be processed per second.

5.1 Evaluation of the Pre-training
In the intrinsic evaluation experiment, both ORXESTRA nd
the PalmTree ARM6 were evaluated using the CodeNet [25]
dataset. This evaluation assesses their performance in a
masked language modeling task, specifically in recovering
the masked operation/operand. The perplexity values for
each model are provided in Table 4. The best results in the
table are highlighted in bold. A lower perplexity score indi-
cates that the language model is better at predicting masked
words. Essentially, the perplexity score assesses how well
each model predicts hidden words. Perplexity values, influ-
enced by tokenization technique, dataset, and model, are
represented as points. For intuitive interpretation, in Eng-
lish NLP research [11], a 5-point difference in perplexity is
considered significant.

Table 4. Perplexity scores obtained by ORXESTRA nd the
PalmTree ARM in the pre-training phase.

Target M4 M7 A53 A72
PalmTree ARM 24.1 26.4 25.3 25.7
ORXESTRA 19.2 23.1 22.2 21.8

The results clearly indicate that ORXESTRA utperforms
the PalmTree ARM across all targets. This observation is
not surprising, as Transformers XL, unlike PalmTree ARM,
exhibits superior memory capabilities for handling long se-
quences. In contrast, PalmTree ARM is limited by the re-
stricted number of tokens that can be processed, which re-
stricts their ability to capture dependencies beyond their
specified context length. This hard sequence segmentation
leads to context fragmentation, inefficient optimization, and
ultimately a decline in performance.

5.2 Prediction Results on the Test Dataset
From our fine-tuning datasets, we extracted two distinct test
sets for extrinsic evaluation purposes. The first test set con-
sists of 500 BBs with fewer than 50 instructions and 500 BBs
with more than 50 instructions. The second test set is created
specifically for all the BBs whose timing can be successfully
predicted by the PalmTree ARM. To accommodate the lim-
itations of PalmTree ARM, which cannot handle BBs with
token sequence sizes exceeding their capacity. This adjust-
ment was essential to ensure a fair comparison between the
models.

In Table 5, we use the first test dataset, and thus we do not
provide the results for the PalmTree ARM (which could only
perform predictions on the second test dataset and not all
BB from the first set). The results include the Mean Absolute
Percentage Error (MAPE), where lower percentages indicate

6A basic transformer called Palmtree [20] model trained for ARM ISA. We
only compare to Palmtree as it already showed its superiority to other
embedding models like word2vec [24].

233

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Abderaouf Nassim Amalou, Elisa Fromont and Isabelle Puaut

better model performance. The best results in the table are
highlighted in bold. Additionally, the Pearson correlation
score is utilized as another evaluation metric to estimate how
correlated the predictions are with the ground truth7. In this
case, higher scores indicate better model performance.

Table 5. Test results of Neural Networks (NN), ITHEMAL
[22], CATREEN [5], and ORXESTRA on various ARM Cortex
targets: M4, M7, A53, and A72. The results are based on the
first test dataset, which includes a balance between the num-
ber of small and large-sized BBs. Evaluation metrics: mean
absolute percentage error (MAPE) and Pearson correlation
(Corr.).

Scores Target M4 M7 A53 A72
MAPE NN 26.4% 22.7% 38.4% 16.7%

ITHEMAL 14.4% 17.6% 10.1% 11.4%
CATREEN 8.8% 13.3% 8.5% 10.4%
ORXESTRA 7.8% 9.6% 5.2% 6.9%

Corr. NN 0.93 0.92 0.89 0.98
ITHEMAL 0.90 0.90 0.98 0.98
CATREEN 0.99 0.96 0.99 0.98
ORXESTRA 0.99 0.98 0.99 0.99

Table 5 shows that ORXESTRA btains better MAPE per-
formance than all other techniques for all the target archi-
tectures. The second best-performing model is CATREEN,
which, like ORXESTRA considers the execution context of
BBs. The worst-performing model is the Neural Network this
shows the importance of accounting for the sequential in-
formation. The context-agnostic techniques, ITHEMAL and,
as shown in Table 6 for the second test set, the PalmTree
ARM are positioned after the context-aware techniques. The
correlation is high for all models and better for the model
designed to process sequential data.

The complexity of the target architecture plays a role in the
final results, although its influence varies depending on the
measurement method employed. When measuring timings
on Cortex M4 and M7 using JTAG, we observe that errors on
M7 are higher than for Cortex M4. This discrepancy is due
to the deterministic nature of the Cortex M4 architecture,
while M7 incorporates a cache with a random replacement
policy, which introduces timing variability. However, this
observation does not hold for more sophisticated architec-
tures such as Cortex A53 and A72. For these processors,
measurement methods involving software instrumentation
were necessary, which introduced additional cycles into the
measurements. The insertion of measurement instruments
disrupts the execution, particularly affecting memory plans
and cache behavior. As a result, the data (and in particular,
the timing labels) obtained for these processors are slightly
less accurate compared to processors with a JTAG interface.
7The ground truth is gathered using either the JTAG or instrumentation
depending of the target processor.

Consequently, making a direct comparison between these
architectures is challenging.

Table 6 reports the results obtained on the second dataset.
We can notice that the trends observed in the previous table 5
remain consistent.

Table 6. Test Results: Mean Absolute Percentage Error
(MAPE) on Different Targets (M4, M7, A53, and A72) us-
ing the second test set. The Test Set is specifically chosen
to be within the prediction capabilities of PalmTree ARM,
ensuring a fairer comparison among models.

Target M4 M7 A53 A72
Scores MAPE MAPE MAPE MAPE

Neural Networks 27.3% 24.5% 27.8% 25.9%
ITHEMAL 10.0% 14.4% 12.1% 13.0%
CATREEN 9.6% 14.5% 10.3% 11.8%

PalmTree ARM 9.1% 13.8% 13.5% 13.3%
ORXESTRA 8.7% 6.8% 6.1% 7.5%

5.3 Impact of the Context Size
In the previous Section, we saw the importance of context
awareness to make accurate timing predictions (ORXES-
TRA nd CATREEN were the most accurate models thanks
to this). However, an important question arises: how much
context is necessary? To explore this, we conducted investi-
gations on CATREEN and ORXESTRA or the different target
architectures. Experimental results are reported in Table 7
and Table 8 respectively. The best results in the table are
highlighted in bold.

Table 7. Impact of the context size (number of BB consid-
ered as context) on the Mean Absolute Percentage Error of
CATREEN.

Target M4 M7 A53 A72
None 13.0% 26.1% 36.3% 18.2%
1 12.5% 15.2% 21.0% 18.4%
3 8.8% 15.5% 8.5% 10.4%
6 9.3% 13.3% 12.5% 15.5%
20 10.2% 14.2% 9.5% 11.4%

Table 8. Impact of the context size (number of BB consid-
ered as context) on the Mean Absolute Percentage Error of
ORXESTRA

Target M4 M7 A53 A72
None 12.5% 24.5% 34.6% 13.3%
1 11.9% 14.6% 20.5% 13.1%
3 7.8% 14.5% 22.9% 14.5%
6 8.8% 9.6% 5.2% 6.9%
20 9.2% 13.7% 8.3% 8.8%

234

Fast and Accurate Context-Aware Basic Block Timing Prediction using Transformers CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

The results highlight the importance of context in timing
estimates. Both CATREEN and ORXESTRAwhen deprived of
context, produce estimates akin to standard neural networks.
As the context size grows, the prediction errors diminish. Yet,
there’s a limit to this improvement. For ORXESTRA errors
stabilize after including 3 BBs for the M4 architecture and
6 BBs for other processors. For CATREEN, most processors
stabilize at 3 BBs, but M7 needs 6 BBs. This plateau in error
reduction can be attributed to the inherent constraints of
LSTM architectures. Overly long contexts can overload the
context vector, making it less effective within the set hyper-
parameters of both models. In future research, we intend to
delve deeper into this phenomenon, necessitating significant
computational resources to gain further insights and confirm
our intuition.

5.4 Impact of the Basic Block Size
Figure 3 shows the mean absolute error8 for six sets of 500 ba-
sic blocks (BBs) in the test dataset, categorized by instruction
count: under 10, 10–20, 20–30, 30–40, 40–50, 50–100, and over
100 instructions. ORXESTRA enerally shows lower errors
across BBs of varying sizes and architectures. CATREEN and
ITHEMAL’s error increases significantly for BBs over 100
instructions. This confirms that LSTM-based models scale
poorly, even in a task like predicting the execution time of
basic blocks, probably due to the vanishing gradient prob-
lem. We also observe that the ITHEMAL errors are higher
than CATREEN’s error, which is surely due to the context
management, which will be more influential for larger ba-
sic blocks that have a higher probability of making more
memory accesses and being more dependent on the context
than small-sized basic blocks. As deducted in Section 5.2,
ORXESTRA as lower average errors for complex architec-
tures like Cortex A53 and A72, but higher errors for in-order
pipeline architectures. Analysis of execution time standard
deviations reveals lower variability in more advanced ar-
chitectures (M4: 252 cycles, M7: 113 cycles, A53: 83 cycles,
A72: 64 cycles), which likely contributes to reduced predic-
tion errors.

5.5 Optimization Effect on Prediction
In this experiment, we want to use different GCC optimiza-
tion levels (O0, O1, O2, O3) to compile and generate the test
dataset. This allows for an investigation into how sensitive
the models are to changes in optimization levels. The goal
is to answer the question: are the models robust enough to
maintain performance across different optimization levels?
Table 9 gives the results of this experimentation, and we ob-
serve that ORXESTRA onsistently outperforms other models
across all targets and optimization levels, demonstrating its
robustness. In contrast, Neural Networks exhibit the highest

8Mean Absolute Error (MAE) is calculated as 1
𝑛

∗∑𝑖=𝑛
1 |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 − 𝑡𝑟𝑢𝑡ℎ𝑖 | .

error in results, and the highest in term of variability making
them the most sensitive to compiler optimization. ITHEMAL
consistently outperforms Neural Networks and occasionally
surpasses CATREEN.

5.6 Inference Throughput
Table 10 displays the instruction rate per second achieved
by each machine learning model. Interestingly, this time is
independent of the complexity of the target processor archi-
tecture, so we report the average over all processors. The
throughput calculation is based on the 1000 basic blocks uti-
lized in the previous experiments (the first test set). To ensure
a fair comparison, we present the results in the first column
with a batch size of 1, followed by the results with a batch
size of 32 in the second column for all techniques. Notably,
neural networks demonstrate the highest execution speed,
despite their lower accuracy. PalmTree ARM, which does
not consider the execution context, follows closely. ORXES-
TRA which processes this context. Both Transformers based
solutions provides a better execution speed compared to
LSTM-based networks (ITHEMAL and CATREEN), which
require sequential processing of each instruction. Conse-
quently, CATREEN is the slowest among them due to the
additional context processing involved.

Table 10. The mean throughput over all processors, when
treating 1000 BB for each technique (with a batch size of 1
and batch size of 32).

Throughput Instruction/second
Batch size 1 32

Neural Networks 5131 162140
ITHEMAL 1627 45379
CATREEN 1356 32644

PalmTree ARM 3809 112468
ORXESTRA 2691 74172

6 Conclusion
ORXESTRA s a tool that estimates the timing of basic blocks
within a program. It takes into account the execution context
formed by previously executed basic blocks. Experimental
results have shown that its timing predictions are 28% better
than those of state-of-the-art context-aware LSTM-based
CATREEN, while being 98% faster than the latter. Moving
forward, we plan to develop a larger model that can incorpo-
rate all execution contexts, to capture memory accesses in
the control flow graph and represent them as an embedding.
Introduce explainability for a more accurate results analysis
and create a faster model using transfer learning.

235

CC ’24, March 2–3, 2024, Edinburgh, United Kingdom Abderaouf Nassim Amalou, Elisa Fromont and Isabelle Puaut

Figure 3.Mean absolute average cycle error boxplot comparison of ITHEMAL (blue), CATREEN (orange), PalmTree ARM
(green), and ORXESTRA red) for different processors (M4, M7, A53, A72) and six Categories of basic blocks. The most left
category represents basic blocks with a size of 10 or less instructions (-<=10), while the most right category includes basic
blocks with a number of instructions exceeding 100 instructions (100<). Each subfigure represents a processor.

Table 9.MAPE performance of ORXESTRA, CATREEN, ITHEMAL and Neural Networks across various GCC optimization
levels (O0, O1, O2 and O3) and architectural targets

Target M4 M7 A53 A72
Optimization O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3
Neural Networks 28.1% 23.2% 21.9% 26.4% 21.1% 19.9% 28.3% 22.7% 25.2% 40.4% 37.1% 38.4% 18.2% 17.1% 16.4% 16.7%
ITHEMAL 14.1% 14.5% 14.5% 14.4% 18.2% 18.2% 17.7% 17.6% 9.1% 11.0% 10.6% 10.1% 12.2% 12.3% 11.5% 11.4%
CATREEN 8.9% 8.2% 8.9% 8.8% 13.4% 13.1% 12.8% 13.3% 9.7% 9.7% 9.2% 8.5% 11.1% 11.4% 10.8% 10.4%
ORXESTRA 7.6% 7.7% 7.7% 7.8% 8.9% 8.2% 9.9% 9.6% 6.2% 6.1% 6.3% 5.2% 7.9% 7.2% 7.4% 6.9%

References
[1] Accessed 2023. ARM Cortex-A53 Processor. https://developer.arm.

com/ip-products/processors/cortex-a/cortex-a53.
[2] Accessed 2023. ARM Cortex-A72 Processor. https://developer.arm.

com/ip-products/processors/cortex-a/cortex-a72.
[3] Accessed 2023. ARM Cortex-M4 Processor. https://developer.arm.

com/ip-products/processors/cortex-m/cortex-m4.

[4] Accessed 2023. ARM Cortex-M7 Processor. https://developer.arm.
com/ip-products/processors/cortex-m/cortex-m7.

[5] Abderaouf N Amalou, Elisa Fromont, and Isabelle Puaut. 2022.
CATREEN: Context-Aware Code Timing Estimation with Stacked
Recurrent Networks. In 2022 IEEE 34th International Conference on
Tools with Artificial Intelligence (ICTAI). 571–576. https://doi.org/10.
1109/ICTAI56018.2022.00090

236

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a72
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a72
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://doi.org/10.1109/ICTAI56018.2022.00090
https://doi.org/10.1109/ICTAI56018.2022.00090

Fast and Accurate Context-Aware Basic Block Timing Prediction using Transformers CC ’24, March 2–3, 2024, Edinburgh, United Kingdom

[6] Abderaouf Nassim AMALOU, Isabelle Puaut, and Elisa Fromont. 2023.
Pre-training and fine-tuning dataset for transformers consisting of basic
blocks and their execution times (average, minimum, and maximum)
along with the execution context of these blocks, for various Cortex pro-
cessors M7, M4, A53, and A72. https://doi.org/10.5281/zenodo.10043908

[7] Abderaouf N Amalou, Isabelle Puaut, and Gilles Muller. 2021. WE-
HML: hybrid WCET estimation using machine learning for archi-
tectures with caches. In 2021 IEEE 27th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA).
31–40. https://doi.org/10.1109/RTCSA52859.2021.00011

[8] Stanley F Chen and Joshua Goodman. 1999. An empirical study of
smoothing techniques for language modeling. Computer Speech &
Language 13, 4 (1999), 359–394.

[9] Yishen Chen, Ajay Brahmakshatriya, Charith Mendis, Alex Renda, Eric
Atkinson, Ondřej Sýkora, Saman Amarasinghe, and Michael Carbin.
2019. BHive: A Benchmark Suite and Measurement Framework for
Validating x86-64 Basic Block Performance Models. In 2019 IEEE Inter-
national Symposium on Workload Characterization (IISWC). 167–177.
https://doi.org/10.1109/IISWC47752.2019.9042166

[10] Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori
Fursin, Olivier Temam, and Chengyong Wu. 2012. Deconstructing
iterative optimization. ACM Trans. Archit. Code Optim. 9, 3, Article 21
(oct 2012), 30 pages. https://doi.org/10.1145/2355585.2355594

[11] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le,
and Ruslan Salakhutdinov. 2019. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv preprint arXiv:1901.02860
(2019).

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy
Doran, and Thamar Solorio (Eds.). Association for Computational
Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming
Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. In Findings of the Association for Computational
Linguistics: EMNLP 2020. Association for Computational Linguistics,
Online, 1536–1547. https://doi.org/10.18653/v1/2020.findings-emnlp.
139

[14] SEGGERMicrocontroller GmbH. [n. d.]. OzoneUser Guide&Reference
Manual. , 348 pages. https://www.segger.com/

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie LIU,
Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele
Tufano, Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundare-
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021. GraphCode BERT:
Pre-training Code Representations with Data Flow. In International
Conference on Learning Representations. https://openreview.net/forum?
id=jLoC4ez43PZ

[16] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B.
Brown. 2001. MiBench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538).
3–14. https://doi.org/10.1109/WWC.2001.990739

[17] Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. 2018. Sharp
nearby, fuzzy far away: How neural language models use context.
arXiv preprint arXiv:1805.04623 (2018).

[18] Peter M. W. Knijnenburg, Toru Kisuki, and Michael F. P. O’Boyle.
2002. Iterative Compilation. In Embedded Processor Design Challenges:
Systems, Architectures, Modeling, and Simulation - SAMOS (Lecture
Notes in Computer Science, Vol. 2268), Ed F. Deprettere, Jürgen Teich,
and Stamatis Vassiliadis (Eds.). Springer, 171–187. https://doi.org/10.

1007/3-540-45874-3_10
[19] Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and

language independent subword tokenizer and detokenizer for neural
text processing. arXiv preprint arXiv:1808.06226 (2018).

[20] Xuezixiang Li, Yu Qu, and Heng Yin. 2021. PalmTree: Learning an
Assembly Language Model for Instruction Embedding. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Association for
Computing Machinery, New York, NY, USA, 3236–3251. https://doi.
org/10.1145/3460120.3484587

[21] Martin Maas. 2020. A Taxonomy of ML for Systems Problems. IEEE
Micro 40, 5 (2020), 8–16. https://doi.org/10.1109/MM.2020.3012883

[22] Charith Mendis, Alex Renda, Saman Amarasinghe, andMichael Carbin.
2019. Ithemal: Accurate, portable and fast basic block throughput
estimation using deep neural networks. In International Conference on
machine learning. PMLR, 4505–4515.

[23] Charith Mendis, Alex Renda, Saman Amarasinghe, andMichael Carbin.
2019. Ithemal: Accurate, portable and fast basic block throughput
estimation using deep neural networks. In Int. Conference on machine
learning. PMLR.

[24] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. 2013. Distributed representations of words and phrases and their
compositionality. Advances in neural information processing systems
26 (2013).

[25] Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo
Domeniconi, Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir Choud-
hury, Lindsey Decker, et al. 2021. CodeNet: A large-scale AI for
code dataset for learning a diversity of coding tasks. arXiv preprint
arXiv:2105.12655 (2021).

[26] Segger. [n. d.]. J-Trace PRO – The Leading Trace Solution. https:
//www.segger.com/products/debug-probes/j-trace/

[27] Jun S. Shim, Bogyeong Han, Yeseong Kim, and Jihong Kim. 2022.
DeepPM: Transformer-based Power and Performance Prediction for
Energy-Aware Software. In 2022 Design, Automation Test in Europe
Conference Exhibition (DATE). 1491–1496. https://doi.org/10.23919/
DATE54114.2022.9774589

[28] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SOK: (State
of) The Art of War: Offensive Techniques in Binary Analysis. In 2016
IEEE Symposium on Security and Privacy (SP). 138–157. https://doi.
org/10.1109/SP.2016.17

[29] Ondřej Sýkora, Phitchaya Mangpo Phothilimthana, Charith Mendis,
and Amir Yazdanbakhsh. 2022. GRANITE: A Graph Neural Network
Model for Basic Block Throughput Estimation. In 2022 IEEE Inter-
national Symposium on Workload Characterization (IISWC). 14–26.
https://doi.org/10.1109/IISWC55918.2022.00012

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural information processing
systems 30 (2017).

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. In Advances in neural information processing
systems. 5998–6008.

[32] Zheng Wang and Michael O’Boyle. 2018. Machine Learning in Com-
piler Optimization. Proc. IEEE 106, 11 (2018), 1879–1901. https:
//doi.org/10.1109/JPROC.2018.2817118

[33] Tomofumi Yuki and Louis-Noël Pouchet. 2016. PolyBench 4.2. 1 (pre-
release).

Received 13-NOV-2023; accepted 2023-12-23

237

https://doi.org/10.5281/zenodo.10043908
https://doi.org/10.1109/RTCSA52859.2021.00011
https://doi.org/10.1109/IISWC47752.2019.9042166
https://doi.org/10.1145/2355585.2355594
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://www.segger.com/
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1007/3-540-45874-3_10
https://doi.org/10.1007/3-540-45874-3_10
https://doi.org/10.1145/3460120.3484587
https://doi.org/10.1145/3460120.3484587
https://doi.org/10.1109/MM.2020.3012883
https://www.segger.com/products/debug-probes/j-trace/
https://www.segger.com/products/debug-probes/j-trace/
https://doi.org/10.23919/DATE54114.2022.9774589
https://doi.org/10.23919/DATE54114.2022.9774589
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/IISWC55918.2022.00012
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118

	Abstract
	1 Introduction
	2 Related Works
	2.1 Execution Time Estimation ML-based Techniques
	2.2 Learning Code Representation for Performance Estimation

	3 Overview of ORXESTRA
	3.1 Transformer XL
	3.2 Architecture of ORXESTRA
	3.3 Training of ORXESTRA
	3.4 Timing Predictions Using ORXESTRA

	4 Dataset, Competitors, Targets and Setup
	4.1 Datasets and Benchmarks
	4.2 Baselines
	4.3 Hardware and Software Setups
	4.4 Setup for the Learning Phase

	5 Experimental Results
	5.1 Evaluation of the Pre-training
	5.2 Prediction Results on the Test Dataset
	5.3 Impact of the Context Size
	5.4 Impact of the Basic Block Size
	5.5 Optimization Effect on Prediction
	5.6 Inference Throughput

	6 Conclusion
	References

